Case Studies
Jan 27, 2024

Influence of Cassava Peels Biosolid Addition on the Technological Properties, Thermal Performance, and Microstructural Characteristics of Fired Clay Bricks

Publication: Journal of Materials in Civil Engineering
Volume 36, Issue 4

Abstract

Constant advancement of the frontier of earthen building resources to meet the demands of society has been reported and reviewed down the ages. Lately, dwindling reserves of pristine clay mineral resources and the quest for better mechanical strength and weather resistance in building materials with good thermal properties have necessitated innovation in the fired clay brick (FCB) production sector. This study is aimed at optimizing the physico-mechanical properties of FCBs to improve thermal insulation using cassava peel (CP) biosolids. Raw materials were extensively examined for their physical, geotechnical, chemical, molecular, mineral, and thermal characteristics. Modeled bricks containing various percentages of CP were prepared by molding at 10-MPa compaction. The results of tests performed indicated that linear shrinkage, weight loss on ignition, and water absorption increased at 4%–16% by weight of CP. Bulk density decreased by 28.78% at 16% by weight CP and 1,000°C firing. Compressive strength decreased by 72% while thermal insulation improved by 27%. These results suggest that CP biosolid can enhance the thermal performance of FCBs. Consequently, mechanisms of CP biosolid recycling to improve the thermal performance of bricks are recommended.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors acknowledge the support of the staff and technicians of Centralized Instrumentation Service Laboratory (CISL), Annamalai University, Tamil Nadu, for their technical assistance.
Author contributions: Aaron N. Adazabra: conceptualization, methodology, investigation, and writing of original draft; G. Viruthagiri: conceptualization, methodology, and writing/review/editing; and Vincent Banyibala: conceptualization, methodology, and writing/review/editing.

References

Abbas, S., M. A. Saleem, S. M. S. Kazmi, and M. J. Munir. 2017. “Production of sustainable clay bricks using waste fly ash: Mechanical and durability properties.” J. Build. Eng. 14 (Nov): 7–14. https://doi.org/10.1016/j.jobe.2017.09.008.
ABNT (Brazilian National Standards Organization). 1984. Soil: Granulometric analysis. NBR 7181. State of Rio de Janeiro, Brazil: Brazilian Association of Technical Standards.
Acchar, W., E. J. V. Dultra, and A. M. Segadães. 2013. “Untreated coffee husk ashes used as flux in ceramic tiles.” Appl. Clay Sci. 75 (May): 141–147. https://doi.org/10.1016/j.clay.2013.03.009.
Adazabra, A. N., G. Viruthagiri, and P. Kannan. 2017a. “Influence of spent shea waste addition on the technological properties of fired clay bricks.” J. Build. Eng. 11 (May): 166–177. https://doi.org/10.1016/j.jobe.2017.04.006.
Adazabra, A. N., G. Viruthagiri, and R. Ravisankar. 2016. “Cleaner production in the shea industry via the recovery of spent shea waste for reuse in the construction sector.” J. Cleaner Prod. 122 (May): 335–344. https://doi.org/10.1016/j.jclepro.2016.02.045.
Akinyele, J. O., U. T. Igba, T. O. Ayorinde, and P. O. Jimoh. 2020. “Structural efficiency of burnt clay bricks containing waste crushed glass and polypropylene granules.” Case Stud. Constr. Mater. 13 (Dec): e00404. https://doi.org/10.1016/j.cscm.2020.e00404.
Alonso-Santurde, R., A. Andrés, J. R. Viguri, M. Raimondo, G. Guarini, C. Zanelli, and M. Dondi. 2011. “Technological behaviour and recycling potential of spent foundry sands in clay bricks.” J. Environ. Manage. 92 (3): 994–1002. https://doi.org/10.1016/j.jenvman.2010.11.004.
Alonso-Santurde, R., A. Coz, J. R. Viguri, and A. Andrés. 2012. “Recycling of foundry by-products in the ceramic industry: Green and core sand in clay bricks.” Constr. Build. Mater. 27 (1): 97–106. https://doi.org/10.1016/j.conbuildmat.2011.08.022.
Aouba, L., C. Bories, M. Coutand, B. Perrin, and H. Lemercier. 2016. “Properties of fired clay bricks with incorporated biomasses: Cases of olive stone flour and wheat straw residues.” Constr. Build. Mater. 102 (Jan): 7–13. https://doi.org/10.1016/j.conbuildmat.2015.10.040.
Arroyo, F., Y. Luna-Galiano, C. Leiva, L. F. Vilches, and C. Fernández-Pereira. 2020. “Environmental risks and mechanical evaluation of recycling red mud in bricks.” Environ. Res. 186 (Nov): 109537. https://doi.org/10.1016/j.envres.2020.109537.
Arsenović, M., Z. Radojević, Ž. Jakšić, and L. Pezo. 2015. “Mathematical approach to application of industrial wastes in clay brick production—Part II: Optimization.” Ceram. Int. 41 (3): 4899–4905. https://doi.org/10.1016/j.ceramint.2014.12.050.
ASTM. 2006. Standard specification for load bearing concrete masonry units. ASTM C90. West Conshohocken, PA: ASTM.
ASTM. 2009. Standard test methods for chemical analysis of materials. ASTM C114-09-2014. West Conshohocken, PA: ASTM.
ASTM. 2018. Standard test method for drying and firing shrinkages of ceramic whiteware clays. ASTM C326-09. West Conshohocken, PA: ASTM.
ASTM. 2022. Standard test methods for apparent porosity, water absorption, apparent specific gravity, and bulk density of burned refractory brick and shapes by boiling water. ASTM C20-00. West Conshohocken, PA: ASTM.
Barbieri, L., F. Andreola, I. Lancellotti, and R. Taurino. 2013. “Management of agricultural biomass wastes: Preliminary study on characterization and valorisation in clay matrix bricks.” Waste Manage. 33 (11): 2307–2315. https://doi.org/10.1016/j.wasman.2013.03.014.
Bayitse, R., F. Tornyie, and A.-B. Bjerre. 2018. Cassava cultivation process potential uses Ghana, 47–75. Hauppauge, NY: Nova Science Publishers.
Bonet-Martínez, E., L. Pérez-Villarejo, D. Eliche-Quesada, and E. Castro. 2018. “Manufacture of sustainable clay bricks using waste from secondary aluminum recycling as raw material.” Materials 11 (12): 2439. https://doi.org/10.3390/ma11122439.
Bories, C., M. E. Borredon, E. Vedrenne, and G. Vilarem. 2014. “Development of eco-friendly porous fired clay bricks using pore-forming agents: A review.” J. Environ. Manage. 143 (May): 186–196. https://doi.org/10.1016/j.jenvman.2014.05.006.
BSI (British Standards Institution). 1990. Methods of test for soils for civil engineering purposes. Part 3: Chemical and electro-chemical tests. BS 1377-3. London: BSI.
Caglar, B. 2012. “Structural characterization of kaolinite-nicotinamide intercalation composite.” J. Mol. Struct. 1020 (May): 48–55. https://doi.org/10.1016/j.molstruc.2012.03.061.
Calabria, J. A., W. L. Vasconcelos, and A. R. Boccaccini. 2009. “Microstructure and chemical degradation of adobe and clay bricks.” Ceram. Int. 35 (Mar): 665–671. https://doi.org/10.1016/j.ceramint.2008.01.026.
CEN (European Committee for Standardization). 2000. Methods of test for masonry units. Part 13: Determination of net and gross dry density of masonry units (except for natural stone). EN 772-13. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 2012a. Sludge, treated biowaste, soil and waste—Determination of loss on ignition. LST EN 15935. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 2012b. Soil improvers and growing media—Determination of physical properties—Dry bulk density, air volume, water volume, shrinkage value and total pore space. LST EN 13041. Brussels, Belgium: CEN.
Channiwala, S. A., and P. P. Parikh. 2002. “A unified correlation for estimating HHV of solid, liquid and gaseous fuels.” Fuel 81 (8): 1051–1063. https://doi.org/10.1016/S0016-2361(01)00131-4.
Chen, C., and H. Wu. 2018. “Lightweight bricks manufactured from ground soil, textile sludge, and coal ash.” Environ. Technol. 39 (11): 1359–1367. https://doi.org/10.1080/09593330.2017.1329353.
Chen, Y., Y. Zhang, T. Chen, Y. Zhao, and S. Bao. 2011. “Preparation of eco-friendly construction bricks from hematite tailings.” Constr. Build. Mater. 25 (4): 2107–2111. https://doi.org/10.1016/j.conbuildmat.2010.11.025.
Chinese Standard. 2003. Fired common bricks. GB/T 5101. Beijing: China Standard Press.
Clins, N., C. Bopda, B. Kenmeugne, and T. Tchotang. 2020. “The influence of burnt clay brick waste addition on recycled brick.” Int. J. Pavement Res. Technol. 14 (4): 482–486. https://doi.org/10.1007/s42947-020-1141-6.
Cruz-Yusta, M., I. Mármol, J. Morales, and L. Sánchez. 2011. “Use of olive biomass fly ash in the preparation of environmentally friendly mortars.” Environ. Sci. Technol. 45 (16): 6991–6996. https://doi.org/10.1021/es200968a.
de la Casa, J. A., M. Lorite, J. Jiménez, and E. Castro. 2009. “Valorisation of wastewater from two-phase olive oil extraction in fired clay brick production.” J. Hazard. Mater. 169 (1–3): 271–278. https://doi.org/10.1016/j.jhazmat.2009.03.095.
Demir, I. 2006. “An investigation on the production of construction brick with processed waste tea.” Build. Environ. 41 (9): 1274–1278. https://doi.org/10.1016/j.buildenv.2005.05.004.
Dos Reis, G. S., B. G. Cazacliu, A. Cothenet, P. Poullain, M. Wilhelm, C. H. Sampaio, E. C. Lima, W. Ambros, and J. M. Torrenti. 2020. “Fabrication, microstructure, and properties of fired clay bricks using construction and demolition waste sludge as the main additive.” J. Cleaner Prod. 258 (Feb): 120733. https://doi.org/10.1016/j.jclepro.2020.120733.
Dziedzoave, N. 2008. Recent developments in cassava processing, utilisation and marketing in Ghana and lessons learned. Accra, Ghana: CSIR-Food Research Institute.
Eliche-Quesada, D., F. J. Iglesias-Godino, L. Pérez-Villarejo, and F. A. Corpas-Iglesias. 2014. “Replacement of the mixing fresh water by wastewater olive oil extraction in the extrusion of ceramic bricks.” Constr. Build. Mater. 68 (May): 659–666. https://doi.org/10.1016/j.conbuildmat.2014.07.017.
Eliche-Quesada, D., S. Martínez-Martínez, L. Pérez-Villarejo, F. J. Iglesias-Godino, C. Martínez-García, and F. A. Corpas-Iglesias. 2012. “Valorization of biodiesel production residues in making porous clay brick.” Fuel Process. Technol. 103 (Nov): 166–173. https://doi.org/10.1016/j.fuproc.2011.11.013.
Eliche-Quesada, D., J. A. Sandalio-Pérez, S. Martínez-Martínez, L. Pérez-Villarejo, and P. J. Sánchez-Soto. 2018. “Investigation of use of coal fly ash in eco-friendly construction materials: Fired clay bricks and silica-calcareous non fired bricks.” Ceram. Int. 44 (4): 4400–4412. https://doi.org/10.1016/j.ceramint.2017.12.039.
Faria, K. C. P., R. F. Gurgel, and J. N. F. Holanda. 2012. “Recycling of sugarcane bagasse ash waste in the production of clay bricks.” J. Environ. Manage. 101 (Mar): 7–12. https://doi.org/10.1016/j.jenvman.2012.01.032.
Farmer, V. 1974. Infrared spectra of minerals. London: Mineral Society.
García Ten, J., M. J. Orts, A. Saburit, and G. Silva. 2010. “Thermal conductivity of traditional ceramics. Part I: Influence of bulk density and firing temperature.” Ceram. Int. 36 (6): 1951–1959. https://doi.org/10.1016/j.ceramint.2010.05.012.
Gencel, O., E. Erdugmus, M. Sutcu, and O. H. Oren. 2020. “Effects of concrete waste on characteristics of structural fired clay bricks.” Constr. Build. Mater. 255 (Sep): 119362. https://doi.org/10.1016/j.conbuildmat.2020.119362.
Gencel, O., M. Junaid, S. Minhaj, S. Kazmi, M. Sutcu, and D. Eliche. 2021. “Recycling industrial slags in production of fired clay bricks for sustainable manufacturing.” Ceram. Int. 47 (21): 30425–30438. https://doi.org/10.1016/j.ceramint.2021.07.222.
Gordon, P. R., and M. A. Sephton. 2016. “Rapid habitability assessment of Mars samples by pyrolysis-FTIR.” Planet. Space Sci. 121 (Feb): 60–75. https://doi.org/10.1016/j.pss.2015.11.019.
Görhan, G., and O. Şimşek. 2013. “Porous clay bricks manufactured with rice husks.” Constr. Build. Mater. 40 (Apr): 390–396. https://doi.org/10.1016/j.conbuildmat.2012.09.110.
Gualtieri, M. L., A. F. Gualtieri, S. Gagliardi, P. Ruffini, R. Ferrari, and M. Hanuskova. 2010. “Applied Clay Science Thermal conductivity of fired clays: Effects of mineralogical and physical properties of the raw materials.” Appl. Clay Sci. 49 (3): 269–275. https://doi.org/10.1016/j.clay.2010.06.002.
Guzlena, S., G. Sakale, S. Certoks, and L. Grase. 2019. “Sand size particle amount influence on the full brick quality and technical properties.” Constr. Build. Mater. 220 (Mar): 102–109. https://doi.org/10.1016/j.conbuildmat.2019.05.170.
Heidari, L., and M. Jalili Ghazizade. 2021. “Recycling of spent industrial soil in manufacturing process of clay brick.” Process Saf. Environ. Prot. 145 (Jan): 133–140. https://doi.org/10.1016/j.psep.2020.08.004.
Jerkin, R. 1986. Mineral powder diffraction file databook. Newtown Square, PA: Joint Committee on Powder Diffraction Standards.
Johari, I., S. Said, B. Hisham, A. Bakar, and Z. A. Ahmad. 2010. “Effect of the change of firing temperature on microstructure and physical properties of clay bricks from Beruas (Malaysia).” Sci. Sintering 42 (2): 245–254. https://doi.org/10.2298/SOS1002245J.
Juel, M. A. I., A. Mizan, and T. Ahmed. 2017. “Sustainable use of tannery sludge in brick manufacturing in Bangladesh.” Waste Manage. 60 (Feb): 259–269. https://doi.org/10.1016/j.wasman.2016.12.041.
Karaman, S., S. Ersahin, and H. Gunal. 2006. “Firing temperature and firing time influence on mechanical and physical properties of clay bricks.” J. Sci. Ind. Res. 65 (2): 153–159.
Kizinievič, O., V. Kizinievič, and J. Malaiškienė. 2018a. “Analysis of the effect of paper sludge on the properties, microstructure and frost resistance of clay bricks.” Constr. Build. Mater. 169 (Apr): 689–696. https://doi.org/10.1016/j.conbuildmat.2018.03.024.
Kizinievič, O., V. Kizinievič, I. Pundiene, and D. Molotokas. 2018b. “Eco-friendly fired clay brick manufactured with agricultural solid waste.” Arch. Civ. Mech. Eng. 18 (4): 1156–1165. https://doi.org/10.1016/j.acme.2018.03.003.
Krist, J., R. L. Frost, A. Felinger, and J. Minka. 1997. “FTIR spectroscopic study of intercalated kaolinite.” J. Mol. Struct. 410 (Jun): 119–122. https://doi.org/10.1016/S0022-2860(96)09488-4.
Kusiorowski, R., T. Zaremba, and J. Piotrowski. 2014. “The potential use of cement-asbestos waste in the ceramic masses destined for sintered wall clay brick manufacture.” Ceram. Int. 40 (8): 11995–12002. https://doi.org/10.1016/j.ceramint.2014.04.037.
Laaroussi, N., G. Lauriat, M. Garoum, A. Cherki, and Y. Jannot. 2014. “Measurement of thermal properties of brick materials based on clay mixtures.” Constr. Build. Mater. 70 (Nov): 351–361. https://doi.org/10.1016/j.conbuildmat.2014.07.104.
Lingling, X., G. Wei, W. Tao, and Y. Nanru. 2005. “Study on fired bricks with replacing clay by fly ash in high volume ratio.” Constr. Build. Mater. 19 (3): 243–247. https://doi.org/10.1016/j.conbuildmat.2004.05.017.
Lukuyu, B., I. O. Kike, A. Duncan, M. Beveridge, and M. Blümmel. 2014. “Use of Cassava in livestock and aquaculture feeding programs.” In Vol. 25 of Proc., Int. Livestock Research Institute (ILRI), 1–83. Addis Ababa, Ethiopia: International Livestock Research Institute.
Manoharan, C., P. Sutharsan, S. Dhanapandian, and R. Venkatachalapathy. 2012. “Spectroscopic and thermal analysis of red clay for industrial applications from Tamil Nadu, India.” J. Mol. Struct. 1027 (Apr): 99–103. https://doi.org/10.1016/j.molstruc.2012.05.079.
Mao, L., H. Guo, and W. Zhang. 2018. “Addition of waste glass for improving the immobilization of heavy metals during the use of electroplating sludge in the production of clay bricks.” Constr. Build. Mater. 163 (Feb): 875–879. https://doi.org/10.1016/j.conbuildmat.2017.12.177.
Mary, M. L., C. Peter, K. Mohan, S. Greens, and S. George. 2018. “Energy efficient production of clay bricks using industrial waste.” Heliyon 4 (10): e00891. https://doi.org/10.1016/j.heliyon.2018.e00891.
Mavroulidou, M. 2018. “Use of waste paper sludge ash as a calcium-based stabiliser for clay soils.” Waste Manage. Res. 36 (11): 1066–1072. https://doi.org/10.1177/0734242X18804043.
Mbumbia, L., A. Mertens De Wilmars, and J. Tirlocq. 2000. “Performance characteristics of lateritic soil bricks fired at low temperatures: A case study of Cameroon.” Constr. Build. Mater. 14 (3): 121–131. https://doi.org/10.1016/S0950-0618(00)00024-6.
Miqueleiz, L., F. Ramírez, A. Seco, R. M. Nidzam, J. M. Kinuthia, A. A. Tair, and R. Garcia. 2012. “The use of stabilised Spanish clay soil for sustainable construction materials.” Eng. Geol. 133 (Apr): 9–15. https://doi.org/10.1016/j.enggeo.2012.02.010.
Munir, M. J., S. Minhaj, S. Kazmi, O. Gencel, M. Riaz, and B. Chen. 2021. “Synergistic effect of rice husk, glass and marble sludges on the engineering characteristics of eco-friendly bricks.” J. Build. Eng. 42 (Nov): 102484. https://doi.org/10.1016/j.jobe.2021.102484.
Muñoz, P., V. Letelier, M. A. Bustamante, J. Marcos-Ortega, and J. G. Sepúlveda. 2020. “Assessment of mechanical, thermal, mineral and physical properties of fired clay brick made by mixing kaolinitic red clay and paper pulp residues.” Appl. Clay Sci. 198 (Sep): 105847. https://doi.org/10.1016/j.clay.2020.105847.
Muñoz, P., M. A. Mendívil, V. Letelier, and M. P. Morales. 2019. “Thermal and mechanical properties of fired clay bricks made by using grapevine shoots as pore forming agent. Influence of particle size and percentage of replacement.” Constr. Build. Mater. 224 (Nov): 639–658. https://doi.org/10.1016/j.conbuildmat.2019.07.066.
Muñoz, P., M. P. Morales, V. Letelier, and M. A. Mendivil. 2016. “Fired clay bricks made by adding wastes: Assessment of the impact on physical, mechanical and thermal properties.” Constr. Build. Mater. 125 (Mar): 241–252. https://doi.org/10.1016/j.conbuildmat.2016.08.024.
Muñoz, P., M. P. Morales, M. A. Mendívil, M. C. Juárez, and L. Muñoz. 2014. “Using waste pomace from winery industry to improve thermal insulation of fired clay bricks. Eco-friendly way of building construction.” Constr. Build. Mater. 71 (Feb): 181–187. https://doi.org/10.1016/j.conbuildmat.2014.08.027.
Musthafa, A. M., K. Janaki, and G. Velraj. 2010. “Microscopy, porosimetry and chemical analysis to estimate the firing temperature of some archaeological pottery shreds from India.” Microchem. J. 95 (2): 311–314. https://doi.org/10.1016/j.microc.2010.01.006.
Oti, J. E., J. M. Kinuthia, and R. B. Robinson. 2014. “The development of unfired clay building material using brick dust waste and Mercia mudstone clay.” Appl. Clay Sci. 102 (Mar): 148–154. https://doi.org/10.1016/j.clay.2014.09.031.
Ozturk, S., M. Sutcu, E. Erdogmus, and O. Gencel. 2019. “Influence of tea waste concentration in the physical, mechanical and thermal properties of brick clay mixtures.” Constr. Build. Mater. 217 (Aug): 592–599. https://doi.org/10.1016/j.conbuildmat.2019.05.114.
Phonphuak, N., and S. Thiansem. 2012. “Using charcoal to increase properties and durability of fired test briquettes.” Constr. Build. Mater. 29 (Sep): 612–618. https://doi.org/10.1016/j.conbuildmat.2011.11.018.
Ptáček, P., F. Frajkorová, F. Šoukal, and T. Opravil. 2014. “Kinetics and mechanism of three stages of thermal transformation of kaolinite to metakaolinite.” Powder Technol. 264 (Sep): 439–445. https://doi.org/10.1016/j.powtec.2014.05.047.
Quijorna, N., A. Coz, A. Andres, and C. Cheeseman. 2012. “Recycling of Waelz slag and waste foundry sand in red clay bricks.” Resour. Conserv. Recycl. 65 (Aug): 1–10. https://doi.org/10.1016/j.resconrec.2012.05.004.
Roudouane, H. T., J. A. Mbey, E. C. Bayiga, and P. D. Ndjigui. 2020. “Characterization and application tests of kaolinite clays from Aboudeia (southeastern Chad) in fired brick making.” Sci. Afr. 7 (Mar): e00294. https://doi.org/10.1016/j.sciaf.2020.e00294.
Shih, P. H., Z. Z. Wu, and H. L. Chiang. 2004. “Characteristics of bricks made from waste steel slag.” Waste Manage. 24 (10): 1043–1047. https://doi.org/10.1016/j.wasman.2004.08.006.
Song, S., L. Dong, Y. Zhang, S. Chen, Q. Li, Y. Guo, and S. Deng. 2014. “Lauric acid/intercalated kaolinite as form-stable phase change material for thermal energy storage.” Energy 76 (Nov): 385–389. https://doi.org/10.1016/j.energy.2014.08.042.
Souza, A. E., S. R. Teixeira, G. T. A. Santos, F. B. Costa, and E. Longo. 2011. “Reuse of sugarcane bagasse ash (SCBA) to produce ceramic materials.” J. Environ. Manage. 92 (10): 2774–2780. https://doi.org/10.1016/j.jenvman.2011.06.020.
Subashi De Silva, G. H. M. J., and E. Hansamali. 2019. “Eco-friendly fired clay bricks incorporated with porcelain ceramic sludge.” Constr. Build. Mater. 228 (Dec): 116754. https://doi.org/10.1016/j.conbuildmat.2019.116754.
Sutcu, M., H. Alptekin, E. Erdogmus, Y. Er, and O. Gencel. 2015. “Characteristics of fired clay bricks with waste marble powder addition as building materials.” Constr. Build. Mater. 82 (May): 1–8. https://doi.org/10.1016/j.conbuildmat.2015.02.055.
Sutcu, M., E. Erdogmus, O. Gencel, A. Gholampour, E. Atan, and T. Ozbakkaloglu. 2019. “Recycling of bottom ash and fly ash wastes in eco-friendly clay brick production.” J. Cleaner Prod. 233 (Oct): 753–764. https://doi.org/10.1016/j.jclepro.2019.06.017.
Sutcu, M., S. Ozturk, E. Yalamac, and O. Gencel. 2016. “Effect of olive mill waste addition on the properties of porous fired clay bricks using Taguchi method.” J. Environ. Manage. 181 (Oct): 185–192. https://doi.org/10.1016/j.jenvman.2016.06.023.
Terra, F. S., J. A. M. Demattê, and R. A. Viscarra. 2015. “Geoderma spectral libraries for quantitative analyses of tropical Brazilian soils: Comparing vis–NIR and mid-IR reflectance data.” Geoderma 255 (Oct): 81–93. https://doi.org/10.1016/j.geoderma.2015.04.017.
Turkish Standard Institution. 1985. Solid brick and vertically perforated bricks (the classification, properties, sampling, testing and marking of solid bricks and vertically perforated bricks). TS 705. Ankara, Turkey: Turkish Standard Institution.
Turkish Standard Institution. 2012. Turkish standard specification for masonry units—Part 1. TS EN 771-1. Ankara, Turkey: Turkish Standard Institution.
Ukwatta, A., A. Mohajerani, S. Setunge, and N. Eshtiaghi. 2015. “Possible use of biosolids in fired-clay bricks.” Constr. Build. Mater. 91 (Aug): 86–93. https://doi.org/10.1016/j.conbuildmat.2015.05.033.
Ukwatta, A., A. Mohajerani, S. Setunge, and N. Eshtiaghi. 2018. “A study of gas emissions during the firing process from bricks incorporating biosolids.” Waste Manage. 74 (Apr): 413–426. https://doi.org/10.1016/j.wasman.2018.01.006.
Velasco, P. M., M. P. M. Ortiz, M. A. M. Giro, M. C. J. Castelló, and L. M. Velasco. 2014a. “Development of better insulation bricks by adding mushroom compost wastes.” Energy Build. 80 (Sep): 17–22. https://doi.org/10.1016/j.enbuild.2014.05.005.
Velasco, P. M., M. P. M. Ortíz, M. A. M. Giró, and L. M. Velasco. 2014b. “Fired clay bricks manufactured by adding wastes as sustainable construction material—A review.” Constr. Build. Mater. 63 (Jul): 97–107. https://doi.org/10.1016/j.conbuildmat.2014.03.045.
Vieira, C. M. F., J. Alexandre, and S. N. Monteiro. 2006. “Effect of the particle size of the grog on the properties and microstructure of bricks.” Mater. Sci. Forum 530 (Feb): 438–443. https://doi.org/10.4028/www.scientific.net/MSF.530-531.438.
Weng, C. H., D. F. Lin, and P. C. Chiang. 2003. “Utilization of sludge as brick materials.” Adv. Environ. Res. 7 (3): 679–685. https://doi.org/10.1016/S1093-0191(02)00037-0.
Xu, Y., C. Yan, B. Xu, X. Ruan, and Z. Wei. 2014. “The use of urban river sediments as a primary raw material in the production of highly insulating brick.” Ceram. Int. 40 (6): 8833–8840. https://doi.org/10.1016/j.ceramint.2014.01.105.
Yang, C., C. Cui, J. Qin, and X. Cui. 2014. “Characteristics of the fired bricks with low-silicon iron tailings.” Constr. Build. Mater. 70 (Nov): 36–42. https://doi.org/10.1016/j.conbuildmat.2014.07.075.
Yaras, A. 2020. “Combined effects of paper mill sludge and carbonation sludge on characteristics of fired clay bricks.” Constr. Build. Mater. 249 (Jul): 118722. https://doi.org/10.1016/j.conbuildmat.2020.118722.
Zhang, M., C. Chen, L. Mao, and Q. Wu. 2018. “Use of electroplating sludge in production of fired clay bricks: Characterization and environmental risk evaluation.” Constr. Build. Mater. 159 (Jan): 27–36. https://doi.org/10.1016/j.conbuildmat.2017.10.130.
Zhou, H. M., X. C. Qiao, and J. G. Yu. 2013. “Influences of quartz and muscovite on the formation of mullite from kaolinite.” Appl. Clay Sci. 80 (Aug): 176–181. https://doi.org/10.1016/j.clay.2013.04.004.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 4April 2024

History

Received: Mar 14, 2023
Accepted: Oct 2, 2023
Published online: Jan 27, 2024
Published in print: Apr 1, 2024
Discussion open until: Jun 27, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Senior Lecturer, Dept. of Applied Physics, School of Physical Sciences, C. K. Tedam Univ. of Technology and Applied Sciences (CKT-UTAS), Box 24, Navrongo, Ghana (corresponding author). ORCID: https://orcid.org/0000-0001-8740-0928. Email: [email protected]
G. Viruthagiri [email protected]
Associate Professor, Dept. of Physics, Faculty of Science, Annamalai Univ., Annamalai Nagar, Chidambaram, Tamil Nadu 608002, India. Email: [email protected]
Master’s Student, Dept. of Applied Physics, School of Physical Sciences, C. K. Tedam Univ. of Technology and Applied Sciences (CKT-UTAS), Box 24, Navrongo, Ghana. ORCID: https://orcid.org/0009-0009-8239-9564. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share