State-of-the-Art Reviews
Dec 26, 2023

Durable and Environmental Asphalt Pavement with Plant Fiber: A State-of-the-Art Review

Publication: Journal of Materials in Civil Engineering
Volume 36, Issue 3

Abstract

Utilizing treated plant fibers in fiber-modified asphalt could reduce reliance on nonrenewable resources, contributing to environmental sustainability. To promote the utilization of plant fibers in asphalt mixtures, this review focuses on elucidating the reaction mechanism of surface-treated plant fibers and the resulting performance benefits in the composite. A comprehensive review of reinforcement mechanisms of fibers in composites, particularly asphalt mixtures, is provided to gain a mechanistic understanding of how fibers enhance performance. The review incorporates multiple perspectives to provide a thorough understanding of the performance-enhancing effects of fibers within asphalt. Plant fibers have significant potential to improve several aspects of asphalt mix performance, including high-temperature stability, low-temperature crack resistance, moisture stability, and fatigue durability. These properties also influence the optimal loading and fiber length for different fiber types, and this review provides a comprehensive overview along with recommended values. In addition, microscopic studies play a critical role in understanding the mechanism of plant fibers in asphalt mixes. The review discusses the microscopic changes induced by fiber surface treatment and sheds light on their effects at a fundamental level. The review provides a holistic reference for the application of plant fibers in asphalt mixtures for guiding asphalt pavement engineering applications, and prospect on the research direction of plant fibers in asphalt mixtures.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51978068), the Shaanxi Natural Science Foundation (No. 2020JM-217), and the National Natural Science Foundation of China (No. 52178408). The authors gratefully acknowledge their financial support.

References

Abtahi, S., S. M. Hejazi, M. Sheikhzadeh, and D. Semnani. 2008. “An investigation on the use of textile materials to mechanical reinforcement of asphalt concrete (AC) structures and analysis of results by an artificial neural network (ANN).” In Proc., 4th National Congress on Civil Engineering. Tehran, Iran: Univ. of Tehran.
Abtahi, S. M., M. Sheikhzadeh, and S. M. Hejazi. 2010. “Fiber-reinforced asphalt-concrete—A review.” Constr. Build. Mater. 24 (6): 871–877. https://doi.org/10.1016/j.conbuildmat.2009.11.009.
Abu-Qdais, H. A., N. Shatnawi, and R. Al-Shahrabi. 2023. “Modeling the impact of fees and circular economy options on the financial sustainability of the solid waste management system in Jordan.” Resources 12 (3): 32. https://doi.org/10.3390/resources12030032.
Akhil, N., and P. Ramu. 2019. “Experimental investigations on the rut resistant surface layer with inclusion of marble dust and sisal fibers.” Mater. Today: Proc. 18 (Aug): 3233–3246. https://doi.org/10.1016/j.matpr.2019.07.199.
Akter, M., M. Uddin, and H. R. Anik. 2023. “Plant fiber-reinforced polymer composites: A review on modification, fabrication, properties, and applications.” Polym. Bull. 1–85. https://doi.org/10.1007/s00289-023-04733-5.
Al-Saad, A. A., and M. Q. Ismael. 2022. “Rutting prediction of hot mix asphalt mixtures reinforced by ceramic fibers.” J. Appl. Eng. Sci. 20 (4): 1345–1354. https://doi.org/10.5937/jaes0-38956.
Arabani, M., A. Shabani, and G. H. Hamedi. 2019. “Experimental investigation of effect of ceramic fibers on mechanical properties of asphalt mixtures.” J. Mater. Civ. Eng. 31 (9): 04019203. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002821.
Arain, M. F., M. Wang, J. Chen, and H. Zhang. 2019. “Experimental and numerical study on tensile behavior of surface modified PVA fiber reinforced strain-hardening cementitious composites (PVA-SHCC).” Constr. Build. Mater. 217 (Aug): 403–415. https://doi.org/10.1016/j.conbuildmat.2019.05.083.
Balazs, G. L., O. Czoboly, E. Lubloy, K. Kapitany, and A. Barsi. 2017. “Observation of steel fibres in concrete with Computed Tomography.” Constr. Build. Mater. 140 (Feb): 534–541. https://doi.org/10.1016/j.conbuildmat.2017.02.114.
Behnood, A., and M. M. Gharehveran. 2019. “Morphology, rheology, and physical properties of polymer-modified asphalt binders.” Eur. Polym. J. 112 (Jan): 766–791. https://doi.org/10.1016/j.eurpolymj.2018.10.049.
Bellatrache, Y., L. Ziyani, A. Dony, M. Taki, and S. Haddadi. 2020. “Effects of the addition of date palm fibers on the physical, rheological and thermal properties of bitumen.” Constr. Build. Mater. 239 (Apr): 117808. https://doi.org/10.1016/j.conbuildmat.2019.117808.
Beyerlein, I. J., S. L. Phoenix, and A. M. Sastry. 1996. “Comparison of shear-lag theory and continuum fracture mechanics for modeling fiber and matrix stresses in an elastic cracked composite lamina.” Int. J. Solids Struct. 33 (18): 2543–2574. https://doi.org/10.1016/0020-7683(95)00172-7.
Bilba, K., and M. A. Arsene. 2008. “Silane treatment of bagasse fiber for reinforcement of cementitious composites.” Composites, Part A 39 (9): 1488–1495. https://doi.org/10.1016/j.compositesa.2008.05.013.
Bledzki, A. K., and J. M. Gassan. 1999. “Composites reinforced with cellulose based fibres.” Prog. Polym. Sci. 24 (2): 221–274. https://doi.org/10.1016/S0079-6700(98)00018-5.
Bledzki, A. K., A. A. Mamun, A. Jaszkiewicz, and K. Erdmann. 2010. “Polypropylene composites with enzyme modified abaca fibre.” Compos. Sci. Technol. 70 (5): 854–860. https://doi.org/10.1016/j.compscitech.2010.02.003.
Castillo-Lara, J. F., E. A. Flores-Johnson, A. Valadez-Gonzalez, P. J. Herrera-Franco, J. G. Carrillo, P. Gonzalez-Chi, and Q. Li. 2020. “Mechanical properties of natural fiber reinforced foamed concrete.” Materials 13 (14): 3060. https://doi.org/10.3390/ma13143060.
Chen, H., and Q. Xu. 2010. “Experimental study of fibers in stabilizing and reinforcing asphalt binder.” Fuel 89 (7): 1616–1622. https://doi.org/10.1016/j.fuel.2009.08.020.
Chen, H., Q. Xu, S. Chen, and Z. Zhang. 2009. “Evaluation and design of fiber-reinforced asphalt mixtures.” Mater. Des. 30 (7): 2595–2603. https://doi.org/10.1016/j.matdes.2008.09.030.
Chen, Z., B. Liu, D. Feng, and G. Li. 2022. “Adsorption mechanism between corn stalk fiber and asphalt.” Sustainability 14 (19): 12863. https://doi.org/10.3390/su141912863.
Choudhary, R., A. Kumar, and K. Murkute. 2018. “Properties of waste polyethylene terephthalate (PET) modified asphalt mixes: Dependence on PET size, PET content, and mixing process.” Period. Polytech. Civ. Eng. 62 (3): 685–693. https://doi.org/10.3311/PPci.10797.
Cleven, M. A. 2000. Investigation of the properties of carbon fiber modified asphalt mixtures. Houghton, MI: Michigan Technological Univ.
Cox, H. L. 1951. “The elasticity and strength of paper and other fibrous materials.” Br. J. Appl. Phys. 3 (3): 72–79. https://doi.org/10.1088/0508-3443/3/3/302.
Das, B., and P. Banerjee. 2013. “Interface bond and compatibility of jute with asphalt.” Composites, Part B 53 (Jun): 69–75. https://doi.org/10.1016/j.compositesb.2013.04.011.
Dash, B. N., A. K. Rana, S. C. Mishra, H. K. Mishra, S. K. Nayak, and S. S. Tripathy. 2000. “Novel low-cost jute–polyester composite. Ii. Sem observation of the fractured surfaces.” J. Macromol. Sci.: Part D Rev. Polym. Process. 39 (2): 333–350. https://doi.org/10.1081/PPT-100100033.
De Chiffre, L., S. Carmignato, J. P. Kruth, R. Schmitt, and A. Weckenmann. 2014. “Industrial applications of computed tomography.” CIRP Ann. 63 (2): 655–677. https://doi.org/10.1016/j.cirp.2014.05.011.
De Souza Castoldi, R., L. M. S. De Souza, and F. De Andrade Silva. 2019. “Comparative study on the mechanical behavior and durability of polypropylene and sisal fiber reinforced concretes.” Constr. Build. Mater. 211 (Jan): 617–628. https://doi.org/10.1016/j.conbuildmat.2019.03.282.
Devi, L. U., S. Bhagawan, and S. Thomas. 2011. “Dynamic mechanical properties of pineapple leaf fiber polyester composites.” Polym. Compos. 32 (11): 1741–1750. https://doi.org/10.1002/pc.21197.
Du, Y., J. Wang, and J. Chen. 2021. “Cooling asphalt pavement by increasing thermal conductivity of steel fiber asphalt mixture.” Sol. Energy 217 (Mar): 308–316. https://doi.org/10.1016/j.solener.2021.02.030.
Evans, P., N. Owen, S. Schmid, and R. Webster. 2002. “Weathering and photostability of benzoylated wood.” Polym. Degrad. Stab. 76 (2): 291–303. https://doi.org/10.1016/S0141-3910(02)00026-5.
Fakhri, M., and S. A. Hosseini. 2017. “Laboratory evaluation of rutting and moisture damage resistance of glass fiber modified warm mix asphalt incorporating high RAP proportion.” Constr. Build. Mater. 134 (Feb): 626–640. https://doi.org/10.1016/j.conbuildmat.2016.12.168.
Fakirov, H., and D. Bhattacharyya. 2007. Engineering biopolymers: Homopolymers, blends, and composites. Munich, Germany: Munich Hanser Publishers.
Ferreira da Costa, L., L. C. D. F. L. Lucena, A. E. D. F. L. Lucena, and A. Grangeiro de Barros. 2020. “Use of Banana fibers in SMA mixtures.” J. Mater. Civ. Eng. 32 (1): 04019341. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002994.
George, J., and J. I. I. Verpoest. 1999. “Mechanical properties of flax fibre reinforced epoxy composites.” Die Angew. Makromol. Chem. 272 (1): 41–45. https://doi.org/10.1002/(SICI)1522-9505(19991201)272:1%3C41::AID-APMC41%3E3.0.CO;2-X.
Gibson, R. F. 2014. “A review of recent research on nanoindentation of polymer composites and their constituents.” Compos. Sci. Technol. 105 (Aug): 51–65. https://doi.org/10.1016/j.compscitech.2014.09.016.
Golubev, Y. A., O. V. Kovaleva, and N. P. Yushkin. 2008. “Observations and morphological analysis of supermolecular structure of natural bitumens by atomic force microscopy.” Fuel 87 (1): 32–38. https://doi.org/10.1016/j.fuel.2007.04.005.
Gonzalez, A., J. Norambuena-Contreras, L. Storey, and E. Schlangen. 2018. “Effect of RAP and fibers addition on asphalt mixtures with self-healing properties gained by microwave radiation heating.” Constr. Build. Mater. 159 (Jun): 164–174. https://doi.org/10.1016/j.conbuildmat.2017.10.070.
Gurunathan, T., S. Mohanty, and S. K. Nayak. 2015. “A review of the recent developments in biocomposites based on natural fibres and their application perspectives.” Composites, Part A 77 (Mar): 1–25. https://doi.org/10.1016/j.compositesa.2015.06.007.
Hassan, M. M., M. R. Islam, and M. A. Khan. 2002. “Effect of additives on the improvement of mechanical and degradable properties of photografted jute yarn with acrylamide.” J. Polym. Environ. 10 (4): 139–145. https://doi.org/10.1023/A:1021191920387.
He, S., J. S. Qiu, J. X. Li, and E. H. Yang. 2017. “Strain hardening ultra-high performance concrete (SHUHPC) incorporating CNF-coated polyethylene fibers.” Cem. Concr. Res. 98 (Feb): 50–60. https://doi.org/10.1016/j.cemconres.2017.04.003.
Herráiz, T. R., J. I. R. Herráiz, L. M. Domingo, and F. C. Domingo. 2016. “Posidonia oceanica used as a new natural fibre to enhance the performance of asphalt mixtures.” Constr. Build. Mater. 102 (Feb): 601–612. https://doi.org/10.1016/j.conbuildmat.2015.10.193.
Jaradat, O. Z., K. Gadri, B. A. Tayeh, and A. Guettalaa. 2021. “Influence of sisal fibres and rubber latex on the engineering properties of sand concrete.” Struct. Eng. Mech. 80 (1): 47–62. https://doi.org/10.12989/sem.2021.80.1.047.
Jia, H., H. Chen, Y. Sheng, J. Meng, S. Cui, Y. R. Kim, S. Huang, and H. Qin. 2022. “Effect of laboratory aging on the stiffness and fatigue cracking of asphalt mixture containing bamboo fiber.” J. Cleaner Prod. 333 (Jan): 130120. https://doi.org/10.1016/j.jclepro.2021.130120.
Jin, X., N. Guo, Z. You, L. Wang, Y. Wen, and Y. Tan. 2020. “Rheological properties and micro-characteristics of polyurethane composite modified asphalt.” Constr. Build. Mater. 234 (Jun): 117395. https://doi.org/10.1016/j.conbuildmat.2019.117395.
Joseph, P. V., K. Joseph, S. Thomas, C. Pillai, V. S. Prasad, G. Groeninckx, and M. Sarkissova. 2003. “The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites.” Composites, Part A 34 (3): 253–266. https://doi.org/10.1016/S1359-835X(02)00185-9.
Kalaprasad, G., B. Francis, S. Thomas, C. R. Kumar, C. Pavithran, G. Groeninckx, and S. Thomas. 2004. “Effect of fibre length and chemical modifications on the tensile properties of intimately mixed short sisal/glass hybrid fibre reinforced low density polyethylene composites.” Polym. Int. 53 (11): 1624–1638. https://doi.org/10.1002/pi.1453.
Kalia, S., B. S. Kaith, and I. Kaur. 2009. “Pretreatments of natural fibres and their application as reinforcing material in polymer compostes: A review.” Polym. Eng. Sci. 49 (May): 131–135. https://doi.org/10.1002/pen.21328.
Kaza, S., L. Yao, P. Bhada-Tata, and F. Van Woerden. 2018. What a waste 2.0: A global snapshot of solid waste management to 2050. Washington, DC: World Bank Publications.
Keener, T. J., R. K. Stuart, and T. K. Brown. 2004. “Maleated coupling agents for natural fibre composites.” Composites, Part A 35 (3): 357–362. https://doi.org/10.1016/j.compositesa.2003.09.014.
Khan, M. A., S. Shehrzade, M. Sarwar, U. Chowdhury, and M. Rahman. 2001. “Effect of pretreatment with UV radiation on physical and mechanical properties of photocured jute yarn with 1, 6-hexanediol diacrylate (HDDA).” J. Polym. Environ. 9 (3): 115–124. https://doi.org/10.1023/A:1020450827424.
Khattak, M. J., A. Khattab, H. R. Rizvi, and P. Zhang. 2012. “The impact of carbon nano-fiber modification on asphalt binder rheology.” Constr. Build. Mater. 30 (Sep): 257–264. https://doi.org/10.1016/j.conbuildmat.2011.12.022.
Krishna, A., S. R. M. Kaliyaperumal, and P. Kathirvel. 2022. “Compressive strength and impact resistance of hybrid fiber reinforced concrete exposed to elevated temperatures.” Struct. Concr. 23 (3): 1611–1624. https://doi.org/10.1002/suco.202100566.
Kushwaha, P. K., and R. Kumar. 2011. “Influence of chemical treatments on the mechanical and water absorption properties of bamboo fiber composites.” J. Reinf. Plast. Compos. 30 (1): 73–85. https://doi.org/10.1177/0731684410383064.
Leppert, P., and S. Y. Yu. 1991. “Three-dimensional structures of uterine elastic fibers: Scanning electron microscopic studies.” Connect. Tissue Res. 27 (1): 15–31. https://doi.org/10.3109/03008209109006992.
Li, J., L. Yang, L. He, R. Guo, X. Li, Y. Chen, Y. Muhammad, and Y. Liu. 2023. “Research progresses of fibers in asphalt and cement materials: A review.” J. Road Eng. 3 (1): 35–70. https://doi.org/10.1016/j.jreng.2022.09.002.
Li, Q., Y. Li, and L. Zhou. 2017. “Nanoscale evaluation of multi-layer interfacial mechanical properties of sisal fiber reinforced composites by nanoindentation technique.” Compos. Sci. Technol. 152 (Aug): 211–221. https://doi.org/10.1016/j.compscitech.2017.09.030.
Li, X., L. G. Tabil, and S. Panigrahi. 2007. “Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review.” J. Polym. Environ. 15 (1): 25–33. https://doi.org/10.1007/s10924-006-0042-3.
Li, Y., J. Zhang, Y. He, G. Huang, J. Li, Z. Niu, and B. Gao. 2022a. “A review on durability of basalt fiber reinforced concrete.” Compos. Sci. Technol. 225 (Jul): 109519. https://doi.org/10.1016/j.compscitech.2022.109519.
Li, Z., X. Zhang, C. Fa, Y. Zhang, J. Xiong, and H. Chen. 2020. “Investigation on characteristics and properties of bagasse fibers: Performances of asphalt mixtures with bagasse fibers.” Constr. Build. Mater. 248 (Jul): 118648. https://doi.org/10.1016/j.conbuildmat.2020.118648.
Li, Z. Z., K. Li, W. X. Chen, W. D. Liu, Y. P. Yin, and P. L. Cong. 2022b. “Investigation on the characteristics and effect of plant fibers on the properties of asphalt binders.” Constr. Build. Mater. 338 (Jul): 127652. https://doi.org/10.1016/j.conbuildmat.2022.127652.
Liu, F., B. Pan, J. Bian, and C. Zhou. 2022a. “Experimental investigation on the performance of the asphalt mixture with ceramic fiber.” J. Cleaner Prod. 384 (Jan): 135585. https://doi.org/10.1016/j.jclepro.2022.135585.
Liu, X., and S. Wu. 2011. “Study on the graphite and carbon fiber modified asphalt concrete.” Constr. Build. Mater. 25 (4): 1807–1811. https://doi.org/10.1016/j.conbuildmat.2010.11.082.
Liu, Z., Y. Wang, Y. Meng, Z. Han, and T. Jin. 2022b. “Comprehensive performance evaluation of steel fiber-reinforced asphalt mixture for induction heating.” Int. J. Pavement Eng. 23 (11): 3838–3849. https://doi.org/10.1080/10298436.2021.1923712.
Long, A., X. Sun, Z. Yu, B. Zhang, G. Zhang, P. Huang, and J. Wang. 2022. “Experimental study and mechanism analysis on the basic mechanical properties of hydraulic basalt fiber asphalt concrete.” Mater. Struct. 55 (6): 161. https://doi.org/10.1617/s11527-022-02001-y.
Lou, K. K., P. Xiao, A. H. Kang, Z. G. Wu, B. Li, and P. C. Lu. 2021. “Performance evaluation and adaptability optimization of hot mix asphalt reinforced by mixed lengths basalt fibers.” Constr. Build. Mater. 292 (Jul): 123373. https://doi.org/10.1016/j.conbuildmat.2021.123373.
Maharaj, R., R. Ali, D. Ramlochan, and N. Mohamed. 2019. “Utilization of coir fibre as an asphalt modifier.” Prog. Rubber Plast. Recycl. Technol. 35 (2): 59–74. https://doi.org/10.1177/1477760618795996.
Mahrez, A., M. R. Karim, and H. Y. bt Katman. 2005. “Fatigue and deformation properties of glass fiber reinforced bituminous mixes.” J. East. Asia Soc. Transp. Stud. 6 (Jun): 997–1007. https://doi.org/10.11175/easts.6.997.
Mansourian, A., A. Razmi, and M. Razavi. 2016. “Evaluation of fracture resistance of warm mix asphalt containing jute fibers.” Constr. Build. Mater. 117 (Aug): 37–46. https://doi.org/10.1016/j.conbuildmat.2016.04.128.
Mohammed, M., T. Parry, N. Thom, and J. Grenfell. 2020. “Microstructure and mechanical properties of fibre reinforced asphalt mixtures.” Constr. Build. Mater. 240 (Apr): 117932. https://doi.org/10.1016/j.conbuildmat.2019.117932.
Mohanty, A. K., M. Misra, and G. Hinrichsen. 2000. “Biofibres, biodegradable polymers and biocomposites: An overview.” Macromol. Mater. Eng. 276–277 (1): 1–24. https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1%3C1::AID-MAME1%3E3.0.CO;2-W.
Mohanty, S., S. K. Nayak, S. K. Verma, and S. S. Tripathy. 2004a. “Effect of MAPP as a coupling agent on the performance of jute–PP composites.” J. Reinf. Plast. Compos. 23 (6): 625–637. https://doi.org/10.1177/0731684404032868.
Mohanty, S., S. K. Verma, S. K. Nayak, and S. S. Tripathy. 2004b. “Influence of fiber treatment on the performance of sisal–polypropylene composites.” J. Appl. Polym. Sci. 94 (3): 1336–1345. https://doi.org/10.1002/app.21161.
Morandim-Giannetti, A. A., J. A. M. Agnelli, B. Z. Lanças, R. Magnabosco, S. A. Casarin, and S. H. Bettini. 2012. “Lignin as additive in polypropylene/coir composites: Thermal, mechanical and morphological properties.” Carbohydr. Polym. 87 (4): 2563–2568. https://doi.org/10.1016/j.carbpol.2011.11.041.
Mwaikambo, L. Y., and M. P. Ansell. 1999. “The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement.” Die Angew. Makromol. Chem. 272 (1): 108–116. https://doi.org/10.1002/(SICI)1522-9505(19991201)272:1%3C108::AID-APMC108%3E3.0.CO;2-9.
Mwaikambo, L. Y., and M. P. Ansell. 2002. “Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization.” J. Appl. Polym. Sci. 84 (12): 2222–2234. https://doi.org/10.1002/app.10460.
Nair, K., S. Thomas, and G. Groeninckx. 2001. “Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres.” Compos. Sci. Technol. 61 (16): 2519–2529. https://doi.org/10.1016/S0266-3538(01)00170-1.
Naraganti, S. R., R. M. R. Pannem, and J. Putta. 2019. “Impact resistance of hybrid fibre reinforced concrete containing sisal fibres.” Ain Shams Eng. J. 10 (2): 297–305. https://doi.org/10.1016/j.asej.2018.12.004.
Nechifor, M., F. Tanasă, C.-A. Teacă, and D. Şulea. 2022. “Maleated coupling agents for the surface treatment of natural fibers.” In Surface treatment methods of natural fibres and their effects on biocomposites, 95–123. Sawston, UK: Woodhead Publishing. https://doi.org/10.1016/B978-0-12-821863-1.00005-3.
Oda, S., J. L. Fernandes Jr., and J. S. Ildefonso. 2012. “Analysis of use of natural fibers and asphalt rubber binder in discontinuous asphalt mixtures.” Constr. Build. Mater. 26 (1): 13–20. https://doi.org/10.1016/j.conbuildmat.2011.06.030.
Oladele, I. O., O. S. Michael, A. A. Adediran, O. P. Balogun, and F. O. Ajagbe. 2020. “Acetylation treatment for the batch processing of natural fibers: Effects on constituents, tensile properties and surface morphology of selected plant stem fibers.” Fibers 8 (12): 73. https://doi.org/10.3390/fib8120073.
Pandey, K., and N. Chandrashekar. 2006. “Photostability of wood surfaces esterified by benzoyl chloride.” J. Appl. Polym. Sci. 99 (5): 2367–2374. https://doi.org/10.1002/app.22685.
Park, P., S. El-Tawil, and A. E. Naaman. 2017. “Pull-out behavior of straight steel fibers from asphalt binder.” Constr. Build. Mater. 144 (Feb): 125–137. https://doi.org/10.1016/j.conbuildmat.2017.03.159.
Paul, S., P. Nanda, and R. Gupta. 2003. “PhCOCl-Py/basic alumina as a versatile reagent for benzoylation in solvent-free conditions.” Molecules 8 (4): 374–380. https://doi.org/10.3390/80400374.
Paul, S. A., K. Joseph, G. G. Mathew, L. A. Pothen, and S. Thomas. 2010a. “Influence of polarity parameters on the mechanical properties of composites from polypropylene fiber and short banana fiber.” Composites, Part A 41 (10): 1380–1387. https://doi.org/10.1016/j.compositesa.2010.04.015.
Paul, S. A., C. Oommen, K. Joseph, G. Mathew, and S. Thomas. 2010b. “The role of interface modification on thermal degradation and crystallization behavior of composites from commingled polypropylene fiber and banana fiber.” Polym. Compos. 31 (6): 1113–1123. https://doi.org/10.3390/80400374.
Peña-Pichardo, P., G. Martínez-Barrera, M. Martínez-López, F. Ureña-Núñez, and J. M. L. dos Reis. 2018. “Recovery of cotton fibers from waste Blue-Jeans and its use in polyester concrete.” Constr. Build. Mater. 177 (Aug): 409–416. https://doi.org/10.1016/j.conbuildmat.2018.05.137.
Pirmohammad, S., Y. M. Shokorlou, and B. Amani. 2020. “Laboratory investigations on fracture toughness of asphalt concretes reinforced with carbon and kenaf fibers.” Eng. Fract. Mech. 226 (Jul): 106875. https://doi.org/10.1016/j.engfracmech.2020.106875.
Ramalingam, S., R. Murugasan, and M. Nagabhushana. 2017. “Laboratory performance evaluation of environmentally sustainable sisal fibre reinforced bituminous mixes.” Constr. Build. Mater 148 (Mar): 22–29. https://doi.org/10.1016/j.conbuildmat.2017.05.006.
Roberts, F. L., L. N. Mohammad, and L. Wang. 2002. “History of hot mix asphalt mixture design in the United States.” J. Mater. Civ. Eng. 14 (4): 279–293. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:4(279).
Rout, J., S. Tripathy, S. Nayak, M. Misra, and A. Mohanty. 2001. “Scanning electron microscopy study of chemically modified coir fibers.” J. Appl. Polym. Sci. 79 (7): 1169–1177. https://doi.org/10.1002/1097-4628(20010214)79:7%3C1169::AID-APP30%3E3.0.CO;2-Q.
Saha, P., S. Chowdhury, D. Roy, B. Adhikari, J. K. Kim, and S. Thomas. 2016. “A brief review on the chemical modifications of lignocellulosic fibers for durable engineering composites.” Polym. Bull. 73 (2): 587–620. https://doi.org/10.1007/s00289-015-1489-y.
Saheb, D. N., and J. P. Jog. 1999. “Natural fiber polymer composites: A review.” Adv. Polym. Technol. 18 (4): 351–363. https://doi.org/10.1002/(SICI)1098-2329(199924)18:4%3C351::AID-ADV6%3E3.0.CO;2-X.
Samal, R., S. Acharya, M. Mohanty, and M. Ray. 2001. “FTIR spectra and physico-chemical behavior of vinyl ester participated transesterification and curing of jute.” J. Appl. Polym. Sci. 79 (4): 575–581. https://doi.org/10.1002/1097-4628(20010124)79:4%3C575::AID-APP10%3E3.0.CO;2-U.
Samal, R., S. Rout, B. Panda, and B. Senapati. 1997. “Vinyl-ester-participated transesterification and curing on the physicochemical behavior of Coir-IV.” J. Appl. Polym. Sci. 64 (12): 2283–2291. https://doi.org/10.1002/(SICI)1097-4628(19970620)64:12%3C2283::AID-APP3%3E3.0.CO;2-H.
Shanbara, H. K., F. Ruddock, and W. Atherton. 2018. “A laboratory study of high-performance cold mix asphalt mixtures reinforced with natural and synthetic fibres.” Constr. Build. Mater. 172 (Jun): 166–175. https://doi.org/10.1016/j.conbuildmat.2018.03.252.
Sheng, Y., B. Zhang, Y. Yan, H. Li, Z. Chen, and H. Chen. 2018. “Laboratory investigation on the use of bamboo fiber in asphalt mixtures for enhanced performance.” Arab. J. Sci. Eng. 44 (5): 4629–4638. https://doi.org/10.1007/s13369-018-3490-x.
Sreekala, M. S., M. G. Kumaran, S. Joseph, M. Jacob, and S. Thomas. 2000. “Oil palm fibre reinforced phenol formaldehyde composites: Influence of fibre surface modifications on the mechanical performance.” Appl. Compos. Mater. 7 (5): 295–329. https://doi.org/10.1023/A:1026534006291.
Sun, M., M. Zheng, G. Qu, K. Yuan, Y. Bi, and J. Wang. 2018. “Performance of polyurethane modified asphalt and its mixtures.” Constr. Build. Mater. 191 (Dec): 386–397. https://doi.org/10.1016/j.conbuildmat.2018.10.025.
Taheri-Shakib, J., and A. Al-Mayah. 2023. “A review of microstructure characterization of asphalt mixtures using computed tomography imaging: Prospects for properties and phase determination.” Constr. Build. Mater. 385 (Jul): 131419. https://doi.org/10.1016/j.conbuildmat.2023.131419.
Thakur, M. K., R. K. Gupta, and V. K. Thakur. 2014. “Surface modification of cellulose using silane coupling agent.” Carbohydr. Polym. 111 (Oct): 849–855. https://doi.org/10.1016/j.carbpol.2014.05.041.
Torres, F., and M. Cubillas. 2005. “Study of the interfacial properties of natural fibre reinforced polyethylene.” Polym. Test. 24 (6): 694–698. https://doi.org/10.1016/j.polymertesting.2005.05.004.
Tserki, V., N. E. Zafeiropoulos, F. Simon, and C. Panayiotou. 2005. “A study of the effect of acetylation and propionylation surface treatments on natural fibres.” Composites, Part A 36 (8): 1110–1118. https://doi.org/10.1016/j.compositesa.2005.01.004.
Valadez-Gonzalez, A., J. Cervantes-Uc, R. Olayo, and P. Herrera-Franco. 1999. “Chemical modification of henequen fibers with an organosilane coupling agent.” Composites, Part B 30 (3): 321–331. https://doi.org/10.1016/S1359-8368(98)00055-9.
Wang, R., X. J. Gao, J. Y. Zhang, and G. S. Han. 2018. “Spatial distribution of steel fibers and air bubbles in UHPC cylinder determined by X-ray CT method.” Constr. Build. Mater. 160 (May): 39–47. https://doi.org/10.1016/j.conbuildmat.2017.11.030.
Wang, W., Y. Cheng, H. Chen, G. Tan, Z. Lv, and Y. Bai. 2019. “Study on the performances of waste crumb rubber modified asphalt mixture with eco-friendly diatomite and basalt fiber.” Sustainability 11 (19): 5282. https://doi.org/10.3390/su11195282.
Wang, X., B. Dong, and J. Wang. 2020. “Road performance of calcium sulfate whisker and polyester fiber composite-modified asphalt mixture.” Adv. Mater. Sci. Eng. 2020 (Sep): 1–7. https://doi.org/10.1155/2020/1231396.
Wang, Z., J. Gao, T. Ai, and P. Zhao. 2014. “Laboratory investigation on microwave deicing function of micro surfacing asphalt mixtures reinforced by carbon fiber.” J. Test. Eval. 42 (2): 20130118. https://doi.org/10.1520/JTE20130118.
Wu, B., W. Meng, J. Xia, and P. Xiao. 2022a. “Influence of basalt fibers on the crack resistance of asphalt mixtures and mechanism analysis.” Materials 15 (3): 744. https://doi.org/10.3390/ma15030744.
Wu, M., R. Li, Y. Zhang, J. Wei, Y. Lv, and X. Ding. 2014. “Reinforcement effect of fiber and deoiled asphalt on high viscosity rubber/SBS modified asphalt mortar.” Pet. Sci. 11 (3): 454–459. https://doi.org/10.1007/s12182-014-0361-2.
Wu, S. H., A. Haji, and I. Adkins. 2022b. “State of art review on the incorporation of fibres in asphalt pavements.” Road Mater. Pavement Des. 24 (6): 1559–1594. https://doi.org/10.1080/14680629.2022.2092022.
Wu, S. P., G. Liu, L. T. Mo, Z. Chen, and Q. S. Ye. 2006. “Effect of fiber types on relevant properties of porous asphalt.” Trans. Nonferrous Met. Soc. 16 (Jun): S791–S795. https://doi.org/10.1016/S1003-6326(06)60302-6.
Xia, C., C. Wu, K. Liu, and K. Jiang. 2021. “Study on the durability of bamboo fiber asphalt mixture.” Materials 14 (7): 1667. https://doi.org/10.3390/ma14071667.
Xing, X., S. Chen, Y. Li, J. Pei, J. Zhang, Y. Wen, R. Li, and S. Cui. 2020a. “Effect of different fibers on the properties of asphalt mastics.” Constr. Build. Mater. 262 (Aug): 120005. https://doi.org/10.1016/j.conbuildmat.2020.120005.
Xing, X., T. Liu, J. Pei, J. Huang, R. Li, J. Zhang, and Y. Tian. 2020b. “Effect of fiber length and surface treatment on the performance of fiber-modified binder.” Constr. Build. Mater. 248 (Mar): 118702. https://doi.org/10.1016/j.conbuildmat.2020.118702.
Xing, X., J. Pei, R. Li, and X. Tan. 2019. “Effect and mechanism of calcium carbonate whisker on asphalt binder.” Mater. Res. Express 6 (5): 055306. https://doi.org/10.1088/2053-1591/aafa2c.
Xu, Q. W., H. X. Chen, and J. A. Prozzi. 2010. “Performance of fiber reinforced asphalt concrete under environmental temperature and water effects.” Constr. Build. Mater. 24 (10): 2003–2010. https://doi.org/10.1016/j.conbuildmat.2010.03.012.
Yang, L., D. Xi, P. Jianzhong, L. Rui, Z. Jiupeng, and L. Tao. 2020. “Investigation on preparation and rheological properties of grafted organic long-chain carbonitride (CNDC) modified asphalt.” Constr. Build. Mater. 262 (Nov): 120539. https://doi.org/10.1016/j.conbuildmat.2020.120539.
You, Z., J. Mills-Beale, J. M. Foley, S. Roy, G. M. Odegard, Q. Dai, and S. W. Goh. 2011. “Nanoclay-modified asphalt materials: Preparation and characterization.” Constr. Build. Mater. 25 (2): 1072–1078. https://doi.org/10.1016/j.conbuildmat.2010.06.070.
Yue, Y., M. Abdelsalam, A. Khater, and M. Ghazy. 2022. “A comparative life cycle assessment of asphalt mixtures modified with a novel composite of diatomite powder and lignin fiber.” Constr. Build. Mater. 323 (Aug): 126608. https://doi.org/10.1016/j.conbuildmat.2022.126608.
Yusof, N. I., and M. E. Abdullah. 2022. “Overview of potential application of pineapple leaves fibre (PALF) in asphalt mixture focusing on fatigue resistance.” Recent Trends Civ. Eng. Built Environ. 3 (1): 833–843.
Zhang, H., X. Wu, D. Cao, Y. Zhang, and M. He. 2013. “Effect of linear low density-polyethylene grafted with maleic anhydride (LLDPE-g-MAH) on properties of high density-polyethylene/styrene–butadiene–styrene (HDPE/SBS) modified asphalt.” Constr. Build. Mater. 47 (May): 192–198. https://doi.org/10.1016/j.conbuildmat.2013.04.047.
Zhao, K., S. Xue, P. Zhang, Y. Tian, and P. Li. 2019. “Application of natural plant fibers in cement-based composites and the influence on mechanical properties and mass transport.” Materials 12 (21): 3498. https://doi.org/10.3390/ma12213498.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 3March 2024

History

Published online: Dec 26, 2023
Published in print: Mar 1, 2024
Discussion open until: May 26, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Mingliang Zhang, Ph.D. [email protected]
Ph.D. Candidate, Key Laboratory of Highway Engineering in Special Region of Ministry of Education, Chang’an Univ., Middle Section of Nanerhuan Rd., Xi’an, Shaanxi 710064, China. Email: [email protected]
Jiupeng Zhang [email protected]
Professor, Key Laboratory of Highway Engineering in Special Region of Ministry of Education, Chang’an Univ., Middle Section of Nanerhuan Rd., Xi’an, Shaanxi 710064, China (corresponding author). Email: [email protected]
Lei Lyu, Ph.D. [email protected]
Lecturer, Key Laboratory of Highway Engineering in Special Region of Ministry of Education, Chang’an Univ., Middle Section of Nanerhuan Rd., Xi’an, Shaanxi 710064, China. Email: [email protected]
Yang Li, Ph.D. [email protected]
Ph.D. Candidate, Key Laboratory of Highway Engineering in Special Region of Ministry of Education, Chang’an Univ., Middle Section of Nanerhuan Rd., Xi’an, Shaanxi 710064, China. Email: [email protected]
Xiaoyong Tan, Ph.D. [email protected]
Ph.D. Candidate, Key Laboratory of Highway Engineering in Special Region of Ministry of Education, Chang’an Univ., Middle Section of Nanerhuan Rd., Xi’an, Shaanxi 710064, China. Email: [email protected]
Zhe Li, Ph.D. [email protected]
Ph.D. Candidate, Key Laboratory of Highway Engineering in Special Region of Ministry of Education, Chang’an Univ., Middle Section of Nanerhuan Rd., Xi’an, Shaanxi 710064, China; Dept. of Civil Engineering, School of Engineering, Univ. of Birmingham, Edgbaston B15 2TT, UK. Email: [email protected]
Jianzhong Pei [email protected]
Professor, Key Laboratory of Highway Engineering in Special Region of Ministry of Education, Chang’an Univ., Middle Section of Nanerhuan Rd., Xi’an, Shaanxi 710064, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share