Technical Papers
Jun 21, 2024

Flame Retardancy and Rheological Properties of Warm-Mix Rubber Asphalt Binder Containing Various Flame Retardants

Publication: Journal of Materials in Civil Engineering
Volume 36, Issue 9

Abstract

The application of warm-mix flame retardant rubber asphalt (WFRA) in tunnel pavement offers a promising solution that enhances both energy conservation and tunnel safety. First, a commercial halogen-free flame retardant (ZK), alumina trihydrate (ATH), and organic montmorillonite compound ATH flame retardant (OMMT/ATH) were melt-blended with warm-mix rubber asphalt (WRA) to prepare different types of WFRAs. Then, the effects of various flame retardants (FRs) on flame retardancy and rheological properties of the WRA were evaluated. Moreover, the functional groups of FR, WRA, and WFRA were investigated. Finally, the synergistic mechanism of FR on the WRA was explored based on the analysis of flame retardancy, rheological properties, and functional groups. Results show that the flame-retardant effect of OMMT/ATH on the WRA is much better than that of single FRs (ZK and ATH), indicating that the OMMT and ATH exhibit synergistic flame-retardant effect. The addition of OMMT/ATH enhances the high-temperature performance but shows little effect on the fatigue performance of the WRA. The synergistic flame-retardant mechanism of OMMT/ATH on the WRA is mainly attributed to the physical barrier effect of OMMT, the cooling and dilution effect of ATH, and the synergistic covering layer effect of OMMT and ATH.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This work was financially supported by the Jilin Province Transportation Innovation Development Support (Science and Technology) Project (2021-1-6) and the Fundamental Research Funds for the Central Universities, CHD (300102212913). The authors gratefully acknowledge their financial support. Zhuang Wang: conceptualization, methodology, resources, writing–original draft, and writing–review and editing. Zhen-gang Feng: project administration and funding acquisition. Fengjie Cai: methodology, validation, and formal analysis. Kaixiang Zheng: investigation, writing–original draft, and formal analysis. Xinjun Li: supervision, project administration, and writing–review and editing.

References

Alexandre, M., and P. Dubois. 2000. “Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials.” Mater. Sci. Eng. R 28 (1–2): 1–63. https://doi.org/10.1016/S0927-796X(00)00012-7.
Anderson, R. M., G. N. King, D. I. Hanson, and P. Blankenship. 2011. “Evaluation of the relationship between asphalt binder properties and non-load related cracking.” J. Assoc. Asphalt Paving Technol. 80: 615–663.
ASTM. 2010. Standard test method for softening point of bitumen (ring-and-ball apparatus). ASTM D36. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard test method for determining the rheological properties of asphalt binder using a dynamic shear rheometer. ASTM D7175. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard test method for determining the flexural creep stiffness of asphalt binder using the bending beam rheometer. ASTM D6648. West Conshohocken, PA: ASTM.
ASTM. 2020. Standard test method for penetration of bituminous materials. ASTM D5. West Conshohocken, PA: ASTM.
ASTM. 2023. Standard test method for ductility of asphalt materials. ASTM D113. West Conshohocken, PA: ASTM.
Chen, L., and Y. Z. Wang. 2010. “A review on flame retardant technology in China. Part I: Development of flame retardants.” Polym. Adv. Technol. 21 (1): 1–26. https://doi.org/10.1002/pat.1550.
Chen, R., J. Gong, Y. J. Jiang, Q. J. Wang, Z. H. Xi, and H. F. Xie. 2018. “Halogen-free flame retarded cold-mix epoxy asphalt binders: Rheological, thermal and mechanical characterization.” Constr. Build. Mater. 186 (Oct): 863–870. https://doi.org/10.1016/j.conbuildmat.2018.08.018.
Chinese Standard. 2012. Flame retardant asphalt concrete for roads. GB/T 29051-2012. Beijing: Chinese Standard Press.
Jiang, W., A. M. Sha, H. Zhao, and W. L. Ye. 2018. “Design and performance evaluation of warm mix flame retardant asphalt mixture.” [In Chinese.] J. Hefei Univ. Technol. Nat. Sci. Ed. 41 (5): 671–676.
Kiliaris, P., and C. D. Papaspyrides. 2010. “Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy.” Prog. Polym. Sci. 35 (7): 902–958. https://doi.org/10.1016/j.progpolymsci.2010.03.001.
Kim, H. H., and S. J. Lee. 2015. “Effect of crumb rubber on viscosity of rubberized asphalt binders containing wax additives.” Constr. Build. Mater. 95 (Oct): 65–73. https://doi.org/10.1016/j.conbuildmat.2015.07.066.
Laukkanen, O., H. Soenen, H. H. Winter, and J. V. Seppälä. 2018. “Low-temperature rheological and morphological characterization of SBS modified bitumen.” Constr. Build. Mater. 179 (Aug): 348–359. https://doi.org/10.1016/j.conbuildmat.2018.05.160.
Leng, Z., H. Y. Yu, Z. Y. Zhang, and Z. F. Tan. 2017. “Optimizing the mixing procedure of warm asphalt rubber with wax-based additives through mechanism investigation and performance characterization.” Constr. Build. Mater. 144 (Jul): 291–299. https://doi.org/10.1016/j.conbuildmat.2017.03.208.
Li, Y. Y., S. T. Liu, Z. C. Xue, and W. D. Cao. 2014. “Experimental research on combined effects of flame retardant and warm mixture asphalt additive on asphalt binders and bituminous mixtures.” Constr. Build. Mater. 54 (Mar): 533–540. https://doi.org/10.1016/j.conbuildmat.2013.12.058.
Oliveira, J. R. M., H. M. R. D. Silva, L. P. F. Abreu, and S. R. M. Fernandes. 2013. “Use of a warm mix asphalt additive to reduce the production temperatures and to improve the performance of asphalt rubber mixtures.” J. Cleaner Prod. 41 (Feb): 15–22. https://doi.org/10.1016/j.jclepro.2012.09.047.
Pei, J. Z., Y. Wen, Y. W. Li, X. Shi, J. P. Zhang, R. Li, and Q. L. Du. 2014. “Flame-retarding effects and combustion properties of asphalt binder blended with organo montmorillonite and alumina trihydrate.” Constr. Build. Mater. 72 (Dec): 41–47. https://doi.org/10.1016/j.conbuildmat.2014.09.013.
Picado-Santos, L. G., S. D. Capitão, and J. M. C. Neves. 2020. “Crumb rubber asphalt mixtures: A literature review.” Constr. Build. Mater. 247 (Jun): 118577. https://doi.org/10.1016/j.conbuildmat.2020.118577.
Pouranian, M. R., M. A. Notani, M. Tabesh, B. Nazeri, and M. H. Shishehbor. 2020. “Rheological and environmental characteristics of crumb rubber asphalt binders containing non-foaming warm mix asphalt additives.” Constr. Build. Mater. 238 (Mar): 117707. https://doi.org/10.1016/j.conbuildmat.2019.117707.
Praticò, F. G., A. Moro, and R. Ammendola. 2010. “Potential of fire extinguisher powder as a filler in bituminous mixes.” J. Hazard. Mater. 173 (1–3): 605–613. https://doi.org/10.1016/j.jhazmat.2009.08.136.
Presti, D. L. 2013. “Recycled tyre rubber modified bitumens for road asphalt mixtures: A literature review.” Constr. Build. Mater. 49 (Dec): 863–881. https://doi.org/10.1016/j.conbuildmat.2013.09.007.
Qiu, J. L., T. Yang, X. L. Wang, L. X. Wang, and G. L. Zhang. 2019. “Review of the flame retardancy on highway tunnel asphalt pavement.” Constr. Build. Mater. 195 (Jan): 468–482. https://doi.org/10.1016/j.conbuildmat.2018.11.034.
Rodríguez-Alloza, A. M., J. Gallego, I. Pérez, A. Bonati, and F. Giuliani. 2014. “High and low temperature properties of crumb rubber modified binders containing warm mix asphalt additives.” Constr. Build. Mater. 53 (Feb): 460–466. https://doi.org/10.1016/j.conbuildmat.2013.12.026.
Shen, A. Q., Y. X. Su, X. L. Yang, H. Wang, and W. D. Zhao. 2020. “Influencing of compounding flame retardants with ATH/MMT on performance of asphalt mixture.” [In Chinese.] J. Chang’an Univ. 40 (2): 1–9.
Shen, A. Q., H. S. Wu, Y. C. Guo, X. L. Yang, Z. M. He, and Y. Li. 2021. “Effect of layered double hydroxide on rheological and flame-retardant properties of Styrene-Butadiene-Styrene–modified asphalt.” J. Mater. Civ. Eng. 33 (2): 04020454. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003534.
Tan, Y. Q., Y. K. Fu, L. Ji, and L. Zhang. 2016. “Low-temperature evaluation index of rubber asphalt.” [In Chinese.] J. Harbin Inst. Technol. 48 (3): 66–70.
Tan, Y. Q., B. W. Lan, L. Ji, and Y. F. Shang. 2009. “Modified techniques of commonly-used flameretardant asphalt in asphalt pavement tunnel.” [In Chinese.] J. Chongqing Jiaotong Univ. 28 (4): 711–719.
Tan, Y. W., J. G. Xie, Z. Q. Wang, K. Li, and Z. Y. He. 2023a. “Effect of halloysite nanotubes (HNTs) and organic montmorillonite (OMMT) on the performance and mechanism of flame retardant-modified asphalt.” J. Nanopart. Res. 25 (4): 74. https://doi.org/10.1007/s11051-023-05697-3.
Tan, Y. W., J. G. Xie, Z. Q. Wang, X. Li, and Z. Y. He. 2023b. “Preparation, properties, and mechanism of warm mix flame retardant modified asphalt based on surface activity principle.” J. Build. Eng. 76 (Oct): 107117. https://doi.org/10.1016/j.jobe.2023.107117.
Thives, L. P., and E. Ghisi. 2017. “Asphalt mixtures emission and energy consumption: A review.” Renewable Sustainable Energy Rev. 72 (May): 473–484. https://doi.org/10.1016/j.rser.2017.01.087.
Turbay, E., G. Martinez-Arguelles, T. Navarro-Donado, E. H. Sánchez-Cotte, R. Polo-Mendoza, and E. Covilla-Valera. 2022. “Rheological behaviour of WMA-modified asphalt binders with crumb rubber.” Polymers 14 (19): 4148. https://doi.org/10.3390/polym14194148.
Wan, Z. M., et al. 2020. “Preparation method and performance test of Evotherm pre-wet treatment aluminum hydroxide type warm-mixed flame-retardant asphalt.” Constr. Build. Mater. 262 (Nov): 120618. https://doi.org/10.1016/j.conbuildmat.2020.120618.
Wang, H. P., X. Y. Liu, P. Apostolidis, and T. Scarpas. 2018a. “Review of warm mix rubberized asphalt concrete: Towards a sustainable paving technology.” J. Cleaner Prod. 177 (Mar): 302–314. https://doi.org/10.1016/j.jclepro.2017.12.245.
Wang, H. P., X. Y. Liu, M. F. van de Ven, G. Y. Lu, S. Erkens, and A. Skarpas. 2020. “Fatigue performance of long-term aged crumb rubber modified bitumen containing warm-mix additives.” Constr. Build. Mater. 239 (Apr): 117824. https://doi.org/10.1016/j.conbuildmat.2019.117824.
Wang, T., F. P. Xiao, X. Y. Zhu, B. S. Huang, J. G. Wang, and S. J. Amirkhanian. 2018b. “Energy consumption and environmental impact of rubberized asphalt pavement.” J. Cleaner Prod. 180 (Apr): 139–158. https://doi.org/10.1016/j.jclepro.2018.01.086.
Wu, B. 2015. Research on flame retardant system of compound hydroxide asphalt and its pavement performance. [In Chinese.] Hangzhou, China: Zhejiang Univ.
Xiao, F. P., R. Guo, and J. G. Wang. 2019. “Flame retardant and its influence on the performance of asphalt—A review.” Constr. Build. Mater. 212 (Jul): 841–861. https://doi.org/10.1016/j.conbuildmat.2019.03.118.
Xiao, F. P., V. S. Punith, and S. N. Amirkhanian. 2012. “Effects of non-foaming WMA additives on asphalt binders at high performance temperatures.” Fuel 94 (Apr): 144–155. https://doi.org/10.1016/j.fuel.2011.09.017.
Xu, T., X. M. Huang, and Y. L. Zhao. 2011. “Investigation into the properties of asphalt mixtures containing magnesium hydroxide flame retardant.” Fire Saf. J. 46 (6): 330–334. https://doi.org/10.1016/j.firesaf.2011.05.001.
Xu, T., H. C. Wang, X. M. Huang, and G. F. Li. 2013. “Inhibitory action of flame retardant on the dynamic evolution of asphalt pyrolysis volatiles.” Fuel 105 (Mar): 757–763. https://doi.org/10.1016/j.fuel.2012.10.029.
Yang, X. L., A. Q. Shen, Y. C. Guo, H. S. Wu, and H. Wan. 2021a. “A review of nano layered silicate technologies applied to asphalt materials.” Road Mater. Pavement Des. 22 (8): 1708–1733. https://doi.org/10.1080/14680629.2020.1713199.
Yang, X. L., A. Q. Shen, Y. X. Jiang, Y. J. Meng, and H. S. Wu. 2021b. “Properties and mechanism of flame retardance and smoke suppression in asphalt binder containing organic montmorillonite.” Constr. Build. Mater. 302 (Oct): 124148. https://doi.org/10.1016/j.conbuildmat.2021.124148.
Yang, X. L., A. Q. Shen, Y. X. Jiang, H. S. Wu, and G. S. Wang. 2021c. “Review on nano clay modified asphalt based on flame retardant and smoke suppression.” [In Chinese.] China J. Highway Transp. 21 (5): 42–61.
Yang, X. L., A. Q. Shen, G. Y. Liu, H. L. Rong, Y. J. Meng, and H. S. Wu. 2022. “Combustion properties and road performance of asphalt mixtures containing alumina trihydrate/organic montmorillonite composites.” Constr. Build. Mater. 317 (Jan): 125981. https://doi.org/10.1016/j.conbuildmat.2021.125981.
Yang, X. L., A. Q. Shen, Y. X. Su, and W. D. Zhao. 2020. “Effects of alumina trihydrate (ATH) and organic montmorillonite (OMMT) on asphalt fume emission and flame retardancy properties of SBS-modified asphalt.” Constr. Build. Mater. 236 (Mar): 117576. https://doi.org/10.1016/j.conbuildmat.2019.117576.
Yu, H. Y., Z. Leng, Z. J. Dong, Z. F. Tan, F. Guo, and J. H. Yan. 2018. “Workability and mechanical property characterization of asphalt rubber mixtures modified with various warm mix asphalt additives.” Constr. Build. Mater. 175 (Jun): 392–401. https://doi.org/10.1016/j.conbuildmat.2018.04.218.
Yu, H. Y., Z. Leng, F. P. Xiao, and Z. M. Gao. 2016. “Rheological and chemical characteristics of rubberized binders with non-foaming warm mix additives.” Constr. Build. Mater. 111 (May): 671–678. https://doi.org/10.1016/j.conbuildmat.2016.02.066.
Yu, J. Y., P. L. Cong, and S. P. Wu. 2009. “Investigation of the properties of asphalt and its mixtures containing flame retardant modifier.” Constr. Build. Mater. 23 (6): 2277–2282. https://doi.org/10.1016/j.conbuildmat.2008.11.013.
Zanetti, M. C., E. Santagata, S. Fiore, B. Ruffino, D. Dalmazzo, and M. Lanotte. 2016. “Evaluation of potential gaseous emissions of asphalt rubber bituminous mixtures. Proposal of a new laboratory test procedure.” Constr. Build. Mater. 113 (Jun): 870–879. https://doi.org/10.1016/j.conbuildmat.2016.03.101.
Zhang, H. L., C. J. Shi, J. Han, and J. Y. Yu. 2013. “Effect of organic layered silicates on flame retardancy and aging properties of bitumen.” Constr. Build. Mater. 40 (Mar): 1151–1155. https://doi.org/10.1016/j.conbuildmat.2012.11.097.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 9September 2024

History

Received: Nov 22, 2023
Accepted: Feb 28, 2024
Published online: Jun 21, 2024
Published in print: Sep 1, 2024
Discussion open until: Nov 21, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Zhuang Wang
Ph.D. Candidate, School of Highway, Chang’an Univ., Xi’an 710064, PR China.
Zhen-gang Feng [email protected]
Associate Professor, School of Highway, Chang’an Univ., Xi’an 710064, PR China (corresponding author). Email: [email protected]
Fengjie Cai
Ph.D. Candidate, School of Highway, Chang’an Univ., Xi’an 710064, PR China.
Kaixiang Zheng
Master’s Student, School of Highway, Chang’an Univ., Xi’an 710064, PR China.
Xinjun Li
Professor, School of Highway, Chang’an Univ., Xi’an 710064, PR China.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share