Technical Papers
Nov 25, 2023

Experimental Evaluation of Microvoid Characteristics and Relationship with Stress and Strain for Ductile Fracture

Publication: Journal of Materials in Civil Engineering
Volume 36, Issue 2

Abstract

The present study aims to characterize the microvoid sizes and their statistical distribution at the instance of fracture from the fracture surface of steel specimens. To this end, uniaxial tensile tests are conducted on circumferentially notched specimens made of 17-4 PH stainless steel and ASTM A992 high-strength structural steel. The fracture surfaces of the steel test specimens are studied using a digital microscope to quantify the statistical microvoid size distribution. Furthermore, the evaluated microvoid sizes of different fracture locations are mapped with the stress and strain fields. Finally, based on the experimentally evaluated microvoid sizes, an uncoupled fracture model was adopted to predict the fracture displacement and location of ductile fracture initiation in the fractured specimens. The fracture displacements predicted using the calibrated uncoupled fracture model are within the acceptable limit. The fracture initiation locations coincided with the peak strain-averaged stress triaxiality in the fracture specimens.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The research presented in this presentation was supported by the National Science Foundation under CAREER Award #2045538. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References

AlMangour, B., and J.-M. Yang. 2016. “Improving the surface quality and mechanical properties by shot-peening of 17-4 stainless steel fabricated by additive manufacturing.” Mater. Des. 110 (Nov): 914–924. https://doi.org/10.1016/j.matdes.2016.08.037.
Argon, A. S., and J. Im. 1975. “Separation of second phase particles in spheroidized 1045 steel, Cu-0.6pct Cr alloy, and maraging steel in plastic straining.” Metall. Trans. A 6 (Apr): 839–851. https://doi.org/10.1007/BF02672307.
ASTM. 2022. Standard specification for structural steel shapes. ASTM A992. West Conshohocken, PA: ASTM.
Babout, L., E. Maire, J.-Y. Buffière, and R. Fougères. 2001. “Characterization by X-ray computed tomography of decohesion, porosity growth and coalescence in model metal matrix composites.” Acta Mater. 49 (11): 2055–2063. https://doi.org/10.1016/S1359-6454(01)00104-5.
Babout, L., E. Maire, and R. Fougères. 2004. “Damage initiation in model metallic materials: X-ray tomography and modelling.” Acta Mater. 52 (8): 2475–2487. https://doi.org/10.1016/j.actamat.2004.02.001.
Bai, Y., and T. Wierzbicki. 2009. “Application of extended Mohr–Coulomb criterion to ductile fracture.” Int. J. Fract. 161 (1): 1–20. https://doi.org/10.1007/s10704-009-9422-8.
Bates, D., and D. Watts. 1988. Nonlinear regression analysis and its applications. New York: Wiley.
Benzerga, A. A., and J. Besson. 2001. “Plastic potentials for anisotropic porous solids.” Eur. J. Mech. A Solids 20 (3): 397–434. https://doi.org/10.1016/S0997-7538(01)01147-0.
Benzerga, A. A., J. Besson, and A. Pineau. 2004. “Anisotropic ductile fracture.” Acta Mater. 52 (15): 4623–4638. https://doi.org/10.1016/j.actamat.2004.06.020.
Benzerga, A. A., and J.-B. Leblond. 2010. “Ductile fracture by void growth to coalescence.” In Advances in Applied Mechanics, 169–305. Amsterdam, Netherlands: Elsevier.
Beremin, F. M. 1981. “Cavity formation from inclusions in ductile fracture of A508 steel.” Metall. Trans. A 12 (May): 723–731. https://doi.org/10.1007/BF02648336.
Besson, J., L. Devillers-Guerville, and A. Pineau. 2000. “Modeling of scatter and size effect in ductile fracture: Application to thermal embrittlement of duplex stainless steels.” Eng. Fract. Mech. 67 (2): 169–190. https://doi.org/10.1016/S0013-7944(00)00056-4.
Bjorhovde, R. 2004. “Development and use of high performance steel.” J. Constr. Steel Res. 60 (3): 393–400. https://doi.org/10.1016/S0143-974X(03)00118-4.
Bond, A. D., and G. D. Edgecombe. 2021. “Phylogenetic response of naraoiid arthropods to early–middle Cambrian environmental change.” Palaeontology 64 (1): 161–177. https://doi.org/10.1111/pala.12516.
Chae, D., and D. A. Koss. 2004. “Damage accumulation and failure of HSLA-100 steel.” Mater. Sci. Eng., A 366 (2): 299–309. https://doi.org/10.1016/j.msea.2003.08.040.
Cox, T. B., and J. R. Low. 1974. “An investigation of the plastic fracture of AISI 4340 and 18 Nickel-200 grade maraging steels.” Metall. Mater. Trans. B 5 (6): 1457–1470. https://doi.org/10.1007/BF02646633.
Danas, K., and P. Ponte Castañeda. 2012. “Influence of the Lode parameter and the stress triaxiality on the failure of elasto-plastic porous materials.” Int. J. Solids Struct. 49 (11–12): 1325–1342. https://doi.org/10.1016/j.ijsolstr.2012.02.006.
Dassault Systemes. 2019. ABAQUS/standard analysis user’s manual. Providence, RI: Dassault Systemes.
d’Escatha, Y., and J. Devaux. 1979. “Numerical study of initiation, stable crack growth, and maximum load, with a ductile fracture criterion based on the growth of holes.” In Elastic-plastic fracture, edited by J. Landes, J. Begley, and G. Clarke, 229–248. West Conshohocken, PA: ASTM.
Eshelby, J. D. 1957. “The determination of the elastic field of an ellipsoidal inclusion, and related problems.” Proc. R. Soc. London, Ser. A 241 (1226): 376–396. https://doi.org/10.1098/rspa.1957.0133.
Felix, K., S. Tobias, H. Jan, S. Nicolas, and M. Michael. 2021. “Measurements of transepithelial electrical resistance (TEER) are affected by junctional length in immature epithelial monolayers.” Histochem. Cell Biol. 156 (6): 609–616. https://doi.org/10.1007/s00418-021-02026-4.
Floreen, S., and H. W. Hayden. 1970. “Some observations of void growth during the tensile deformation of a high strength steel.” Scr. Metall. 4 (2): 87–94. https://doi.org/10.1016/0036-9748(70)90170-5.
Garrison, W. M., and N. R. Moody. 1987. “Ductile fracture.” J. Phys. Chem. Solids 48 (11): 1035–1074. https://doi.org/10.1016/0022-3697(87)90118-1.
Giglio, M., A. Manes, and F. Viganò. 2012. “Ductile fracture locus of Ti–6Al–4V titanium alloy.” Int. J. Mech. Sci. 54 (1): 121–135. https://doi.org/10.1016/j.ijmecsci.2011.10.003.
Gologanu, M., J.-B. Leblond, and J. Devaux. 1993. “Approximate models for ductile metals containing non-spherical voids—Case of axisymmetric prolate ellipsoidal cavities.” J. Mech. Phys. Solids 41 (11): 1723–1754. https://doi.org/10.1016/0022-5096(93)90029-F.
Gologanu, M., J.-B. Leblond, and J. Devaux. 1994. “Approximate models for ductile metals containing nonspherical voids—Case of axisymmetric oblate ellipsoidal cavities.” J. Eng. Mater. Technol. 116 (3): 290–297. https://doi.org/10.1115/1.2904290.
Gonzalez-Nino, D., T. Strasser, and G. S. Prinz. 2021. “Ultra low-cycle fatigue behavior comparison between additively manufactured and rolled 17-4 PH (AISI 630) stainless steels.” Metals 11 (11): 1726. https://doi.org/10.3390/met11111726.
Goods, S. H., and L. M. Brown. 1983. “The nucleation of cavities by plastic deformation.” In Perspectives in creep fracture, 71–85. Amsterdam, Netherlands: Elsevier.
Gurson, A. L. 1977. “Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media.” J. Eng. Mater. Technol. 99 (1): 2–15. https://doi.org/10.1115/1.3443401.
Gyarmati, J., B. Maróti, Z. Kasztovszky, B. Döncző, Z. Szikszai, L. E. Aradi, J. Mihály, G. Koch, and V. Szilágyi. 2022. “Hidden behind the mask: An authentication study on the Aztec mask of the Museum of Ethnography, Budapest, Hungary.” Forensic Sci. Int. 333 (Apr): 111236. https://doi.org/10.1016/j.forsciint.2022.111236.
Hancock, J. W., and A. C. Mackenzie. 1976. “On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states.” J. Mech. Phys. Solids 24 (2): 147–160. https://doi.org/10.1016/0022-5096(76)90024-7.
Hirose, R., H. Miyazaki, R. Bandou, N. Watanabe, T. Yoshida, T. Daidoji, Y. Itoh, and T. Nakaya. 2022. “Stability of SARS-CoV-2 and influenza virus varies across different paper types.” J. Infect. Chemother. 28 (2): 252–256. https://doi.org/10.1016/j.jiac.2021.11.006.
Hsiao, C. N., C. S. Chiou, and J. R. Yang. 2002. “Aging reactions in a 17-4 PH stainless steel.” Mater. Chem. Phys. 74 (2): 134–142. https://doi.org/10.1016/S0254-0584(01)00460-6.
Hu, G., M. A. Morovat, J. Lee, E. Schell, and M. Engelhardt. 2009. “Elevated temperature properties of ASTM A992 steel.” In Structures Congress 2009: Don’t Mess with Structural Engineers: Expanding Our Role, 1–10. Reston, VA: ASCE.
Jablokov, V., D. M. Goto, and D. A. Koss. 2001. “Damage accumulation and failure of HY-100 steel.” Metall. Mater. Trans. A 32 (12): 2985–2994. https://doi.org/10.1007/s11661-001-0173-z.
Jia, L.-J., and H. Kuwamura. 2014. “Ductile fracture simulation of structural steels under monotonic tension.” J. Struct. Eng. 140 (5): 04013115. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000944.
Kanvinde, A. M., and G. G. Deierlein. 2006. “The void growth model and the stress modified critical strain model to predict ductile fracture in structural steels.” J. Struct. Eng. 132 (12): 1907–1918. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:12(1907).
Kiran, R., and K. Khandelwal. 2013. “A micromechanical model for ductile fracture prediction in ASTM A992 steels.” Eng. Fract. Mech. 102 (Apr): 101–117. https://doi.org/10.1016/j.engfracmech.2013.02.021.
Kiran, R., and K. Khandelwal. 2014a. “Experimental studies and models for ductile fracture in ASTM A992 steels at high triaxiality.” J. Struct. Eng. 140 (2): 04013044. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000828.
Kiran, R., and K. Khandelwal. 2014b. “A triaxiality and Lode parameter dependent ductile fracture criterion.” Eng. Fract. Mech. 128 (Sep): 121–138. https://doi.org/10.1016/j.engfracmech.2014.07.010.
Kiss, P., L. Jonkers, N. Hudáčková, R. T. Reuter, B. Donner, G. Fischer, and M. Kucera. 2021. “Determinants of planktonic foraminifera calcite flux: Implications for the prediction of intra- and inter-annual pelagic carbonate budgets.” Global Biogeochem. Cycles 35 (9): e2020GB006748. https://doi.org/10.1029/2020GB006748.
Landron, C., E. Maire, O. Bouaziz, J. Adrien, L. Lecarme, and A. Bareggi. 2011. “Validation of void growth models using X-ray microtomography characterization of damage in dual phase steels.” Acta Mater. 59 (20): 7564–7573. https://doi.org/10.1016/j.actamat.2011.08.046.
Leksycki, K., and J. B. Królczyk. 2021. “Comparative assessment of the surface topography for different optical profilometry techniques after dry turning of Ti6Al4V titanium alloy.” Measurement 169 (Feb): 108378. https://doi.org/10.1016/j.measurement.2020.108378.
Le Roy, G., J. D. Embury, G. Edwards, and M. F. Ashby. 1981. “A model of ductile fracture based on the nucleation and growth of voids.” Acta Metall. 29 (8): 1509–1522. https://doi.org/10.1016/0001-6160(81)90185-1.
Maire, E., C. Bordreuil, L. Babout, and J. Boyer. 2005. “Damage initiation and growth in metals. Comparison between modelling and tomography experiments.” J. Mech. Phys. Solids 53 (11): 2411–2434. https://doi.org/10.1016/j.jmps.2005.06.005.
Maire, E., J.-Y. Buffière, L. Salvo, J. J. Blandin, W. Ludwig, and J. M. Létang. 2001. “On the application of X-ray microtomography in the field of materials science.” Adv. Eng. Mater. 3 (8): 539–546. https://doi.org/10.1002/1527-2648(200108)3:8%3C539::AID-ADEM539%3E3.0.CO;2-6.
Marino, B., F. Mudry, and A. Pineau. 1985. “Experimental study of cavity growth in ductile rupture.” Eng. Fract. Mech. 22 (6): 989–996. https://doi.org/10.1016/0013-7944(85)90038-4.
Morgeneyer, T. F., M. J. Starink, and I. Sinclair. 2008. “Evolution of voids during ductile crack propagation in an aluminium alloy sheet toughness test studied by synchrotron radiation computed tomography.” Acta Mater. 56 (8): 1671–1679. https://doi.org/10.1016/j.actamat.2007.12.019.
Mu, L., Y. Zang, Y. Wang, X. L. Li, and P. M. A. Stemler. 2018. “Phenomenological uncoupled ductile fracture model considering different void deformation modes for sheet metal forming.” Int. J. Mech. Sci. 141 (Jun): 408–423. https://doi.org/10.1016/j.ijmecsci.2018.04.025.
Papasidero, J., V. Doquet, and D. Mohr. 2015. “Ductile fracture of aluminum 2024-T351 under proportional and non-proportional multi-axial loading: Bao–Wierzbicki results revisited.” Int. J. Solids Struct. 69–70 (Sep): 459–474. https://doi.org/10.1016/j.ijsolstr.2015.05.006.
Pardoen, T., and F. Delannay. 1998a. “Assessment of void growth models from porosity measurements in cold-drawn copper bars.” Metall. Mater. Trans. A 29 (7): 1895–1909. https://doi.org/10.1007/s11661-998-0014-4.
Pardoen, T., and F. Delannay. 1998b. “The coalescence of voids in prestrained notched round copper bars.” Fatigue Fract. Eng. Mater. Struct. 21 (12): 1459–1472. https://doi.org/10.1046/j.1460-2695.1998.00123.x.
Pardoen, T., I. Doghri, and F. Delannay. 1998. “Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars.” Acta Mater. 46 (2): 541–552. https://doi.org/10.1016/S1359-6454(97)00247-4.
Paredes, M., V. Grolleau, and T. Wierzbicki. 2020. “On ductile fracture of 316L stainless steels at room and cryogenic temperature level: An engineering approach to determine material parameters.” Materialia 10 (May): 100624. https://doi.org/10.1016/j.mtla.2020.100624.
Psioda, J. A., and J. R. Low Jr. 1977. The effect of microstructure and strength on the fracture toughness of an 18 Ni, 300 grade maraging steel. Pittsburgh: Carnegie Mellon Univ.
Qiang, B., Y. Li, C. Yao, and X. Wang. 2018. “Effect of shot peening coverage on residual stress field and surface roughness.” Surf. Eng. 34 (12): 938–945. https://doi.org/10.1080/02670844.2017.1391939.
Qiang, B., and X. Wang. 2019. “Ductile crack growth behaviors at different locations of a weld joint for an X80 pipeline steel: A numerical investigation using GTN models.” Eng. Fract. Mech. 213 (May): 264–279. https://doi.org/10.1016/j.engfracmech.2019.04.009.
Rice, J. R., and D. M. Tracey. 1969. “On the ductile enlargement of voids in triaxial stress fields*.” J. Mech. Phys. Solids 17 (3): 201–217. https://doi.org/10.1016/0022-5096(69)90033-7.
Sajid, H. U., and R. Kiran. 2018. “Influence of high stress triaxiality on mechanical strength of ASTM A36, ASTM A572 and ASTM A992 steels.” Constr. Build. Mater. 176 (Jul): 129–134. https://doi.org/10.1016/j.conbuildmat.2018.05.018.
Sajid, H. U., D. L. Naik, and R. Kiran. 2020. “Microstructure–mechanical property relationships for post-fire structural steels.” J. Mater. Civ. Eng. 32 (6): 04020133. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003190.
Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. “NIH image to ImageJ: 25 years of image analysis.” Nat. Methods 9 (7): 671–675. https://doi.org/10.1038/nmeth.2089.
Stoudt, M. R., R. E. Ricker, E. A. Lass, and L. E. Levine. 2017. “Influence of postbuild microstructure on the electrochemical behavior of additively manufactured 17-4 PH stainless steel.” JOM 69 (3): 506–515. https://doi.org/10.1007/s11837-016-2237-y.
Struzikiewicz, G., and A. Sioma. 2020. “Evaluation of surface roughness and defect formation after the machining of sintered aluminum alloy AlSi10Mg.” Materials 13 (7): 1662. https://doi.org/10.3390/ma13071662.
Thomason, P. 1998. “A view on ductile-fracture modelling.” Fatigue Fract. Eng. Mater. Struct. 21 (9): 1105–1122. https://doi.org/10.1046/j.1460-2695.1998.00077.x.
Tipper, C. F. 1949. “The fracture of metals.” Metallurgia 39 (231): 133–137.
Tvergaard, V. 1982. “On localization in ductile materials containing spherical voids.” Int. J. Fract. 18 (4): 237–252. https://doi.org/10.1007/BF00015686.
Tvergaard, V., and A. Needleman. 1984. “Analysis of the cup-cone fracture in a round tensile bar.” Acta Metall. 32 (1): 157–169. https://doi.org/10.1016/0001-6160(84)90213-X.
Weck, A., D. S. Wilkinson, H. Toda, and E. Maire. 2006. “2D and 3D visualization of ductile fracture.” Adv. Eng. Mater. 8 (6): 469–472. https://doi.org/10.1002/adem.200600034.
Wen, H., and H. Mahmoud. 2016. “New model for ductile fracture of metal alloys. I: Monotonic loading.” J. Eng. Mech. 142 (2): 04015088. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001009.
Wilsdorf, H. G. F. 1975. “Void initiation, growth, and coalescence in ductile fracture of metals.” J. Electron. Mater. 4 (5): 791–809. https://doi.org/10.1007/BF02660172.
Xu, W., H. Wu, H. Ma, and D. Shan. 2018. “Damage evolution and ductile fracture prediction during tube spinning of titanium alloy.” Int. J. Mech. Sci. 135 (Jan): 226–239. https://doi.org/10.1016/j.ijmecsci.2017.11.024.
Youssef, G. 2022. “Characterization of polymers.” Chap. 11 in Applied mechanics of polymers, edited by G. Youssef, 273–299. Amsterdam, Netherlands: Elsevier.
Zhang, K. S., J. B. Bai, and D. Fran. 2001. “Numerical analysis of the influence of the Lode parameter on void growth.” Int. J. Solids Struct. 38 (32–33): 5847–5856. https://doi.org/10.1016/S0020-7683(00)00391-7.
Zhu, Y., and M. D. Engelhardt. 2018. “Prediction of ductile fracture for metal alloys using a shear modified void growth model.” Eng. Fract. Mech. 190 (Mar): 491–513. https://doi.org/10.1016/j.engfracmech.2017.12.042.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 2February 2024

History

Received: Mar 27, 2023
Accepted: Jul 28, 2023
Published online: Nov 25, 2023
Published in print: Feb 1, 2024
Discussion open until: Apr 25, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Graduate Research Assistant, School of Sustainable Engineering and the Built Environment, Arizona State Univ., Tempe, AZ 85281. ORCID: https://orcid.org/0009-0003-6478-1336. Email: [email protected]
Associate Professor, School of Sustainable Engineering and the Built Environment, Arizona State Univ., Tempe, AZ 85281 (corresponding author). ORCID: https://orcid.org/0000-0001-8300-0767. Email: [email protected]
Professor, Dept. of Mechanical Engineering, North Dakota State Univ., Fargo, ND 58105. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Deciphering the Fracture Initiation Mechanism in Additive-Manufactured 17-4 Steel, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-17445, 36, 6, (2024).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share