Technical Papers
Sep 25, 2024

Assessment of the Utilization Rate of Organic Substrates by the Microorganisms in Fixed and Suspended Biomass Reactors Treating Sanitary Landfill Leachates

Publication: Journal of Environmental Engineering
Volume 150, Issue 12

Abstract

In this study, we evaluated the utilization rate of organic substrates contained in sanitary landfill leachates (SLLs) by fixed and suspended biomass reactors. Five bioreactors were designed, constructed, and tested for chemical oxygen demand (COD) removal. We applied three levels of organic loading in the influent for each bioreactor, including (1) a rotating biological contactor (RBC) (12, 20, and 25  g  COD/m2/day); (2) a trickling filter (TF) (2.67, 5.33, and 8  kg  COD/m3/day); (3) an upflow anaerobic sludge blanket (UASB) (13.31, 15.98, and 18.65  kg  COD/m3/day); (4) an upflow anaerobic filter in two separated stages (UAF-2SS) (3.71, 2.76, and 1.8  kg  COD/m3/day); and (5) an upflow anaerobic filter in three separated stages (UAF-3SS) (2.25, 3.45, and 4.44  kg  COD/m3/day). Two equations for predicting the substrate utilization rate (SUR) of organic compounds by microorganisms were calibrated and validated, modeled under a nonsteady state condition. We modified Monod’s equation to obtain the significant organic SUR and COD removal efficiency by the biomasses. These kinetic parameters were performed by the microorganisms fixing controlled experimental conditions for pH (8–9) and temperature for the UAFs (20°C, 27°C, and 34°C) and the remaining reactors (18°C– 20°C). The SUR and COD removal efficiency results were as follows: for UASB, 400 to 800  mg/L/h, 70% to 85%; for UAF-3SS, 100 to 300  mg/L/h, 85% to 95%; for UAF-2SS, 100 to 200  mg/L/h, 70% to 85%; and for RBC and TF, 50 to 250  mg/L/h, 70% to 80%. The results were mainly influenced by the structural arrangement of the organic compounds being biodegraded and the geometric configurations of the bioreactors in multiple separated stages, allowing the influence of the solubility of the recalcitrant substances, which varied from 7 to 14:1 COD dilition, to obtain subinhibitory levels for the microbial metabolism and achieve a high COD removal efficiency.

Practical Applications

Two of the five bioreactors evaluated in this study, the upflow anaerobic filter in two separated stages and the upflow anaerobic filter in three separated stages, are proposed and designed as innovative reactors for treating groundwater from tropical aquifers contaminated with hydrocarbons. Additionally, UAFs were configured in a coupled bioreactor arrangement (i.e., a sequencing batch reactor followed by UAFs) to restore water quality by removing organic compounds in tropical rivers. By comparing the five bioreactors, the capacity for the chemical oxygen demand removal was significant related to the organic substrate utilization rate (SUR) for treating sanitary landfill leachates with low recalcitrance levels (i.e., rapidly biodegradable). Rapidly biodegradable SLLs can be associated with La Cortada-SLL percolated from the cells/trenches excavated for the disposal of municipal solid waste (MSW) (i.e., Pamplona Municipality, Colombia) due to the contents of a high fraction of putrescible wastes (67%) and a high biochemical oxygen demand/chemical oxygen demand ratio (62%). This level ratio produced a suitable SUR obtained from the microbial metabolism starting with the upflow anaerobic sludge blanket reactor (400  to1,200  mg/L/h) followed by the remaining bioreactors (150  to350  mg/L/h). Upflow anaerobic filters in multiple separated stages reactors constitute a feasible technical option for overcoming medium to high recalcitrance levels in SLLs obtained from cells/trenches excavated storing around 25% components fraction (e.g., metals, plastics, rubber, leather, textiles).

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

We acknowledge Fondo Nacional de Ciencia, Innovación, y Tecnología (FONACIT) (Grant no. 200800845) for giving support for the tools used in this research through the Center for Hydrological and Environmental Research (CIHAM-UC).

References

Álvarez, P., and E. Guevara. 2003. Biorremediación y atenuación natural de acuíferos contaminados por sustancias químicas peligrosas. Valencia, Venezuela: Consejo de Desarrollo Científico y Humanístico de la Universidad de Carabobo (CDCH-UC).
Angelotti, R., H. E. Hall, M. J. Foter, and K. H. Lewis. 1962. “Quantitation of clostridium perfringens in foods.” Appl. Microbiol. 10 (3): 193–199. https://doi.org/10.1128/am.10.3.193-199.1962.
Antonie, R. L. 1970. “Application of the bio-disc process to treatment of domestic wastewater.” In Proc., 43rd Annual Conf. of the Water Pollution Control Federation. Milwaukee, WI: Autotrol Corporation.
Atlas, R. M. 2010. Handbook of microbiological media. 4th ed. Boca Raton, FL: CRC Press.
Autry, A. R., and G. M. Ellis. 1992. “Bioremediation: An effective remedial alternative for petroleum hydrocarbon-contaminated soil.” Environ. Prog. 11 (4): 318–323.
Azubuike, C. C., C. B. Chikere, and G. C. Okpokwasili. 2016. “Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects.” World J. Microbiol. Biotechnol. 32 (Apr): 1–18.
Barker, H. A., and S. M. Taha. 1942. “Clostridium kluyverii, an organism concerned in the formation of caproic acid from ethyl alcohol.” J. Bacteriol. 43 (3): 347–363. https://doi.org/10.1128/jb.43.3.347-363.1942.
Cárdenas, S., A. Marquez, E. Guevara, and D. Rey. 2018. “Caracterización de plaguicidas organoclorados en agua y sedimentos en el río Tucutunemo, Venezuela-Characterization of organochlorated pesticides in water and sediments, Tucutunemo River, Venezuela.” Tecnol. y Cienc. del Agua 9 (5): 131–169. https://doi.org/10.24850/j-tyca-2018-05-06.
Cárdenas, S., A. Márquez, and E. Guevara. 2023. “Diffusion–advection process modeling of organochlorine pesticides in rivers.” J. Appl. Water Eng. Res. 11 (1): 1–22.
Cárdenas, S., A. Márquez, E. Guevara, and D. Rey. 2019. “Modeling of the monthly distribution of soil erosion and sediment yield in the Tucutunemo Basin, Venezuela.” Rev. ING. UC 26 (1): 72–95.
Cárdenas-Izaguirre, S. F., A. M. Márquez-Romance, and E. Guevara-Pérez. 2021. “Variation analysis of organochlorine pesticides in waters and sediments from a tropical river.” Dyna 88 (216): 203–209.
Cárdenas-Izaguirre, S. F., A. M. Márquez-Romance, E. Guevara-Pérez, and S. A. Pérez-Pacheco. 2022. “An approach to models for transport and transformation of organochlorine pesticides in rivers.” Environ. Qual. Manage. 31 (3): 369–391. https://doi.org/10.1002/tqem.21791.
Carrillo Ortiz, J. L., J. A. Rodríguez, Á. M. Cajiao, and J. I. Maldonado. 2015. “Phenotypic characterization of methanogenic isolated system di-fafs system operated with leachate, pig manure and wastewater.” Cienc. Tecnol. Aliment. 13 (2).
Carucci, A., A. Chiavola, M. Majone, and E. Rolle. 1999. “Treatment of tannery wastewater in a sequencing batch reactor.” Water Sci. Technol. 40 (1): 253–259. https://doi.org/10.2166/wst.1999.0054.
Chandrappa, R., and D. B. Das. 2012. “Solid waste management.” In Principles and practice. New York: Springer.
Chávez, R. D. M., and J. R. Valencia. 2019. “Aprovechamiento y valorización energética del biogás en un relleno sanitario, aprovechamiento y valorización energética del biogás en el relleno sanitario del parque de Tecnología Ambiental Guayabal.” Tesis de Maestría, Programa de Maestría en Ingeniería Ambiental, Universidad de Pamplona.
CORPONOR (Corporación Autónoma Regional de la Frontera Nororiental). 2006. Renovación de licencia ambiental relleno sanitario Guayabal. Colombia: Ministerio de Ambiente.
Crites, R. W., G. Tchobanoglous, M. Camargo, and L. P. Pardo. 2000. Sistemas de manejo de aguas residuales: para núcleos pequeños y descentralizados. New York: McGraw Hill.
Dold, P. L., and G. A. Ekama. 1981. “A general model for the activated sludge process.” In Water pollution research and development, 47–77. Oxford, UK: Pergamon Press.
Eckenfelder, W. W., and D. J. O’Connor. 1964. Biological Waste Treatment, 221–247. Oxford, UK: Pergamon Press.
Ekama, G. A., P. L. Dold, and G. V. R. Marais. 1986. “Procedures for determining influent COD fractions and the maximum specific growth rate of heterotrophs in activated sludge systems.” Water Sci. Technol. 18 (6): 91–114. https://doi.org/10.2166/wst.1986.0062.
EMPOPAMPLONA (Empresa de Servicios Públicos de Pamplona). 2022. Anexo I. “Optimización del relleno sanitario regional ‘La Cortada’ fase ii del municipio de Pamplona–Norte de Santander. Bogotá, Colombia: Ministerio de Vivienda.
Freytez, E., A. Márquez, M. Pire, E. Guevara, and S. Perez. 2019a. “Nitrogenated substrate removal modeling in sequencing batch reactor oxic-anoxic phases.” J. Environ. Eng. 145 (10): 04019068. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001556.
Freytez, E., A. Márquez, M. Pire, E. Guevara, and S. Pérez. 2019b. “Design, construction and evaluation of the performance of a load reactor sequential for treatment of residual waters of teneries.” Rev. Ing. UC 26 (1): 44–60.
Freytez, E., A. Márquez, M. Pire, E. Guevara-Pérez, and S. Pérez. 2020. “Organic and nitrogenated substrates utilization rate model validating in sequential batch reactor.” J. Environ. Eng. 146 (3): 04019124. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001632.
Freytez, E., A. Márquez-Romance, M. Pire-Sierra, E. Gevara-Perez, and S. Perez-Pacheco. 2019c. “Operation assesment of the sequential batch reactor in tannery effluents using suspended and granular biomass.” DYNA Energía y Sostenibilidad 8 (1): 11. https://doi.org/10.6036/ES9130.
Freytez-Boggio, E., and A. M. Marquez-Romance. 2021. “Modelación dinámica de los procesos de eliminación de materia orgánica y nitrógeno de efluentes de tenería usando un reactor por carga secuencial.” Tesis Doctoral, Universidad de Carabobo http://mriuc.bc.uc.edu.ve/handle/123456789/8695?show=ful.
Freytez-Boggio, E., A. M. Márquez Romance, S. Barrazoeta, and E. Guevara Pérez. 2023. “Assessment of the utilization rate of organic and nitrogenated substrates by the microorganisms in a sequencing batch reactor.” Tecnol. y Cienc. del Agua 14 (5): 54–119.
Freytez-Boggio, E., A. M. Márquez Romance, M. C. Pire Sierra, E. Guevara Pérez, and S. A. Pérez Pacheco. 2022. “Calibration of model for the utilization rate of organic and nitrogenated substrates by the microorganism in a sequencing batch reactor.” J. Environ. Eng. 31 (3): 355–368. https://doi.org/10.1002/tqem.21790.
Freytez-Boggio, E., A. M. Márquez Romance, M. C. Pire Sierra, E. Guevara Pérez, and S. A. Pérez Pacheco. 2024. “Organic mass and nitrogen removal kinetic modeling in sequencing batch reactor.” J. Appl. Water Eng. Res. 12 (1): 90–118.
Grau, J., H. Terraza, D. M. R. Velosa, A. Rihm, and G. Sturzenegger. 2015. Solid waste management in Latin America and the Caribbean. Washington, DC: Inter-American Development Bank.
Guevara Pérez, E. 2016. Transporte y transformación de contaminantes en el ambiente y contaminación de las aguas. (Transport and transformation of pollutants in the environment and water pollution). Lima, Peru: Autoridad Nacional de Agua del Perú.
Gutiérrez Pulido, H., and R. De La Vara Salazar. 2008. Diseño y análisis de experimentos (Experiment design and analysis). 2nd ed. New York: McGraw Hill.
IDEAM (Instituto de Hidrología, and Meteorología y Estudios Ambientales). 2016. Inventario Nacional de Gases de Efecto Invernadero (GEI) de Colombia. Bogotá, Colombia: Tercera Comunicación Nacional de Cambio Climático.
Jagaba, A. H., et al. 2021. “Sequencing batch reactor technology for landfill leachate treatment: A state-of-the-art review.” J. Environ. Manage. 282 (Mar): 111946. https://doi.org/10.1016/j.jenvman.2021.111946.
Johnstone, N., and J. Labonne. 2004. “Generation of household solid waste in OECD countries: An empirical analysis using macroeconomic data.” Land Econ. 80 (4): 529–538. https://doi.org/10.2307/3655808.
Kiely, G., and J. M. Veza. 1999. Vol. 1 of Ingeniería ambiental: Fundamentos, entornos, tecnologías y sistemas de gestión, 1331. Madrid, Spain: McGraw-Hill.
Lawrence, A. W. 1971. “Application of process kinetics to design of anaerobic processes.” In Anaerobic biological treatment processes, dvances in chemistry Series No. 105, edited by R. F. Gould, 163. Washington, DC: American Chemical Society. https://doi.org/10.1021/ba-1971-0105.ch009.
Lawrence, A. W., and P. L. McCarty. 1969. “Kinetics of methane fermentation in anaerobic treatment.” Water Pollut. Control Fed. 41 (2): R1–R17.
Lindgren, M. 1983. “Mathematical modeling of the anaerobic filter process.” Water Sci. Technol. 15 (8–9): 197–207. https://doi.org/10.2166/wst.1983.0167.
Logan, B. E., S. W. Hermanowicz, and D. S. Parker. 1987. “A fundamental model for trickling filter process design.” J. Water Pollut. Control Fed. 49 (12): 1029–1042.
Mainardis, M., M. Buttazzoni, and D. Goi. 2020. “Up-flow anaerobic sludge blanket (UASB) technology for energy recovery: A review on state-of-the-art and recent technological advances.” Bioengineering 7 (2): 43.
Maldonado, J., S. López, and R. Jiménez. 2017a. “Biotratamiento de lixiviados con microorganismos anaerobios mesófilos en filtros de tres fases.” Tesis de Pregrado, Departamento de Ingeniería Química, Civil y Ambiental, Universidad de Pamplona.
Maldonado, J. I., A. M. Márquez, and J. A. R. Chona. 2018a. “Tratamiento eficiente de aguas residuales orgánicas con filtros anaerobios de flujo ascendente de tres fases.” BISTUA Revista de la Facultad de Cienc. Básicas 16 (2): 29–41.
Maldonado, J. I., J. A. Rodríguez, and A. M. Cajiao. 2017b. “Treatment landfill SLL in filters anaerobic upflow of two phases (DI–FAFS).” Rev. Ing. UC 24 (1): 91–104.
Maldonado, M. J. I., R. A. M. Márquez, and J. A. Rodríguez Chona. 2018b. “Tratamiento eficiente de residuos líquidos con filtros anaerobios de Flujo ascendente de tres fases (TRI-FAFS).” In I Congreso Binacional de Investigación, Universidad Nacional Experimental del Táchira. Pamplona, Colombia: Univ. of Pamplona.
Maldonado, M. J. I., J. A. Rodríguez Chona, and R. A. M. Márquez. 2018c. “Nueva biotecnología para el tratamiento de residuos líquidos orgánicos mediante filtros anaerobios de flujo ascendente separados en tres fases (TRI-FAFS). Desafíos En Ingeniería: Investigación, Innovación y Investigación, Innovación y Desarrollo.” Expotecnología 1–32.
Maldonado, M. J. I., J. A. Rodríguez Chona, and R. A. M. Márquez. 2018d. “Tratamiento eficiente de residuos líquidos con filtros anaerobios de Flujo ascendente de tres fases (TRI-FAFS).” Rev. Científica UNET. 30 (1): 313–323.
Maldonado-Maldonado, J., A. Márquez-Romance, and E. Guevara-Pérez. 2023. “Formulation, calibration, and validation of hybrid and coupled models for the design of upflow anaerobic filters in multiple separated stages for organic matter removal from sanitary landfill.” Environ. Qual. Manage. 33 (1): 411–440. https://doi.org/10.1002/tqem.22068.
Maldonado-Maldonado, J. I., and Y. A. Flores-Peña. 2017. “Biotratamiento de lixiviados del relleno sanitario la cortada, Pamplona, Norte de Santander mediante un reactor UASB a escala laboratorio.” Tesis de Pregrado, Departamento de Ingeniería Química, Civil y Ambiental. Facultad de Ingenierías y Arquitectura, Universidad de Pamplona.
Maldonado-Maldonado, J. I., and L. G. Henández-Ojeda. 2016. “Tratamiento de lixiviados del relleno sanitario ‘La Cortada’ municipio de Pamplona mediante contactores biologicos rotatorios.” Tesis de Pregrado, Departamento de Ingeniería Química, Civil y Ambiental. Facultad de Ingenierías y Arquitectura, Universidad de Pamplona.
Maldonado-Maldonado, J. I., Y. A. Leal-Carrillo, and F. Y. Serrano-García. 2016. “Determinación del volumen metanogenico requerido en el proceso de remoción de materia orgánica, empleando filtros anaerobios de flujo ascendente separados en dos fases (DI-FAFS).” Tesis de Maestría, Departamento de Ingeniería Química, Civil y Ambiental. Facultad de Ingenierías y Arquitectura, Universidad de Pamplona.
Maldonado-Maldonado, J. I., A. M. Márquez-Romance, E. Guevara Pérez, D. Rey Lago, and S. A. Pérez-Pacheco. 2020. “Models for design of upflow anaerobic filters separated in two and three phases.” J. Environ. Eng. 146 (3): 04020007. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001577.
Maldonado-Maldonado, J. I., A. M. Márquez-Romance, E. Guevara-Pérez, S. Pérez, and D. Rey-Lago. 2018a. “Model development for the design of an anaerobic upflow filter separated in two and three phases.” Dyna 85 (207): 44–53. https://doi.org/10.15446/dyna.v85n207.69783.
Maldonado-Maldonado, J. I., A. M. Márquez-Romance, E. Guevara-Pérez, S. Pérez-Pacheco, and D. Rey-Lago. 2018b. “Design, construction and modeling of upflow anaerobic filters separated in two and three phases.” J. Water Resour. Pollut. Stud. 3 (3).
Maldonado-Maldonado, J. I., A. M. Márquez-Romance, E. Guevara-Pérez, S. A. Pérez-Pacheco, and D. J. Rey-Lago. 2022. “Novel hybrid models for the design of upflow anaerobic filters separated in phases.” Environ. Qual. Manage. 31 (3): 155–166.
Maldonado-Maldonado, J. I., J. F. Rivera-Romero, and S. D. González-Mariño. 2019. “Evaluación del rendimiento de degradación de materia orgánica en reactores de filtro anaerobio trifásico (TRI-FAFS) y de la cinética de reacción.” Tesis de Pregrado, Departamento de Ingeniería Química, Civil y Ambiental. Facultad de Ingenierías y Arquitectura, Universidad de Pamplona.
Maldonado-Maldonado, J. I., and J. A. Rodríguez-Chona. 2016. “Estimación del volumen metanogénico requerido en un filtro anaerobio de flujo ascendente separado en dos fases (DI-FAFS) para el proceso de remoción de materia orgánica de un lixiviado.” Tesis de Maestría, Universidad de Pamplona.
Maldonado-Maldonado, J. I., and D. A. Toloza-Vargas. 2017. “Biotratamiento de lixiviado proveniente del relleno sanitario la cortada, mediante un filtro percolador a escala laboratorio.” Tesis de Pregrado, Departamento de Ingeniería Química, Civil y Ambiental, Facultad de Ingenierías y Arquitectura, Universidad de Pamplona.
Maldonado-Maldonado, J. I., and K. Y. Velandia-Camargo. 2017. “Biotratamiento de agua orgánica sintética mediante un filtro anaerobio de flujo ascendente en tres fases a escala laboratorio.” Tesis de Pregrado, Departamento de Ingeniería Química, Civil y Ambiental, Facultad de Ingenierías y Arquitectura, Universidad de Pamplona.
Márquez, A., E. Freytez, J. Maldonado, E. Guevara, S. Pérez, and E. Buroz. 2023. “Soil and groundwater remediation proposal for hydrocarbons in a tropical aquifer.” J. Appl. Water Eng. Res. 11 (4): 423–452. https://doi.org/10.1080/23249676.2022.2135624.
Márquez, A. M., E. Guevara, and D. Rey. 2019. “Hybrid model for forecasting of changes in land use and land cover using satellite techniques.” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12 (1): 252–273.
Márquez, R. A. M., M. J. I. Maldonado, P. E. Guevara, L. D. J. Rey, and P. S. A. Pérez. 2021. “An approach to models for the design of upflow anaerobic filters.” J. Appl. Water Eng. Res. 9 (2): 107–132. https://doi.org/10.1080/23249676.2020.1831972.
Márquez-Romance, A., S. Cárdenas-Izaguirre, E. Guevara-Pérez, and S. Pérez-Pacheco. 2022a. “Calibration of diffusion-advection process models for organochlorine pesticides in a tropical river.” Environ. Qual. Manage. 31 (4): 403–424.
Márquez-Romance, A., Freytez Boggio E., J. Maldonado Maldonado, S. Cárdenas Izaguirre, E. Guevara Pérez, S. Pérez Pacheco, and E. y Buroz Castillo. 2023a. “In situ and ex situ bioremediation proposal for aquifer contaminated.” In Proc., 40th IAHR World Congress. Beijing: International Association for Hydro-Environment Engineering and Research. https://doi.org/10.3850/978-90-833476-1-5_iahr40wc-p1114-cd.
Márquez-Romance, A., Freytez Boggio E., J. I. Maldonado Maldonado, S. Cárdenas Izaguirre, M. Pérez Rodríguez, O. Luque Mirabal, E. Guevara Pérez, S. Pérez Pacheco, and E. Buroz Castillo. 2023b. “An approach for water quality restoration in tropical rivers.” In Proc., 40th IAHR World Congress. Beijing: International Association for Hydro-Environment Engineering and Research. https://doi.org/10.3850/978-90-833476-1-5_iahr40wc-p1789-cd.
Márquez-Romance, A., E. Freytez-Boggio, J. Maldonado-Maldonado, S. Cárdenas-Izaguirre, M. Pérez-Rodríguez, O. Luque-Mirabal, E. Guevara-Pérez, S. Pérez-Pacheco, and E. Buroz-Castillo. 2023c. “An approach for restoration of the water quality with emphasis on the removal of organochlorine pesticides and eutrophic conditions in tropical rivers.” Environ. Qual. Manage. 33 (1): 183–202. https://doi.org/10.1002/tqem.22038.
Márquez-Romance, A. M., B. E. Farías-de Márquez, and E. Guevara-Pérez. 2022b. “Land use and land cover change detection using satellite remote sensing techniques in a tropical basin.” J. Environ. Qual. Manage. 31 (4): 183–196.
Márquez-Romance, A. M., E. Freytez-Boggio, S. F. Cárdenas-Izaguirre, J. I. Maldonado-Maldonado, E. Guevara-Pérez, S. A. Pérez-Pacheco, and E. Buroz-Castillo. 2022c. “An approach to remediation of a tropical aquifer contaminated with hydrocarbons.” Environ. Qual. Manage. 31 (4): 357–390.
MathWorks. 2005. MATLAB: The language of technical computing. Desktop tools and development environment, version 7. Natick, MA: MathWorks.
Metcalf and Eddy. 1991. Wastewater engineering: Treatment, disposal and reuse. 3rd ed. New York: McGraw-Hill.
Miao, L., K. Wang, S. Wang, R. Zhu, B. Li, Y. Peng, and D. Weng. 2014. “Advanced nitrogen removal from landfill leachate using real-time controlled three-stage sequence batch reactor (SBR) system.” Bioresour. Technol. 159: 258–265.
Monod, J. 1942. Recherches sur la croissance des cultures bactériennes. Paris: Hermann.
Monod, J. 1949. “The growth of bacterial cultures.” Ann. Rev. Microbiol. 3 (1): 371–394.
Ortiz, C., L. Jorge, C. Rodríguez, A. Jarson, P. Cajiao, M. Ángela, and J. I. Maldonado. 2015. “Caracterización fenotípica de metanogénicas aisladas de un sistema DI-FAFS operado con lixiviado, agua residual y estiércol porcino.” @ Limentech, Cienc. Tecnol. Aliment. 13 (2): 108–122.
Pavlostathis, S. G., and E. Giraldo-Gomez. 1991. “Kinetics of anaerobic treatment: A critical review.” Crit. Rev. Environ. Sci. Technol. 21 (5–6): 411–490.
Rice, E. W., kL. Bridgewater, and APHA (American Public Health Association). 2012. Standard methods for the examination of water and wastewater. 22nd ed. Washington, DC: APHA.
Schulze, K. L. 1960. “Load and efficiency of trickling filters.” J. Water Pollut. Control Fed. 32 (3): 245–261.
Spiegel, M. R., and L. Stephens. 2009. estadística. Mexico City, Mexico: McGraw-Hill.
Stadtman, T. C., and H. A. Barker. 1951. “Studies on the methane fermentation Viii: Tracker experiments on fatty acid oxidation by methane bacteria.” J. Bacteriol. 61 (1): 67–80. https://doi.org/10.1128/jb.61.1.67-80.1951.
UNDP (United Nations Development Programme). 2023. “Human development index.” In Human development reports. New York: UNDP.
USGS. 2023. “Landsat 9 OLI image.” Accessed March 5, 2023. https://earthexplorer.usgs.gov/.
Van´t Hoff, J. 1884. In etudes de dynamiques chimiques am. Amsterdam, Netherlands: F. Müller.
Viraraghavan, T., and R. Varadarajan. 1995. “Kinetics of anaerobic filter treatment of wastewaters.” J. Environ. Sci. Health A. 30 (7): 1523–1542. https://doi.org/10.1080/10934529509376283.
Wang, L. K., N. C. Pereira, N. K. Shammas, and Y. T. Hung. eds. 2009. Biological treatment processes: Volume 8. New York: Springer.
Yu, H. Q., J. H. Tay, and H. H. Fang. 2001. “The roles of calcium in sludge granulation during UASB reactor start-up.” Water Res. 35 (4): 1052–1060. https://doi.org/10.1016/S0043-1354(00)00345-6.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 150Issue 12December 2024

History

Received: Sep 22, 2023
Accepted: Jan 11, 2024
Published online: Sep 25, 2024
Published in print: Dec 1, 2024
Discussion open until: Feb 25, 2025

Permissions

Request permissions for this article.

Authors

Affiliations

Julio Maldonado-Maldonado [email protected]
Professor, Member, and Founder, Environmental Research Group: Water, Air and Soils, Univ. of Pamplona, Pamplona Municipality, Norte de Santander 543050, Republic of Colombia. Email: [email protected]
Professor, Coordinator, and Founder, Center for Hydrological and Environmental Research, Univ. of Carabobo, Naguanagua Municipality, Carabobo State 2006, Bolivarian Republic of Venezuela (corresponding author). ORCID: https://orcid.org/0000-0003-1305-5759. Email: [email protected]
Edilberto Guevara-Pérez [email protected]
Professor, Honorary Member, and Founder, Center for Hydrological and Environmental Research, Univ. of Carabobo, Naguanagua Municipality, Carabobo State 2006, Bolivarian Republic of Venezuela. Email: [email protected]
Sergio Pérez-Pacheco [email protected]
Professor, Honorary Member, and Founder, Center for Hydrological and Environmental Research, Univ. of Carabobo, Naguanagua Municipality, Carabobo State 2006, Bolivarian Republic of Venezuela. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share