Technical Papers
Jan 25, 2024

Effect of GGBS Content and Water/Geopolymer Solid Ratio on the Mechanical, Elevated Temperature Resistance, and Sorptivity Properties of FA/GGBS-Based Geopolymer Concrete

Publication: Journal of Materials in Civil Engineering
Volume 36, Issue 4

Abstract

This study investigates the effects of water/geopolymer (W/GP) solid ratio and ground granulated blast furnace slag (GGBS) content on the mechanical, elevated temperature resistance, and sorptivity properties of geopolymer concrete (GPC). In this study, two different W/GP solid ratios were used, 0.33 and 0.35, and GPC was produced by replacing fly ash (FA) with 0%, 50%, and 100% GGBS. As a result of physical, mechanical, and nondestructive tests in this GPC; strength performance and durability performance were investigated by finding slump, setting time, compressive strength, elevated temperature resistance, sorptivity, and dynamic modulus of elasticity (DME) via ultrasonic pulse velocity (UPV), a nondestructive test. In addition, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) analyses were performed on GPC samples. As the percentage of GGBS in the mixture increased, the slump of GPC decreased but its cohesion increased. The final setting time of GP mortar containing 100% FA is approximately 80 times that of GP mortar containing 100% GGBS for both W/GP solid ratios. When the GGBS percentage in the mixture increased from 0% to 100%, the compressive strength of GPC increased about 4–5 times depending on the W/GP solid ratio. The increase in the GGBS percentage decreased the sorptivity of the GPC up to 6.5 times. The elevated temperature performance of GPC increased with the increase of the FA ratio. SEM analysis showed that a more homogeneous and denser microstructure was obtained with the increase of GGBS content in the mixture.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This study was supported by Kocaeli University Scientific Researches Project Organization (Project code: FDK-2022-2468).

References

Abed, M. A. 2021. “Indirect evaluation of the compressive strength of recycled aggregate concrete at long ages and after exposure to freezing or elevated temperatures.” Russ. J. Nondestr. Test. 57 (3): 195–202. https://doi.org/10.1134/S1061830921030025.
ACI (American Concrete Institute). 2008. Building code requirements for structural concrete and commentary. ACI 318. Farmington Hills, MI: ACI.
Aiken, T. A., J. Kwasny, W. Sha, and M. N. Soutsos. 2018. “Effect of slag content and activator dosage on the resistance of fly ash geopolymer binders to sulfuric acid attack.” Cem. Concr. Res. 111 (Sep): 23–40. https://doi.org/10.1016/J.CEMCONRES.2018.06.011.
Al-Azzawi, M., T. Yu, and M. N. S. Hadi. 2018. “Factors affecting the bond strength between the fly ash-based geopolymer concrete and steel reinforcement.” In Vol. 14 of Structures, 262–272. Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/J.ISTRUC.2018.03.010.
Albitar, M., P. Visintin, M. S. Mohamed Ali, and M. Drechsler. 2015. “Assessing behaviour of fresh and hardened geopolymer concrete mixed with class-F fly ash.” KSCE J. Civ. Eng. 19 (5): 1445–1455. https://doi.org/10.1007/s12205-014-1254-z.
Aldawsari, S., R. Kampmann, J. Harnisch, and C. Rohde. 2022. “Setting time, microstructure, and durability properties of low calcium fly ash/slag geopolymer: A review.” Materials 15 (3): 876. https://doi.org/10.3390/ma15030876.
Alexander, A. E., and A. P. Shashikala. 2022. “Studies on the microstructure and durability characteristics of ambient cured FA-GGBS based geopolymer mortar.” Constr. Build. Mater. 347 (Sep): 128538. https://doi.org/10.1016/j.conbuildmat.2022.128538.
Al-Hadithi, A. I., and N. N. Hilal. 2016. “The possibility of enhancing some properties of self-compacting concrete by adding waste plastic fibers.” J. Build. Eng. 8 (Dec): 20–28. https://doi.org/10.1016/J.JOBE.2016.06.011.
Aliabdo, A. A., A. E. M. Abd Elmoaty, and H. A. Salem. 2016. “Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance.” Constr. Build. Mater. 121 (Sep): 694–703. https://doi.org/10.1016/J.CONBUILDMAT.2016.06.062.
Amran, Y. H. M., R. Alyousef, H. Alabduljabbar, and M. El-Zeadani. 2020. “Clean production and properties of geopolymer concrete; A review.” J. Cleaner Prod. 251 (Apr): 119679. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.119679.
Anuradha, R., R. Bala Thirumal, and P. Naveen John. 2014. “Optimization of molarity on workable self-compacting geopolymer concrete and strength study on SCGC by replacing flyash with silica fume and GGBFS.” Int. J. Adv. Struct. Geotech. Eng. 3 (1): 11–18.
Arunachelam, N., J. Maheswaran, M. Chellapandian, G. Murali, and N. I. Vatin. 2022. “Development of high-strength geopolymer concrete incorporating high-volume copper slag and micro silica.” Sustainability 14 (13): 7601. https://doi.org/10.3390/su14137601.
Arunkumar, K., M. Muthukannan, A. S. Kumar, A. C. Ganesh, and R. K. Devi. 2021. “Cleaner environment approach by the utilization of low calcium wood ash in geopolymer concrete.” Appl. Sci. Eng. Prog. 15 (1): 1–13. https://doi.org/10.14416/j.asep.2021.06.005.
Assi, L. N., E. (Eddie) Deaver, and P. Ziehl. 2018. “Using sucrose for improvement of initial and final setting times of silica fume-based activating solution of fly ash geopolymer concrete.” Constr. Build. Mater. 191 (Dec): 47–55. https://doi.org/10.1016/J.CONBUILDMAT.2018.09.199.
AS (Standards Australia). 2009. Concrete structures. AS 3600. Sydney, Australia: AS.
ASTM. 2004. Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes. ASTM C1585-04. West Conshohocken, PA: ASTM.
ASTM. 2005. Standard specification for coal fly ash and raw or calcined natural pozzolan for use as a mineral admixture in concrete. ASTM C618. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard test method for pulse velocity through concrete. ASTM C597-16. West Conshohocken, PA: ASTM.
Bellum, R. R., K. Muniraj, and S. R. C. Madduru. 2020. “Influence of activator solution on microstructural and mechanical properties of geopolymer concrete.” Materialia 10 (May): 100659. https://doi.org/10.1016/J.MTLA.2020.100659.
Bouaissi, A., L. Y. Li, M. M. A. B. Abdullah, and Q. B. Bui. 2019. “Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete.” Constr. Build. Mater. 210 (Jun): 198–209. https://doi.org/10.1016/J.CONBUILDMAT.2019.03.202.
BSI (British Standard Institution). 2009. Testing hardened concrete—Compressive strength of test specimens. BS EN 12390-3:2009. Milton Keynes, UK: BSI.
Castel, A. 2016. “Bond between steel reinforcement and geopolymer concrete.” In Handbook of low carbon concrete, 375–387. Oxford, UK: Butterworth-Heinemann.
Castel, A., S. J. Foster, T. Ng, J. G. Sanjayan, and R. I. Gilbert. 2016. “Creep and drying shrinkage of a blended slag and low calcium fly ash geopolymer concrete.” Mater. Struct. 49 (5): 1619–1628. https://doi.org/10.1617/s11527-015-0599-1.
Chen, X., M. Zhou, W. Shen, G. Zhu, and X. Ge. 2018. “Mechanical properties and microstructure of metakaolin-based geopolymer compound-modified by polyacrylic emulsion and polypropylene fibers.” Constr. Build. Mater. 190 (Nov): 680–690. https://doi.org/10.1016/J.CONBUILDMAT.2018.09.116.
Chethan, K. B., S. C. Yaragal, and B. B. Das. 2020. “Ferrochrome ash–Its usage potential in alkali activated slag mortars.” J. Cleaner Prod. 257 (Jun): 120577. https://doi.org/10.1016/J.JCLEPRO.2020.120577.
Chithambaram, S. J., S. Kumar, M. Prasad, and D. Adak. 2018. “Effect of parameters on the compressive strength of fly ash based geopolymer concrete.” Struct. Concr. 19 (4): 1202–1209. https://doi.org/10.1002/suco.201700235.
de Azevedo, A. R. G., M. Amin, M. Hadzima-Nyarko, I. Saad Agwa, A. M. Zeyad, B. A. Tayeh, and A. Adesina. 2022. “Possibilities for the application of agro-industrial wastes in cementitious materials: A brief review of the Brazilian perspective.” Cleaner Mater. 3 (Mar): 100040. https://doi.org/10.1016/J.CLEMA.2021.100040.
Deb, P. S., P. Nath, and P. K. Sarker. 2014. “The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature.” Mater. Des. (1980-2015) 62 (Oct): 32–39. https://doi.org/10.1016/J.MATDES.2014.05.001.
Deb, P. S., P. K. Sarker, and S. Barbhuiya. 2016. “Sorptivity and acid resistance of ambient-cured geopolymer mortars containing nano-silica.” Cem. Concr. Compos. 72 (Sep): 235–245. https://doi.org/10.1016/J.CEMCONCOMP.2016.06.017.
Duxson, P., A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. van Deventer. 2007. “Geopolymer technology: The current state of the art.” J. Mater. Sci. 42 (9): 2917–2933. https://doi.org/10.1007/s10853-006-0637-z.
Elyamany, H. E., A. E. M. Abd Elmoaty, and A. M. Elshaboury. 2018. “Setting time and 7-day strength of geopolymer mortar with various binders.” Constr. Build. Mater. 187 (Oct): 974–983. https://doi.org/10.1016/J.CONBUILDMAT.2018.08.025.
Ganeshan, M., and S. Venkataraman. 2017. “Self consolidating geopolymer concrete as an aid to green technologies - review on present status.” Asian J. Res. Soc. Sci. Humanit. 7 (3): 510. https://doi.org/10.5958/2249-7315.2017.00187.3.
Garces, J. I. T., I. J. Dollente, A. B. Beltran, R. R. Tan, and M. A. B. Promentilla. 2021. “Life cycle assessment of self-healing geopolymer concrete.” Clean. Eng. Technol. 4 (Oct): 100147. https://doi.org/10.1016/J.CLET.2021.100147.
Gholampour, A., T. Ozbakkaloglu, and C.-T. Ng. 2019. “Ambient- and oven-cured geopolymer concretes under active confinement.” Constr. Build. Mater. 228 (Dec): 116722. https://doi.org/10.1016/j.conbuildmat.2019.116722.
Güneyisi, E., M. Gesoglu, N. Naji, and S. İpek. 2016. “Evaluation of the rheological behavior of fresh self-compacting rubberized concrete by using the Herschel-Bulkley and modified Bingham models.” Arch. Civ. Mech. Eng. 16 (1): 9–19. https://doi.org/10.1016/j.acme.2015.09.003.
Hadi, M. N. S., N. A. Farhan, and M. N. Sheikh. 2017. “Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method.” Constr. Build. Mater. 140 (Jun): 424–431. https://doi.org/10.1016/j.conbuildmat.2017.02.131.
Hadi, M. N. S., H. Zhang, and S. Parkinson. 2019. “Optimum mix design of geopolymer pastes and concretes cured in ambient condition based on compressive strength, setting time and workability.” J. Build. Eng. 23 (May): 301–313. https://doi.org/10.1016/J.JOBE.2019.02.006.
Hardjito, D., C. C. Cheak, and C. H. Lee Ing. 2008. “Strength and setting times of low calcium fly ash-based geopolymer mortar.” Mod. Appl. Sci. 2 (4): 3–11. https://doi.org/10.5539/mas.v2n4p3.
Hardjito, D., S. E. Wallah, D. M. J. Sumajouw, and B. V. Rangan. 2005a. “Fly ash-based geopolymer concrete.” Aust. J. Struct. Eng. 6 (1): 77–86. https://doi.org/10.1080/13287982.2005.11464946.
Hardjito, D., S. E. Wallah, D. M. J. Sumajouw, and B. V. Rangan. 2005b. “Introducing fly ash-based geopolymer concrete: Manufacture and engineering properties.” In Proc., 30th Conf. on Our World in Concrete & Structures, 271–278. Singapore: CI-Premier Pte. Ltd.
Hasnaoui, A., E. Ghorbel, and G. Wardeh. 2019. “Comparison between Portland cement concrete and geopolymer concrete based on metakaolin and granulated blast furnace slag with the same binder volume.” Acad. J. Civ. Eng. 37 (2): 127–132. https://doi.org/10.26168/icbbm2019.18.
Heath, A., K. Paine, S. Goodhew, M. Ramage, and M. Lawrence. 2013. “The potential for using geopolymer concrete in the UK.” Proc. Inst. Civ. Eng. Constr. Mater. 166 (4): 195–203. https://doi.org/10.1680/coma.12.00030.
Hilal, N., N. Hamah Sor, and R. H. Faraj. 2021. “Development of eco-efficient lightweight self-compacting concrete with high volume of recycled EPS waste materials.” Environ. Sci. Pollut. Res. 28 (36): 50028–50051. https://doi.org/10.1007/s11356-021-14213-w/Published.
Hussin, M. W., M. A. R. Bhutta, M. Azreen, P. J. Ramadhansyah, and J. Mirza. 2015. “Performance of blended ash geopolymer concrete at elevated temperatures.” Mater. Struct. 48 (3): 709–720. https://doi.org/10.1617/s11527-014-0251-5.
IAEA (International Atomic Energy Agency). 2002. Guidebook on non-destructive testing of concrete structure, training course series. IAEA-TCS-17. Vienna, Austria: IAEA.
Jang, J. G., N. K. Lee, and H. K. Lee. 2014. “Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers.” Constr. Build. Mater. 50 (Jan): 169–176. https://doi.org/10.1016/J.CONBUILDMAT.2013.09.048.
Jithendra, C., and S. Elavenil. 2019. “Role of superplasticizer on GGBS based geopolymer concrete under ambient curing.” Mater. Today Proc. 18 (Oct): 148–154. https://doi.org/10.1016/j.matpr.2019.06.288.
Joseph, B., and G. Mathew. 2012. “Influence of aggregate content on the behavior of fly ash based geopolymer concrete.” Sci. Iran. 19 (5): 1188–1194. https://doi.org/10.1016/J.SCIENT.2012.07.006.
Khan, M. I. 2012. “Evaluation of non-destructive testing of high strength concrete incorporating supplementary cementitious composites.” Resour. Conserv. Recycl. 61 (Apr): 125–129. https://doi.org/10.1016/J.RESCONREC.2012.01.013.
Kong, D. L. Y., and J. G. Sanjayan. 2010. “Effect of elevated temperatures on geopolymer paste, mortar and concrete.” Cem. Concr. Res. 40 (2): 334–339. https://doi.org/10.1016/J.CEMCONRES.2009.10.017.
Kong, D. L. Y., J. G. Sanjayan, and K. Sagoe-Crentsil. 2007. “Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures.” Cem. Concr. Res. 37 (12): 1583–1589. https://doi.org/10.1016/j.cemconres.2007.08.021.
Kuranlı, Ö. F., M. Uysal, and O. Canpolat. 2022. “Mechanical and durability properties of slag/fly ash based alkali-activated concrete reinforced with steel, polypropylene and polyamide fibers.” Eur. J. Environ. Civ. Eng. 26 (16): 8390–8413. https://doi.org/10.1080/19648189.2022.2026823.
Lavanya, G., and J. Jegan. 2015. “Durability study on high calcium fly ash based geopolymer concrete.” Adv. Mater. Sci. Eng. 2015 (Nov): 1–7. https://doi.org/10.1155/2015/731056.
Law, D. W., A. Arham Adam, T. K. Molyneaux, I. Patnaikuni, and A. Wardhono. 2014. “Long term durability properties of class F fly ash geopolymer concrete.” Mater. Struct. 48 (3): 721–731. https://doi.org/10.1617/s11527-014-0268-9.
Lu, Z., C. Zhao, J. Zhao, C. Shi, and J. Xie. 2023. “Bond durability of FRP bars and seawater–sea sand–geopolymer concrete: Coupled effects of seawater immersion and sustained load.” Constr. Build. Mater. 400 (Oct): 132667. https://doi.org/10.1016/J.CONBUILDMAT.2023.132667.
Ma, C. K., A. Z. Awang, and W. Omar. 2018. “Structural and material performance of geopolymer concrete: A review.” Constr. Build. Mater. 186 (Oct): 90–102. https://doi.org/10.1016/J.CONBUILDMAT.2018.07.111.
Mallikarjuna Rao, G., M. Venu, Y. Anil, and V. Noolu. 2022. “Durability aspects of geo-polymer mortar using single alkaline activator solution.” IOP Conf. Ser.: Earth Environ. Sci. 982 (1): 012001. https://doi.org/10.1088/1755-1315/982/1/012001.
Medri, V., and A. Ruffini. 2012. “The influence of process parameters on in situ inorganic foaming of alkali-bonded SiC based foams.” Ceram. Int. 38 (4): 3351–3359. https://doi.org/10.1016/J.CERAMINT.2011.12.045.
Meesala, C. R., N. K. Verma, and S. Kumar. 2020. “Critical review on fly-ash based geopolymer concrete.” Struct. Concr. 21 (3): 1013–1028. https://doi.org/10.1002/suco.201900326.
Memon, F. A., M. F. Nuruddin, S. Demie, and N. Shafiq. 2012. “Effect of superplasticizer and extra water on workability and compressive strength of self-compacting geopolymer concrete.” Res. J. Appl. Sci. Eng. Technol. 4 (5): 407–414.
Mohammed, A. A., H. U. Ahmed, and A. Mosavi. 2021. “Survey of mechanical properties of geopolymer concrete: A comprehensive review and data analysis.” Materials 14 (16): 4690. https://doi.org/10.3390/ma14164690.
Nath, P., and P. K. Sarker. 2012. “Geopolymer concrete for ambient curing condition.” In Proc., Australasian Structural Engineering Conf. 2012 (ASEC 2012), 11–13. Barton, Australia: Engineers Australia.
Nath, P., and P. K. Sarker. 2014. “Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition.” Constr. Build. Mater. 66 (Sep): 163–171. https://doi.org/10.1016/J.CONBUILDMAT.2014.05.080.
Nath, P., and P. K. Sarker. 2015. “Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature.” Cem. Concr. Compos. 55 (Jan): 205–214. https://doi.org/10.1016/J.CEMCONCOMP.2014.08.008.
Nematollahi, B., and J. Sanjayan. 2014. “Effect of different superplasticizers and activator combinations on workability and strength of fly ash based geopolymer.” Mater. Des. 57 (May): 667–672. https://doi.org/10.1016/J.MATDES.2014.01.064.
Nematzadeh, M., and R. Poorhosein. 2017. “Estimating properties of reactive powder concrete containing hybrid fibers using UPV.” Comput. Concr. 20 (4): 491–502. https://doi.org/10.12989/cac.2017.20.4.491.
Nguyen, T. T., C. I. Goodier, and S. A. Austin. 2020. “Factors affecting the slump and strength development of geopolymer concrete.” Constr. Build. Mater. 261 (Nov): 119945. https://doi.org/10.1016/J.CONBUILDMAT.2020.119945.
Noushini, A., and A. Castel. 2016. “The effect of heat-curing on transport properties of low-calcium fly ash-based geopolymer concrete.” Constr. Build. Mater. 112 (Jun): 464–477. https://doi.org/10.1016/j.conbuildmat.2016.02.210.
Nuaklong, P., V. Sata, and P. Chindaprasirt. 2016. “Influence of recycled aggregate on fly ash geopolymer concrete properties.” J. Cleaner Prod. 112 (Jan): 2300–2307. https://doi.org/10.1016/J.JCLEPRO.2015.10.109.
Olivia, M., and H. Nikraz. 2012. “Properties of fly ash geopolymer concrete designed by Taguchi method.” Mater. Des. (1980-2015), 36 (Apr): 191–198. https://doi.org/10.1016/J.MATDES.2011.10.036.
Olivia, M., H. Nikraz, and P. Sarker. 2008. “Improvements in the strength and water penetrability of low calcium fly ash based geopolymer concrete.” In Proc., 3rd ACF Int. Conf. - ACF/VCA 2008, 384–391. Hanoi, Vietnam: Construction Publishing House.
Oluokun, F. 1991. “Prediction of concrete tensile strength from its compressive strength: An evaluation of existing relations for normal weight concrete.” ACI Mater. J. 88 (3): 302–309. https://doi.org/10.14359/1942.
Omer, S. A., R. Demirboga, and W. H. Khushefati. 2015. “Relationship between compressive strength and UPV of GGBFS based geopolymer mortars exposed to elevated temperatures.” Constr. Build. Mater. 94 (Sep): 189–195. https://doi.org/10.1016/J.CONBUILDMAT.2015.07.006.
Öz, A., B. Bayrak, E. Kavaz, G. Kaplan, O. Çelebi, H. G. Alcan, and A. C. Aydın. 2022. “The radiation shielding and microstructure properties of quartzic and metakaolin based geopolymer concrete.” Constr. Build. Mater. 342 (Aug): 127923. https://doi.org/10.1016/J.CONBUILDMAT.2022.127923.
Pan, Z., Z. Tao, Y. F. Cao, and R. Wuhrer. 2018. “Measurement and prediction of thermal properties of alkali-activated fly ash/slag binders at elevated temperatures.” Mater. Struct. 51 (4): 1–13. https://doi.org/10.1617/s11527-018-1233-9.
Paul, E. 2022. “Influence of superplasticizer on workability and strength of ambient cured alkali activated mortar.” Cleaner Mater. 6 (Dec): 100152. https://doi.org/10.1016/j.clema.2022.100152.
Prakasam, G., A. R. Murthy, and M. Saffiq Reheman. 2020. “Mechanical, durability and fracture properties of nano-modified FA/GGBS geopolymer mortar.” Mag. Concr. Res. 72 (4): 207–216. https://doi.org/10.1680/jmacr.18.00059.
Provis, J. L., R. J. Myers, C. E. White, V. Rose, and J. S. J. Van Deventer. 2012. “X-ray microtomography shows pore structure and tortuosity in alkali-activated binders.” Cem. Concr. Res. 42 (6): 855–864. https://doi.org/10.1016/J.CEMCONRES.2012.03.004.
Qu, F., W. Li, Z. Tao, A. Castel, and K. Wang. 2020. “High temperature resistance of fly ash/GGBFS-based geopolymer mortar with load-induced damage.” Mater. Struct. 53 (4): 1–21. https://doi.org/10.1617/s11527-020-01544-2.
Rajini, B., A. V. Narasimha Rao, and C. Sahidhar. 2021. “Micro-level studies of fly ash and GGBS–based geopolymer concrete using SEM and XRD.” IOP Conf. Ser.: Mater. Sci. Eng. 1130 (1): 012062. https://doi.org/10.1088/1757-899X/1130/1/012062.
Rajini, B., and A. V. N. Rao. 2014. “Mechanical properties of geopolymer concrete with fly ash and GGBS as source materials.” Int. J. Innovative Res. Sci. Eng. Technol. 03 (09): 15944–15953. https://doi.org/10.15680/ijirset.2014.0309023.
Rao, S. K., P. Sravana, and T. C. Rao. 2016. “Experimental studies in ultrasonic pulse velocity of roller compacted concrete pavement containing fly ash and M-sand.” Int. J. Pavement Res. Technol. 9 (4): 289–301. https://doi.org/10.1016/J.IJPRT.2016.08.003.
Rashad, A. M., and M. Gharieb. 2021. “Valorization of sugar beet waste as an additive for fly ash geopolymer cement cured at room temperature.” J. Build. Eng. 44 (Dec): 102989. https://doi.org/10.1016/J.JOBE.2021.102989.
Reddy, B. S. K., J. Varaprasad, and K. N. K. Reddy. 2010. “Strength and workability of low lime fly-ash based geopolymer concrete.” Indian J. Sci. Technol. 3 (12): 1188–1189.
Richardson, I. G. 1999. “The nature of C-S-H in hardened cements.” Cem. Concr. Res. 29 (8): 1131–1147. https://doi.org/10.1016/S0008-8846(99)00168-4.
Rickard, W. D. A., and A. van Riessen. 2014. “Performance of solid and cellular structured fly ash geopolymers exposed to a simulated fire.” Cem. Concr. Compos. 48 (Apr): 75–82. https://doi.org/10.1016/J.CEMCONCOMP.2013.09.002.
Ryu, G. S., Y. B. Lee, K. T. Koh, and Y. S. Chung. 2013. “The mechanical properties of fly ash-based geopolymer concrete with alkaline activators.” Constr. Build. Mater. 47 (Oct): 409–418. https://doi.org/10.1016/J.CONBUILDMAT.2013.05.069.
Saranya, P., P. Nagarajan, and A. P. Shashikala. 2019. “Performance evaluation of geopolymer concrete beams under monotonic loading.” In Vol. 20 of Structures, 560–569. Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/J.ISTRUC.2019.06.010.
Sarker, P. K., S. Kelly, and Z. Yao. 2014. “Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete.” Mater. Des. 63 (Nov): 584–592. https://doi.org/10.1016/J.MATDES.2014.06.059.
Sasui, S., G. Kim, J. Nam, A. van Riessen, and M. Hadzima-Nyarko. 2021. “Effects of waste glass as a sand replacement on the strength and durability of fly ash/GGBS based alkali activated mortar.” Ceram. Int. 47 (15): 21175–21196. https://doi.org/10.1016/J.CERAMINT.2021.04.121.
Sasui, S., G. Kim, J. Nam, A. van Riessen, M. Hadzima-Nyarko, G. Choe, D. Suh, and W. Jinwuth. 2022. “Effects of waste glass sand on the thermal behavior and strength of fly ash and GGBS based alkali activated mortar exposed to elevated temperature.” Constr. Build. Mater. 316 (Jan): 125864. https://doi.org/10.1016/J.CONBUILDMAT.2021.125864.
Shaik, E. B., and S. Reddy. 2015. “Geo polymer concrete with the replacement of granite aggregate as fine aggregate.” Int. J. Sci. Res. 4 (9): 19–24.
Shaikh, F. U. A. 2016. “Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates.” Int. J. Sustainable Built Environ. 5 (2): 277–287. https://doi.org/10.1016/J.IJSBE.2016.05.009.
Shaikh, F. U. A., and V. Vimonsatit. 2015. “Compressive strength of fly-ash-based geopolymer concrete at elevated temperatures.” Fire Mater. 39 (2): 174–188. https://doi.org/10.1002/fam.2240.
Singh, B., G. Ishwarya, M. Gupta, and S. K. Bhattacharyya. 2015. “Geopolymer concrete: A review of some recent developments.” Constr. Build. Mater. 85 (Jun): 78–90. https://doi.org/10.1016/J.CONBUILDMAT.2015.03.036.
Soutsos, M., A. P. Boyle, R. Vinai, A. Hadjierakleous, and S. J. Barnett. 2016. “Factors influencing the compressive strength of fly ash based geopolymers.” Constr. Build. Mater. 110 (May): 355–368. https://doi.org/10.1016/J.CONBUILDMAT.2015.11.045.
Sumajouw, D. M. J., D. Hardjito, S. E. Wallah, and B. V. Rangan. 2004. “Geopolymer concrete for a sustainable future.” In Proc., Green Processing Conf., 10–12. Carlton, VIC, Australia: Australasian Institute of Mining and Metallurgy.
Suwan, T., M. Fan, and N. Braimah. 2016. “Internal heat liberation and strength development of self-cured geopolymers in ambient curing conditions.” Constr. Build. Mater. 114 (Jul): 297–306. https://doi.org/10.1016/J.CONBUILDMAT.2016.03.197.
Talha Junaid, M., J. Obada, and K. Amar Khennane. 2017. “Response of alkali activated low calcium fly-ash based geopolymer concrete under compressive load at elevated temperatures.” Mater. Struct. 50 (1): 1–10. https://doi.org/10.1617/s11527-016-0877-6.
Tammam, Y., M. Uysal, and O. Canpolat. 2022. “Effects of alternative ecological fillers on the mechanical, durability, and microstructure of fly ash-based geopolymer mortar.” Eur. J. Environ. Civ. Eng. 26 (12): 5877–5900. https://doi.org/10.1080/19648189.2021.1925157.
Thokchom, S., P. Ghosh, and S. Ghosh. 2009. “Effect of water absorption, porosity and sorptivity on durability of geopolymer mortars.” ARPN J. Eng. Appl. Sci. 4 (7): 28–32.
Topçu, I. B., M. U. Toprak, and T. Uygunoǧlu. 2014. “Durability and microstructure characteristics of alkali activated coal bottom ash geopolymer cement.” J. Cleaner Prod. 81 (Oct): 211–217. https://doi.org/10.1016/J.JCLEPRO.2014.06.037.
TSI (Turkish Standards Institution). 2008. Admixtures for concrete, mortar and grout - Test methods - Part 2: Determination of setting time. TS EN 480-2. Ankara, Turkey: TSI.
TSI (Turkish Standards Institution). 2016. Design of concrete mixes. TS 802. Ankara, Turkey: TSI.
Verma, M., and N. Dev. 2021a. “Sodium hydroxide effect on the mechanical properties of flyash-slag based geopolymer concrete.” Supplement, Struct. Concr. 22 (S1): E368–E379. https://doi.org/10.1002/suco.202000068.
Verma, M., and N. Dev. 2021b. “Effect of ground granulated blast furnace slag and fly ash ratio and the curing conditions on the mechanical properties of geopolymer concrete.” Struct. Concr. 23 (4): 2015–2029. https://doi.org/10.1002/suco.202000536.
Wang, W. C., H. Y. Wang, and M. H. Lo. 2015. “The fresh and engineering properties of alkali activated slag as a function of fly ash replacement and alkali concentration.” Constr. Build. Mater. 84 (Jun): 224–229. https://doi.org/10.1016/J.CONBUILDMAT.2014.09.059.
Xie, J., W. Chen, J. Wang, C. Fang, B. Zhang, and F. Liu. 2019a. “Coupling effects of recycled aggregate and GGBS/metakaolin on physicochemical properties of geopolymer concrete.” Constr. Build. Mater. 226 (Nov): 345–359. https://doi.org/10.1016/J.CONBUILDMAT.2019.07.311.
Xie, J., J. Wang, R. Rao, C. Wang, and C. Fang. 2019b. “Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate.” Composites, Part B 164 (May): 179–190. https://doi.org/10.1016/j.compositesb.2018.11.067.
Yao, X., T. Yang, and Z. Zhang. 2016. “Compressive strength development and shrinkage of alkali-activated fly ash-slag blends associated with efflorescence.” Mater. Struct. 49 (7): 2907–2918. https://doi.org/10.1617/s11527-015-0694-3.
Yaragal, S. C., B. Chethan Kumar, and C. Jitin. 2020. “Durability studies on ferrochrome slag as coarse aggregate in sustainable alkali activated slag/fly ash based concretes.” Sustainable Mater. Technol. 23 (Apr): e00137. https://doi.org/10.1016/J.SUSMAT.2019.E00137.
Yilmazoglu, A., S. T. Yildirim, Ö. F. Behçet, and S. Yıldız. 2022. “Performance evaluation of fly ash and ground granulated blast furnace slag-based geopolymer concrete: A comparative study.” Struct. Concr. 23 (6): 3898–3915. https://doi.org/10.1002/suco.202100835.
Younis, K. H., K. Salihi, A. Mohammedameen, A. F. H. Sherwani, and R. Alzeebaree. 2021. “Factors affecting the characteristics of self-compacting geopolymer concrete.” IOP Conf. Ser.: Earth Environ. Sci. 856 (1): 012028. https://doi.org/10.1088/1755-1315/856/1/012028.
Zhang, H. Y., V. Kodur, B. Wu, L. Cao, and F. Wang. 2016. “Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures.” Constr. Build. Mater. 109 (Apr): 17–24. https://doi.org/10.1016/J.CONBUILDMAT.2016.01.043.
Zhang, Y. J., Y. C. Wang, D. L. Xu, and S. Li. 2010. “Mechanical performance and hydration mechanism of geopolymer composite reinforced by resin.” Mater. Sci. Eng.: A 527 (24–25): 6574–6580. https://doi.org/10.1016/J.MSEA.2010.06.069.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 4April 2024

History

Received: Jun 23, 2023
Accepted: Sep 27, 2023
Published online: Jan 25, 2024
Published in print: Apr 1, 2024
Discussion open until: Jun 25, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Engineering Faculty, Dept. of Civil Engineering, Kocaeli Univ., Umuttepe Campus, Kocaeli 41380, Turkey (corresponding author). ORCID: https://orcid.org/0000-0002-3995-3904. Email: [email protected]
Associate Professor, Engineering Faculty, Dept. of Civil Engineering, Kocaeli Univ., Umuttepe Campus, Kocaeli 41380, Turkey. ORCID: https://orcid.org/0000-0003-0021-0625. Email: [email protected]
Sadık Yıldız, Ph.D. [email protected]
Engineering Faculty, Dept. of Civil Engineering, Kocaeli Univ., Umuttepe Campus, Kocaeli 41380, Turkey. Email: [email protected]
Ömer Faruk Behçet [email protected]
Research Assistant, Engineering Faculty, Dept. of Civil Engineering, Kocaeli Univ., Umuttepe Campus, Kocaeli 41380, Turkey. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share