State-of-the-Art Reviews
Sep 18, 2024

Groundwater Vulnerability to Arsenic Contamination: A Review of Assessment Approaches

Publication: Journal of Environmental Engineering
Volume 150, Issue 12

Abstract

Groundwater vulnerability to geogenic groundwater contamination underlies the complex interplay between various intrinsic geological, hydrogeological, and geochemical characteristics in an aquifer system. Identifying the risks to groundwater quality in this regard is a very engaging process that needs to consider the source and nature of groundwater contamination from the perspective of ongoing external and internal processes within the area/region under study. Arsenic contamination in groundwater has stood out due to its worldwide spread and lethality. It is an established fact that most arsenic sources are predominantly geogenic in nature. Yet, the mechanisms of its mobilization in groundwater appear to be triggered by anthropogenic factors many times. However, the propositions are still being debated and are in an ever-evolving stage. Assessment of groundwater vulnerability to arsenic contamination may thus be considered a potentially valuable management tool for enabling major decisions on preventative groundwater protection, and there is apparently an urgent need to develop robust approaches for the same. One can easily find reviews on groundwater vulnerability per se, but the current review reflects relevant and recent core data compilation/consolidation specifically on arsenic vulnerability assessment. The current work attempts to provide a comprehensive review of the occurrence of arsenic in the subsurface environment, along with the earlier and recent approaches involved in groundwater vulnerability assessment, including mathematical, geostatistical, process-based simulation, and machine learning methods. This paper considers and compares available case studies in this regard and highlights the potential of integrated/hybrid modeling to achieve the best possible outcomes.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models, or code were generated during the study.

Acknowledgments

The first author acknowledges the Department of Science and Technology (DST) financial support for providing the Inspire fellowship (IF180076) with Grant No. 7069-111-044-428 during the research.

References

Abokifa, A. A., P. Biswas, B. R. Hodges, and L. Sela. 2020. “WUDESIM: A toolkit for simulating water quality in the dead-end branches of drinking water distribution networks.” Urban Water J. 17 (1): 54–64. https://doi.org/10.1080/1573062X.2020.1734949.
Albinet, M., and J. Margat. 1970. “Groundwater pollution vulnerability mapping.” Bull. du Bur. Res. Geol. Minieres Bull BRGM 2nd Ser. 3 (4): 13–22.
Aller, L., J. H. Lehr, R. Petty, and T. Bennett. 1987. “Drastic: standardized system to evaluate groundwater pollution potential using hydrogeologic setting.” J. Geol. Soc. India 29 (1): 23–37.
Alley, W. M., T. E. Reilly, and O. L. Franke. 1999. Sustainability of ground-water resources. Denver: US Department of the Interior, USGS.
Amini, M., K. C. Abbaspour, M. Berg, L. Winkel, S. J. Hug, E. Hoehn, H. Yang, and C. A. Johnson. 2008. “Statistical modeling of global geogenic arsenic contamination in groundwater.” Environ. Sci. Technol. 42 (10): 3669–3675. https://doi.org/10.1021/es702859e.
Aslam, R. A., S. Shrestha, and V. P. Pandey. 2018. “Groundwater vulnerability to climate change: A review of the assessment methodology.” Sci. Total Environ. 612 (Jan): 853–875. https://doi.org/10.1016/j.scitotenv.2017.08.237.
Ayotte, J. D., et al. 2006. “Modeling the probability of arsenic in groundwater in New England as a tool for exposure assessment.” Environ. Sci. Technol. 40 (11): 3578–3585. https://doi.org/10.1021/es051972f.
Ayotte, J. D., B. T. Nolan, and J. A. Gronberg. 2016. “Predicting arsenic in drinking water wells of the central valley, California.” Environ. Sci. Technol. 50 (14): 7555–7563. https://doi.org/10.1021/acs.est.6b01914.
Barbash, J. E., and E. A. Resek. 1996. Pesticides in ground water: Distribution, trends, and governing factors, 588. Chelsea, MI: Ann Arbor Press.
Bhattacharya, P., D. Chatterjee, and G. Jacks. 1997. “Occurrence of arsenic-contaminated groundwater in alluvial aquifers from delta plains, eastern India: Options for safe drinking water supply.” Int. J. Water Resour. Dev. 13 (1): 79–92. https://doi.org/10.1080/07900629749944.
Bhattacharya, P., S. H. Frisbie, E. Smith, R. Naidu, G. Jacks, and B. Sarkar. 2002. “Arsenic in the environment: A global perspective.” In Handbook of heavy metals in the environment, 147–215. New York: Marcell Dekker.
Bindal, S., and C. K. Singh. 2019. “Predicting groundwater arsenic contamination: Regions at risk in highest populated state of India.” Water Res. 159 (Aug): 65–76. https://doi.org/10.1016/j.watres.2019.04.054.
Bretzler, A., F. Lalanne, J. Nikiema, J. Podgorski, N. Pfenninger, M. Berg, and M. Schirmer. 2017. “Groundwater arsenic contamination in Burkina Faso, West Africa: Predicting and verifying regions at risk.” Sci. Total Environ. 584 (Apr): 958–970. https://doi.org/10.1016/j.scitotenv.2017.01.147.
Busico, G., L. Alessandrino, and M. Mastrocicco. 2021. “Denitrification in intrinsic and specific groundwater vulnerability assessment: A review.” Appl. Sci. 11 (22): 10657. https://doi.org/10.3390/app112210657.
Chakraborti, D., S. C. Mukherjee, S. Pati, M. K. Sengupta, M. M. Rahman, U. K. Chowdhury, D. Lodh, C. R. Chanda, A. K. Chakraborti, and G. K. Basu. 2003. “Arsenic groundwater contamination in Middle Ganga Plain, Bihar, India: A future danger?” Environ. Health Perspect. 111 (9): 1194–1201. https://doi.org/10.1289/ehp.5966.
Chakraborty, S., P. K. Paul, and P. K. Sikdar. 2007. “Assessing aquifer vulnerability to arsenic pollution using DRASTIC and GIS of North Bengal Plain: A case study of English Bazar Block, Malda District, West Bengal, India.” J. Spat. Hydrol. 7 (1): 101–121.
Chen, K., J. J. Jiao, J. Huang, and R. Huang. 2007. “Multivariate statistical evaluation of trace elements in groundwater in a coastal area in Shenzhen, China.” Environ. Pollut. 147 (3): 771–780. https://doi.org/10.1016/j.envpol.2006.09.002.
Cho, K. H., S. Sthiannopkao, Y. A. Pachepsky, K. W. Kim, and J. H. Kim. 2011. “Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network.” Water Res. 45 (17): 5535–5544. https://doi.org/10.1016/j.watres.2011.08.010.
Civita, M. 1994. Contamination vulnerability mapping of the aquifer: Theory and practice. Bologna, Italy: Quad. di Tec. di Prot. Ambient. Pitagora.
Critto, A., C. Carlon, and A. Marcomini. 2003. “Characterization of contaminated soil and groundwater surrounding an illegal landfill (S. Giuliano, Venice, Italy) by principal component analysis and kriging.” Environ. Pollut. 122 (2): 235–244. https://doi.org/10.1016/S0269-7491(02)00296-8.
Daly, D., A. Dassargues, D. Drew, S. Dunne, N. Goldscheider, S. Neale, I. Popescu, and F. Zwahlen. 2002. “Main concepts of the” European approach” to karst-groundwater-vulnerability assessment and mapping.” Hydrogeol. J. 10 (2): 340–345. https://doi.org/10.1007/s10040-001-0185-1.
Das, D., A. Chatterjee, B. K. Mandal, G. Samanta, and D. Chakraborti. 1995. “Arsenic in ground water in six districts of West Bengal, India: The biggest arsenic calamity in the world: Part I. Arsenic species in drinking water and urine of the affected people.” Analyst 120 (3): 917–924. https://doi.org/10.1039/an9952000917.
Dassargues, A., and R. C. Gogu. 2000. “Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods.” Environ. Geol. 39 (6): 549–559. https://doi.org/10.1007/s002540050466.
Datta, D. V., and M. K. Kaul. 1976. “Arsenic content of drinking water in villages in northern India. A concept of arsenicosis.” J. Assoc. Physicians India 24 (9): 599–604.
Dhamija, S., and H. Joshi. 2020. “Vulnerability Assessment of Arsenic in Groundwater and its Occurrence in Districts of Bihar, India.” In Proc., National Seminar on Recent Advances in Geospatial Technology & Applications, 158–164. Dehradun, India: Indian Space Research Organisation.
Dhamija, S., and H. Joshi. 2022. “Prediction of groundwater arsenic hazard employing geostatistical modelling for the Ganga Basin, India.” Water 14 (15): 2440. https://doi.org/10.3390/w14152440.
Dhamija, S., and H. Joshi. 2023. “Geostatistical modeling and mapping of arsenic occurrence and vulnerability—A case study on Bihar, India.” In Promoting sustainability through water management and climate change adaptation, 3–16. Singapore: Springer.
Dikshit, A., B. Pradhan, and M. Santosh. 2022. “Artificial neural networks in drought prediction in the 21st century: A scientometric analysis.” Appl. Soft Comput. 114 (Jan): 108080. https://doi.org/10.1016/j.asoc.2021.108080.
Dixon, B. 2005. “Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: A GIS-based sensitivity analysis.” J. Hydrol. 309 (1–4): 17–38. https://doi.org/10.1016/j.jhydrol.2004.11.010.
Dizaji, A. R., S. A. Hosseini, V. Rezaverdinejad, and A. Sharafati. 2020. “Assessing pollution risk in Ardabil aquifer groundwater of Iran with arsenic and nitrate using the SINTACS model.” Polish J. Environ. Stud. 29 (4): 2609. https://doi.org/10.15244/pjoes/112903.
Doerfliger, N., P.-Y. Jeannin, and F. Zwahlen. 1999. “Water vulnerability assessment in karst environments: A new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method).” Environ. Geol. 39 (2): 165–176. https://doi.org/10.1007/s002540050446.
Erickson, M. L., S. M. Elliott, C. J. Brown, P. E. Stackelberg, K. M. Ransom, and J. E. Reddy. 2021. “Machine learning predicted redox conditions in the glacial aquifer system, northern continental United States.” Water Resour. Res. 57 (4): e2020WR028207. https://doi.org/10.1029/2020WR028207.
Fannakh, A., and A. Farsang. 2022. “DRASTIC, GOD, and SI approaches for assessing groundwater vulnerability to pollution: A review.” Environ. Sci. Eur. 34 (1): 1–16. https://doi.org/10.1186/s12302-022-00646-8.
Focazio, M. J., T. E. Reilly, M. G Rupert, and D. R. Helse. 2002. Assessing ground-water vulnerability to contamination: Providing scientifically defensible information for decision makers, 1–33. Reston, VA: USGS. https://doi.org/10.3133/cir1224.
Francés, A., E. Paralta, J. Fernandes, and L. Ribeiro. 2001. “Development and application in the Alentejo region of a method to assess the vulnerability of groundwater to diffuse agricultural pollution: The susceptibility index.” In Proc., 3rd Int. Conf. on Future Groundwater Resources at Risk, 35–44. Lisbon, Portugal: CVRM Publication.
Frans, L. M., M. G. Rupert, C. D. Hunt Jr., and K. D. Skinner. 2012. Groundwater quality in the Columbia Plateau, Snake River Plain, and Oahu basaltic-rock and basin-fill aquifers in the Northwestern United States and Hawaii, 1992-2010. USGS Scientific Investigations Rep. No. 2012–5123. Washington, DC: USGS.
Garg, S., and S. K. Singh. 2016. “Modeling of arsenic transport in groundwater using MODFLOW: A case study.” Int. J. Geomatics and Geosci. 6 (4): 56–81.
Gemitzi, A., C. Petalas, V. A. Tsihrintzis, and V. Pisinaras. 2006. “Assessment of groundwater vulnerability to pollution: A combination of GIS, fuzzy logic and decision making techniques.” Environ. Geol. 49 (5): 653–673. https://doi.org/10.1007/s00254-005-0104-1.
Gholami, V., M. R. Khaleghi, S. Pirasteh, and M. J. Booij. 2022. “Comparison of self-organizing map, artificial neural network, and co-active neuro-fuzzy inference system methods in simulating groundwater quality: Geospatial artificial intelligence.” Water Resour. Manage. 36 (2): 451–469. https://doi.org/10.1007/s11269-021-02969-2.
Ghosh, T., and R. Kanchan. 2016. “Aquifer vulnerability assessment in the Bengal alluvial tract, India, using GIS based DRASTIC model.” Model. Earth Syst. Environ. 2 (1): 1–13. https://doi.org/10.1007/s40808-015-0044-z.
Gogu, R. C., A. Pandele, A. Ionita, and C. Ionescu. 1996. “Groundwater vulnerability analysis using a low-cost geographical information system.” In Proc., MIS/UDMS Conf. WELL-GIS WORKSHOP’s Environmental Information Systems for Regional and Municipal Planning, 35–49. Tokyo: Elsevier.
Güler, C., G. D. Thyne, J. E. McCray, and A. K. Turner. 2002. “Evaluation of graphical and multivariate statistical methods for classification of water chemistry data.” Hydrogeol. J. 10 (4): 455–474. https://doi.org/10.1007/s10040-002-0196-6.
Guo, Q., Y. Wang, X. Gao, and T. Ma. 2007. “A new model (DRARCH) for assessing groundwater vulnerability to arsenic contamination at basin scale: A case study in Taiyuan basin, northern China.” Environ. Geol. 52 (5): 923–932. https://doi.org/10.1007/s00254-006-0534-4.
Haggerty, R., J. Sun, H. Yu, and Y. Li. 2023. “Application of machine learning in groundwater quality modeling-A comprehensive review.” Water Res. 233 (Apr): 119745. https://doi.org/10.1016/j.watres.2023.119745.
Hamerlinck, J. D., and C. S. Ameson. 1998. Wyoming ground water vulnerability assessment handbook. Laramie, WY: Univ. of Wyoming.
Helsel, D. R., and R. M. Hirsch. 1992. Statistical methods in water resources. Tokyo: Elsevier.
Hinkle, S. R., L. J. Kauffman, M. A. Thomas, C. J. Brown, K. A. McCarthy, S. M. Eberts, M. R. Rosen, and B. G. Katz. 2009. “Combining particle-tracking and geochemical data to assess public supply well vulnerability to arsenic and uranium.” J. Hydrol. 376 (1–2): 132–142. https://doi.org/10.1016/j.jhydrol.2009.07.020.
Hosmer, D. W., T. Hosmer, S. Le Cessie, and S. Lemeshow. 1997. “A comparison of goodness-of-fit tests for the logistic regression model.” Stat. Med. 16 (9): 965–980. https://doi.org/10.1002/(SICI)1097-0258(19970515)16:9%3C965::AID-SIM509%3E3.0.CO;2-O.
Hosmer, D. W., S. Lemeshow, and R. X. Sturdivant. 2013. Applied logistic regression. Hoboken, NJ: Wiley. https://doi.org/10.1002/9781118548387.
Huan, H., J. Wang, and Y. Teng. 2012. “Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: A case study in Jilin City of northeast China.” Sci. Total Environ. 440 (Dec): 14–23. https://doi.org/10.1016/j.scitotenv.2012.08.037.
Ikenna, I. S., E. E. Chinedu, and I. E. Chibuike. 2021. “A SINTACS GIS-based method for assessing groundwater vulnerability in sedimentary aquifers, South-Eastern, Nigeria.” Arab. J. Geosci. 14 (Apr): 1–16. https://doi.org/10.1007/s12517-021-07092-5.
Jabeen, M., Z. Ahmad, and A. Ashraf. 2019. “Monitoring regional groundwater flow and contaminant transport in Southern Punjab, Pakistan, using numerical modeling approach.” Arab. J. Geosci. 12 (18): 570. https://doi.org/10.1007/s12517-019-4766-5.
Jakeman, A. J., O. Barreteau, R. J. Hunt, J.-D. Rinaudo, and A. Ross. 2016. Integrated groundwater management. Cham, Switzerland: Springer Nature. https://doi.org/10.1007/978-3-319-23576-9+.
Jang, Y. C., Y. Somanna, and H. Kim. 2016. “Source, distribution, toxicity and remediation of arsenic in the environment—A review.” Int. J. Appl. Environ. Sci. ISSN 11 (2): 559–581.
Jaydhar, A. K., S. Chandra Pal, A. Saha, A. R. M. T. Islam, and D. Ruidas. 2022. “Hydrogeochemical evaluation and corresponding health risk from elevated arsenic and fluoride contamination in recurrent coastal multi-aquifers of eastern India.” J. Cleaner Prod. 369 (Jun): 133150. https://doi.org/10.1016/j.jclepro.2022.133150.
Jousma, G., and F. J. Roelofsen. 2004. “World-wide inventory on groundwater monitoring.” Rep. nr. GP 1.
Kaur, R., P. S. Minhas, P. C. Jain, P. Singh, and D. S. Dubey. 2009. “Geo-spatial analysis of land-water resource degradation in two economically contrasting agricultural regions adjoining national capital territory (Delhi).” Environ. Monit. Assess. 154 (1–4): 65–83. https://doi.org/10.1007/s10661-008-0378-3.
Kaur, R., and R. Rani. 2006. “Spatial characterization and prioritization of heavy metal contaminated soil-water resources in Peri-urban areas of National Capital Territory (NCT), Delhi.” Environ. Monit. Assess. 123 (1–3): 233–247. https://doi.org/10.1007/s10661-006-9193-x.
Kaur, R., and K. G. Rosin. 2009. “Ground water vulnerability assessment: Challenges and opportunities.” Bhu-Jal News 24 (4): 82–92.
Kaur, R., and K. G. Rosin. 2011. Ground water vulnerability assessment–challenges and opportunities. New Delhi, India: Division of Environmental Sciences, Indian Agricultural Research Institute.
Kirlas, M. C., D. K. Karpouzos, P. E. Georgiou, and K. L. Katsifarakis. 2022. “A comparative study of groundwater vulnerability methods in a porous aquifer in Greece.” Appl. Water Sci. 12 (6): 123. https://doi.org/10.1007/s13201-022-01651-1.
Kumar, M., A. K. Patel, and A. Singh. 2022. “Anthropogenic dominance on geogenic arsenic problem of the groundwater in the Ganga-Brahmaputra floodplain: A paradox of origin and mobilization.” Sci. Total Environ. 807 (Feb): 151461. https://doi.org/10.1016/j.scitotenv.2021.151461.
Kumar, S., D. Thirumalaivasan, N. Radhakrishnan, and S. Mathew. 2013. “Groundwater vulnerability assessment using SINTACS model.” Geomatics Nat. Hazards Risk 4 (4): 339–354. https://doi.org/10.1080/19475705.2012.732119.
Li, Y., L. Ji, W. Mi, S. Xie, and Y. Bi. 2021. “Health risks from groundwater arsenic on residents in northern China coal-rich region.” Sci. Total Environ. 773 (Jun): 145003. https://doi.org/10.1016/j.scitotenv.2021.145003.
Lobo-Ferreira, J. P., and M. Cabral. 1991. Proposal for an operational definition of vulnerability for the European Community’s Atlas of groundwater resources. Brussels: European Institute for Water, Groundwater Work Group.
Lombard, M. A., M. S. Bryan, D. K. Jones, C. Bulka, P. M. Bradley, L. C. Backer, M. J. Focazio, D. T. Silverman, P. Toccalino, and M. Argos. 2021. “Machine learning models of arsenic in private wells throughout the conterminous United States as a tool for exposure assessment in human health studies.” Environ. Sci. Technol. 55 (8): 5012–5023. https://doi.org/10.1021/acs.est.0c05239.
Lu, K. L., C. W. Liu, and C. S. Jang. 2012. “Using multivariate statistical methods to assess the groundwater quality in an arsenic-contaminated area of Southwestern Taiwan.” Environ. Monit. Assess. 184 (10): 6071–6085. https://doi.org/10.1007/s10661-011-2406-y.
Machiwal, D., V. Cloutier, C. Güler, and N. Kazakis. 2018a. “A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection.” Environ. Earth Sci. 77 (19): 681. https://doi.org/10.1007/s12665-018-7872-x.
Machiwal, D., M. K. Jha, V. P. Singh, and C. Mohan. 2018b. “Assessment and mapping of groundwater vulnerability to pollution: Current status and challenges.” Earth-Sci. Rev. 185 (Oct): 901–927. https://doi.org/10.1016/j.earscirev.2018.08.009.
Malakar, P., S. Sarkar, A. Mukherjee, S. Bhanja, and A. Y. Sun. 2021. “Use of machine learning and deep learning methods in groundwater.” In Global groundwater, 545–557. Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/B978-0-12-818172-0.00040-2.
Matschullat, J. 2000. “Arsenic in the geosphere—A review.” Sci. Total Environ. 249 (1–3): 297–312. https://doi.org/10.1016/S0048-9697(99)00524-0.
Meech, J. A. 2006. “The evolution of intelligent systems in the mining industry.” In Proc., Int. Conf. on Mineral Process Modelling, Simulation and Control, 1–30. Sudbury, ON, Canada: Laurentian Univ.
Mendoza, J. A., and G. Barmen. 2006. “Assessment of groundwater vulnerability in the Río Artiguas basin, Nicaragua.” Environ. Geol. 50 (4): 569–580. https://doi.org/10.1007/s00254-006-0233-1.
Mishra, D., R. Chakrabortty, K. Sen, S. C. Pal, and N. K. Mondal. 2023. “Groundwater vulnerability assessment of elevated arsenic in Gangetic plain of West Bengal, India; Using primary information, lithological transport, state-of-the-art approaches.” J. Contam. Hydrol. 256 (May): 104195. https://doi.org/10.1016/j.jconhyd.2023.104195.
Mondal, D., and S. Pal. 2015. “A multi-parametric spatial modeling of vulnerability due to arsenic pollution in Murshidabad district of West Bengal, India.” Arab. J. Geosci. 8 (10): 8047–8054. https://doi.org/10.1007/s12517-015-1809-4.
Moraru, C., and R. Hannigan. 2018. “Overview of groundwater vulnerability assessment methods.” In Analysis of hydrogeochemical vulnerability, 1–16. Cham, Switzerland: Springer.
Mukherjee, A., and A. E. Fryar. 2008. “Deeper groundwater chemistry and geochemical modeling of the arsenic affected western Bengal basin, West Bengal, India.” Appl. Geochemistry 23 (4): 863–894. https://doi.org/10.1016/j.apgeochem.2007.07.011.
Mutihac, R. C., C. Stanciulescu, A. Cicuttin, and H. A. Cerdeira. 1998. Topics in Bayesian statistics and maximum entropy. IC-98/137. Geneva: UNESCO.
Nadiri, A. A., M. Gharekhani, R. Khatibi, and A. A. Moghaddam. 2017. “Assessment of groundwater vulnerability using supervised committee to combine fuzzy logic models.” Environ. Sci. Pollut. Res. 24 (9): 8562–8577. https://doi.org/10.1007/s11356-017-8489-4.
Nath, B., R. Chowdhury, W. Ni-Meister, and C. Mahanta. 2022. “Predicting the distribution of arsenic in groundwater by a geospatial machine learning technique in the two most affected districts of Assam, India: The public health implications.” Geohealth 6 (3): e2021GH000585. https://doi.org/10.1029/2021GH000585.
Naujokas, M. F., B. Anderson, H. Ahsan, H. V. Aposhian, J. H. Graziano, C. Thompson, and W. A. Suk. 2013. “The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem.” Environ. Health Perspect. 121 (3): 295–302. https://doi.org/10.1289/ehp.1205875.
Nordin, N. F. C., N. S. Mohd, S. Koting, Z. Ismail, M. Sherif, and A. El-Shafie. 2021. “Groundwater quality forecasting modelling using artificial intelligence: A review.” Groundwater Sustainable Dev. 14 (Aug): 100643. https://doi.org/10.1016/j.gsd.2021.100643.
Nordstrom, D. K. 2002. “Worldwide occurrences of arsenic in ground water.” Science 296 (5576): 2143–2145. https://doi.org/10.1126/science.1072375.
NRC. 1977. Committee on medical and biological effects of environmental pollutants. Washington, DC: National Academies Press.
NRC. 1990. Ground water models: Scientific and regulatory applications. Washington, DC: National Academies Press.
NRC. 1993. Ground water vulnerability assessment: Predicting relative contamination potential under conditions of uncertainty. Washington, DC: National Academies Press.
Ouedraogo, I., P. Defourny, and M. Vanclooster. 2018. “Application of random forest regression and comparison of its performance to multiple linear regression in modeling groundwater nitrate concentration at the African continent scale.” Hydrogeol. J. 27: 1081–1098. https://doi.org/10.1007/s10040-018-1900-5.
Pavlis, M., E. Cummins, and K. McDonnell. 2010. “Groundwater vulnerability assessment of plant protection products: A review.” Hum. Ecol. Risk Assess. 16 (3): 621–650. https://doi.org/10.1080/10807031003788881.
Podgorski, J., and M. Berg. 2020. “Global threat of arsenic in groundwater.” Science 368 (6493): 845–850. https://doi.org/10.1126/science.aba1510.
Podgorski, J., R. Wu, B. Chakravorty, and D. A. Polya. 2020. “Groundwater arsenic distribution in India by machine learning geospatial modeling.” Int. J. Environ. Res. Public Health 17 (19): 7119. https://doi.org/10.3390/ijerph17197119.
Podgorski, J. E., S. A. Eqani, T. Khanam, R. Ullah, H. Shen, and M. Berg. 2017. “Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley.” Sci. Adv. 3 (8): e1700935. https://doi.org/10.1126/sciadv.1700935.
Polya, D. A., and D. R. S. Middleton. 2017. “Arsenic in drinking water: Sources & human exposure.” In Best practice guide on the control of arsenic in drinking water, edited by P. Bhattacharya, D. A. Polya, and D. Jovanovic, 1–14. London: IWA Publishing. https://doi.org/10.2166/9781780404929_001.
Rana, S., P. Kumar, S. Puri, B. K. Bansod, S. Debnath, C. Ghanshyam, and P. Kapur. 2014. “Localization of arsenic contaminated zone of Domkal block in Murshidabad, West Bengal using GIS-based DRASTIC model.” In Proc., Int. Conf. on Communication and Computing, 515–523. Bangalore, India: Elsevier.
Robins, N. S., P. J. Chilton, and J. E. Cobbing. 2007. “Adapting existing experience with aquifer vulnerability and groundwater protection for Africa.” J. African Earth Sci. 47 (1): 30–38. https://doi.org/10.1016/j.jafrearsci.2006.10.003.
Ryker, S. J. 2001. “Mapping arsenic in groundwater: A real need, but a hard problem—why was the map created.” Geotimes 46 (11): 34–36.
Sakala, E., F. Fourie, M. Gomo, and H. Coetzee. 2018. “GIS-based groundwater vulnerability modelling: A case study of the Witbank, Ermelo and Highveld Coalfields in South Africa.” J. African Earth Sci. 137 (Jan): 46–60. https://doi.org/10.1016/j.jafrearsci.2017.09.012.
Samake, M., Z. Tang, W. Hlaing, and I. M. Bue. 2010. “Assessment of groundwater pollution potential of the Datong Basin.” J. Sustainable Dev. 3 (2): 140–152. https://doi.org/10.5539/jsd.v3n2p140.
Sathe, S. S., and C. Mahanta. 2019. “Groundwater flow and arsenic contamination transport modeling for a multi aquifer terrain: Assessment and mitigation strategies.” J. Environ. Manage. 231 (Feb): 166–181. https://doi.org/10.1016/j.jenvman.2018.08.057.
Schlosser, S. A., J. E. McCray, K. E. Murray, and B. Austin. 2002. “A subregional-scale method to assess aquifer vulnerability to pesticides.” Ground Water 40 (4): 361–367. https://doi.org/10.1111/j.1745-6584.2002.tb02514.x.
Shaji, E., M. Santosh, K. V. Sarath, P. Prakash, V. Deepchand, and B. V. Divya. 2021. “Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula.” Geosci. Front. 12 (3): 101079. https://doi.org/10.1016/j.gsf.2020.08.015.
Shirazi, S. M., H. M. Imran, and S. Akib. 2012. “GIS-based DRASTIC method for groundwater vulnerability assessment: A review.” J. Risk Res. 15 (8): 991–1011. https://doi.org/10.1080/13669877.2012.686053.
Singh, A., A. K. Patel, J. P. Deka, A. Das, A. Kumar, and M. Kumar. 2020a. “Prediction of arsenic vulnerable zones in the groundwater environment of a rapidly urbanizing setup, Guwahati, India.” Geochemistry 80 (4): 125590. https://doi.org/10.1016/j.chemer.2019.125590.
Singh, A., A. K. Patel, J. P. Deka, and M. Kumar. 2020b. “Natural recharge transcends anthropogenic forcing that influences arsenic vulnerability of the quaternary alluviums of the Mid-Gangetic Plain.” npj Clean Water 3 (1): 1–12. https://doi.org/10.1038/s41545-020-0075-5.
Singh, A. L., and V. K. Singh. 2018. “Assessment of groundwater quality of Ballia district, Uttar Pradesh, India, with reference to arsenic contamination using multivariate statistical analysis.” Appl. Water Sci. 8 (Jun): 1–18. https://doi.org/10.1007/s13201-018-0737-3.
Singh, S. K., and N. Vedwan. 2015. “Mapping composite vulnerability to groundwater arsenic contamination: An analytical framework and a case study in India.” Nat. Hazards 75 (2): 1883–1908. https://doi.org/10.1007/s11069-014-1402-2.
Smedley, P. L., and D. G. Kinniburgh. 2002. “A review of the source, behaviour and distribution of arsenic in natural waters.” Appl. Geochem. 17 (5): 517–568. https://doi.org/10.1016/S0883-2927(02)00018-5.
Steichen, J., J. Koelliker, D. Grosh, A. Heiman, R. Yearout, and V. Robbins. 1988. “Contamination of farmstead wells by pesticides, volatile organics, and inorganic chemicals in Kansas.” Groundwater Monit. Remediat. 8 (3): 153–160. https://doi.org/10.1111/j.1745-6592.1988.tb01092.x.
Stoyanova, V., and T. Kotsev. 2016. “GIS-based assessment of groundwater vulnerability to arsenic contamination in the floodplain of the Ogosta River, NW Bulgaria.” In Proc., 6th Int. Conf. on Cartography and GIS, edited by T. Bandrova, and M. Konecny, 668–677. Sofia, Bulgaria: Bulgarian Cartographic Association.
Taghavi, N., R. K. Niven, D. J. Paull, and M. Kramer. 2022. “Groundwater vulnerability assessment: A review including new statistical and hybrid methods.” Sci. Total Environ. 822 (May): 153486. https://doi.org/10.1016/j.scitotenv.2022.153486.
Tesoriero, A. J., and F. D. Voss. 1997. “Predicting the probability of elevated nitrate concentrations in the Puget Sound Basin: Implications for aquifer susceptibility and vulnerability.” Ground Water 35 (6): 1029–1039. https://doi.org/10.1111/j.1745-6584.1997.tb00175.x.
Tiankao, W., and S. Chotpantarat. 2018. “Risk assessment of arsenic from contaminated soils to shallow groundwater in Ong Phra Sub-District, Suphan Buri Province, Thailand.” J. Hydrol. Reg. Stud. 19 (Oct): 80–96. https://doi.org/10.1016/j.ejrh.2018.08.001.
Tiwari, R., S. Satwik, P. Khare, and S. Rai. 2021. “Arsenic contamination in India: Causes, effects and treatment methods.” Int. J. Eng. Sci. Technol. 13 (1): 146–152. https://doi.org/10.4314/ijest.v13i1.22S.
Twarakavi, N. K. C., and J. J. Kaluarachchi. 2006. “Arsenic in the shallow ground waters of conterminous United States: Assessment, health risks, and costs for MCL compliance.” J. Am. Water Resour. Assoc. 42 (2): 275–294. https://doi.org/10.1111/j.1752-1688.2006.tb03838.x.
Vaiphei, S. P., and R. M. Kurakalva. 2021. “Hydrochemical characteristics and nitrate health risk assessment of groundwater through seasonal variations from an intensive agricultural region of upper Krishna River basin, Telangana, India.” Ecotoxicol. Environ. Saf. 213 (Apr): 112073. https://doi.org/10.1016/j.ecoenv.2021.112073.
Vekaria, D., and S. Sinha. 2024. “aiWATERS: an artificial intelligence framework for the water sector.” AI Civ. Eng. 3 (6): 1–23. https://doi.org/10.1007/s43503-024-00025-7.
Wang, F., G. Brent Hall, and Subaryono. 1990. “Fuzzy information representation and processing in conventional GIS software: Database design and application.” Int. J. Geogr. Inf. Syst. 4 (3): 261–283. https://doi.org/10.1080/02693799008941546.
Ward, J. H. 1963. “Hierarchical grouping to optimize an objective function.” J. Am. Stat. Assoc. 58 (301): 236–244. https://doi.org/10.1080/01621459.1963.10500845.
WHO and UNICEF. 2018. ARSENIC PRIMER guidance on the investigation & mitigation of arsenic contamination. New York: UNICEF.
Winkel, L., M. Berg, M. Amini, S. J. Hug, and A. A. Johnson. 2008. “Predicting groundwater arsenic contamination in Southeast Asia from surface parameters.” Nat. Geosci. 1 (8): 536–542. https://doi.org/10.1038/ngeo254.
Winkel, L. H. E., P. T. K. Trang, V. M. Lan, C. Stengel, M. Amini, N. T. Ha, P. H. Viet, and M. Berg. 2011. “Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century.” Proc. Natl. Acad. Sci. 108 (4): 1246–1251. https://doi.org/10.1073/pnas.1011915108.
Wu, R., E. M. Alvareda, D. A. Polya, G. Blanco, and P. Gamazo. 2021a. “Distribution of groundwater arsenic in Uruguay using hybrid machine learning and expert system approaches.” Water 13 (4): 1–17. https://doi.org/10.3390/w13040527.
Wu, R., J. Podgorski, M. Berg, and D. A. Polya. 2021b. “Geostatistical model of the spatial distribution of arsenic in groundwaters in Gujarat State, India.” Environ. Geochem. Health 43 (7): 2649–2664. https://doi.org/10.1007/s10653-020-00655-7.
Yadav, I. C., N. L. Devi, D. Mohan, Q. Shihua, and S. Singh. 2014. “Assessment of groundwater quality with special reference to arsenic in Nawalparasi district, Nepal using multivariate statistical techniques.” Environ. Earth Sci. 72 (1): 259–273. https://doi.org/10.1007/s12665-013-2952-4.
Zektser, I. S., and L. G. Everett. 2000. Groundwater and the environment: Applications for the global community. Boca Raton, FL: CRC Press.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 150Issue 12December 2024

History

Published online: Sep 18, 2024
Published in print: Dec 1, 2024
Discussion open until: Feb 18, 2025

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Dept. of Hydrology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India (corresponding author). ORCID: https://orcid.org/0000-0001-7651-4241. Email: [email protected]
Himanshu Joshi [email protected]
Professor, Dept. of Hydrology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share