Technical Papers
Mar 25, 2024

Impact of C3A Polymorphism, Lignosulfonate Admixture, Limestone, and Calcium Sulfate Sources in the Hydration Kinetics and Rheology of Cement Pastes

Publication: Journal of Materials in Civil Engineering
Volume 36, Issue 6

Abstract

The effect of C3A polymorphism, the calcium sulfate source, and the addition of limestone on the hydration kinetics and rheology of cement pastes and their interaction with a lignosulfonate-based admixture were analyzed. Two clinkers produced in industrial cement rotary kilns using the same raw materials and process were produced; their crystallinity was changed by using different fuel sources for research purposes. The cements containing mostly orthorhombic C3A (ORT) had a more extended induction period than cements with mostly cubic C3A (CUB). The phosphogypsum increased apparent viscosity and yield stress, as well as delaying the hydration of both clinkers (with a higher retardation effect on ORT clinker hydration). The limestone increased the apparent viscosity and the yield stress of the samples, besides accelerating the hydration due to the dilution and filler effects. The lignosulfonate admixture delayed the hydration of all cements tested. In ORT cements, the admixture was more efficient in reducing apparent viscosity and yield stress.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

Authors acknowledge the financial support of InterCement Brasil S.A., CNPq (Brazilian National Council for Scientific and Technological Development, FAPERGS (Foundation for Research Support of the State of Rio Grande do Sul) and CAPES PRINT (Coordination for the Improvement of Higher Education Personnel) Process No. 88887.716843/2022-00.

References

ABNT (Associação Brasileira de Normas Técnicas). 2015. Cimento Portland e outros materiais em pó—Determinação da finura pelo método de permeabilidade ao ar (método de Blaine). [In Portuguese.] NBR 16372. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2017a. Cimento Portland—Determinação dos tempos de pega. [In Portuguese.] NBR 16607. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2017b. Cimento Portland e outros materiais em pó—Determinação da massa específica. [In Portuguese.] NBR 16605. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2018. Cimento Portland—Requisitos. [In Portuguese.] NBR 16697. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2019. Cimento portland—Determinação da resistência à compressão. ABNT NBR 7215. Rio de Janeiro, Brazil: ABNT.
Alonso, M. M., and F. Puertas. 2015. “Adsorption of PCE and PNS superplasticisers on cubic and orthorhombic C3A. Effect of sulfate.” Constr. Build. Mater. 78 (Mar): 324–332. https://doi.org/10.1016/j.conbuildmat.2014.12.050.
Altun, I. A., and Y. Sert. 2004. “Utilization of weathered phosphogypsum as set retarder in Portland cement.” Cem. Concr. Res. 34 (4): 677–680. https://doi.org/10.1016/j.cemconres.2003.10.017.
ASTM. 2019. Standard guide for approximation of optimum SO3 in hydraulic cement. ASTM C563-19. West Conshohocken, PA: ASTM.
ASTM. 2020. Standard specification for Portland cement. ASTM C150/C150M-20. West Conshohocken, PA: ASTM.
Avet, F., R. Snellings, A. A. Diaz, M. B. Haha, and K. Scrivener. 2016. “Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays.” Cem. Concr. Res. 85 (Jul): 1–11. https://doi.org/10.1016/j.cemconres.2016.02.015.
Begarin, F., S. Garrault, L. Nicoleau, and A. Nonat. 2011. “Hydration of alite containing aluminium.” Adv. Appl. Ceram. 110 (3): 127–130. https://doi.org/10.1179/1743676110Y.0000000007.
Botella, R. M. 2005. Reología de suspensiones cerámicas. Madrid, Spain: Consejo Superior de Investigaciones Científicas.
Chatterjee, A., and T. Sui. 2019. “Alternative fuels–effects on clinker process and properties.” Cem. Concr. Res. 123 (Apr): 105777. https://doi.org/10.1016/j.cemconres.2019.105777.
Chen, J. J., A. K. H. Kwan, and Y. Jiang. 2014. “Adding limestone fines as cement paste replacement to reduce water permeability and sorptivity of concrete.” Constr. Build. Mater. 56 (Apr): 87–93. https://doi.org/10.1016/j.conbuildmat.2014.01.066.
Cheung, J., A. Jeknavorian, L. Roberts, and D. Silva. 2011. “Impact of admixtures on the hydration kinetics of Portland cement.” Cem. Concr. Res. 41 (12): 1289–1309. https://doi.org/10.1016/j.cemconres.2011.03.005.
Costa, R. P., M. H. G. Medeiros, E. D. R. Martinez, V. A. Quarcioni, S. Suzuki, and A. P. Kirchheim. 2022. “Effect of soluble phosphate, fluoride, and pH in Brazilian phosphogypsum used as setting retarder on Portland cement hydration.” Case Stud. Constr. Mater. 17 (Dec): e01413. https://doi.org/10.1016/j.cscm.2022.e01413.
De Matos, P. R., R. D. Sakata, P. J. P. Gleize, J. de Brito, and W. L. Repette. 2020. “Eco-friendly ultra-high performance cement pastes produced with quarry wastes as alternative fillers.” J. Cleaner Prod. 269 (Oct): 122308. https://doi.org/10.1016/j.jclepro.2020.122308.
do Carmo Holanda, F., H. Schmidt, and V. A. Quarcioni. 2017. “Influence of phosphorus from phosphogypsum on the initial hydration of Portland cement in the presence of superplasticizers.” Cem. Concr. Compos. 83 (Oct): 384–393. https://doi.org/10.1016/j.cemconcomp.2017.07.029.
Garcia-Maté, M., G. D. L. T. Angeles, L. León-Reina, E. R. Losilla, M. A. G. Aranda, and I. Santacruz. 2015. “Effect of calcium sulfate source on the hydration of calcium sulfoaluminate eco-cement.” Cem. Concr. Compos. 55 (Jan): 53–61. https://doi.org/10.1016/j.cemconcomp.2014.08.003.
Gelardi, G., S. Mantellato, D. Marchon, M. Palacios, A. B. Eberhardt, and R. J. Flatt. 2016. “Chemistry of chemical admixtures.” In Vol. 9 of Science and technology of concrete admixtures, edited by P. C. Aitcin and R. J. Flatt, 149–218. Cambridge, UK: Elsevier.
Girotto, L., J. L. Provis, E. D. Rodríguez, and A. P. Kirchheim. 2020. “Extraction of tricalcium aluminate for research applications by selective dissolution of Portland cement clinker.” J. Mater. Civ. Eng. 32 (1): 04019325. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002969.
Gobbo, L., L. Sant’Agostino, and L. Garcez. 2004. “C3A polymorphs related to industrial clinker alkalies content.” Cem. Concr. Res. 34 (4): 657–664. https://doi.org/10.1016/j.cemconres.2003.10.020.
Han, D., and R. D. Ferron. 2016. “Influence of high mixing intensity on rheology, hydration, and microstructure of fresh state cement paste.” Cem. Concr. Res. 84 (Jun): 95–106. https://doi.org/10.1016/j.cemconres.2016.03.004.
Hanehara, S., and K. Yamada. 1999. “Interaction between cement and chemical admixture from the point of cement hydration, absorption behaviour of admixture, and paste rheology.” Cem. Concr. Res. 29 (8): 1159–1165. https://doi.org/10.1016/S0008-8846(99)00004-6.
IEA (International Energy Agency). 2018. Technology roadmap—Low-carbon transition in the cement industry. Paris: IEA.
Jansen, D., J. Neubauer, F. Goetz-Neunhoeffer, R. Haerzschel, and W. D. Hergeth. 2012. “Change in reaction kinetics of a Portland cement caused by a superplasticizer—Calculation of heat flow curves from XRD data.” Cem. Concr. Res. 42 (2): 327–332. https://doi.org/10.1016/j.cemconres.2011.10.005.
Jiang, D., X. Li, Y. Lv, M. Zhou, C. He, W. Jiang, Z. Liu, and C. Li. 2020. “Utilization of limestone powder and fly ash in blended cement: Rheology, strength and hydration characteristics.” Constr. Build. Mater. 232 (Jan): 117228. https://doi.org/10.1016/j.conbuildmat.2019.117228.
John, V. M., B. Damineli, M. Quattrone, and R. G. Pileggi. 2018. “Fillers in cementitious materials—Experience, recent advances and future potential.” Cem. Concr. Res. 114 (Dec): 65–78. https://doi.org/10.1016/j.cemconres.2017.09.013.
Kantro, D. L. 1980. “Influence of water-reducing admixtures on properties of cement paste—A miniature slump test.” Cem. Concr. Aggregates 2 (2): 95–102. https://doi.org/10.1520/CCA10190J.
Kirchheim, A. P., D. C. Dal Molin, P. Fischer, A.-H. Emwas, J. L. Provis, and P. J. M. Monteiro. 2011. “Real-time high-resolution X-ray imaging and nuclear magnetic resonance study of the hydration of pure and Na-doped C3A in the presence of sulfates.” Inorg. Chem. 50 (4): 1203–1212. https://doi.org/10.1021/ic101460z.
Kirchheim, A. P., V. Fernàndez-Altable, P. J. M. Monteiro, D. C. C. Dal Molin, and I. Casanova. 2009. “Analysis of cubic and orthorhombic C3A hydration in presence of gypsum and lime.” J. Mater. Sci. 44 (8): 2038–2045. https://doi.org/10.1007/s10853-009-3292-3.
Kirchheim, A. P., E. D. Rodríguez, R. J. Myers, L. A. Gobbo, P. J. M. Monteiro, D. C. C. Dal Molin, R. B. Souza, and M. A. Cincotto. 2018. “Effect of gypsum on the early hydration of cubic and Na-doped orthorhombic tricalcium aluminate.” Materials 11 (4): 568. https://doi.org/10.3390/ma11040568.
Liu, M., Y. Gao, L. Zhang, G. Jiang, C. Zeng, and P. Wang. 2021. “The application of thermal analysis to study the hydration behavior of tricalcium aluminate-gypsum in the presence of polycarboxylate-based superplasticizers.” Thermochim. Acta 696 (Feb): 178821. https://doi.org/10.1016/j.tca.2020.178821.
Lothenbach, B., G. Le Saout, E. Gallucci, and K. Scrivener. 2008. “Influence of limestone on the hydration of Portland cements.” Cem. Concr. Res. 38 (6): 848–860. https://doi.org/10.1016/j.cemconres.2008.01.002.
Ludwig, H. M., and W. Zhang. 2015. “Research review of cement clinker chemistry.” Cem. Concr. Res. 78 (Dec): 24–37. https://doi.org/10.1016/j.cemconres.2015.05.018.
Marchon, D., and R. J. Flatt. 2016. “Mechanisms of cement hydration.” In Vol. 8 of Science and technology of concrete admixtures, edited by P. C. Aitcin and R. J. Flatt, 129–145. Cambridge, UK: Elsevier.
Mardani-Aghabaglou, A., H. T. Öztürk, M. Kankal, and K. Ramyar. 2021. “Assessment and prediction of cement paste flow behavior; Marsh-funnel flow time and mini-slump values.” Constr. Build. Mater. 301 (Sep): 124072. https://doi.org/10.1016/j.conbuildmat.2021.124072.
Marzouki, A., A. Lecomte, A. Beddey, C. Diliberto, and M. Ben Quezdou. 2013. “The effects of grinding on the properties of Portland-limestone cement.” Constr. Build. Mater. 48 (Nov): 1145–1155. https://doi.org/10.1016/j.conbuildmat.2013.07.053.
Myers, R. J., G. Geng, E. D. Rodriguez, P. Rosa, A. P. Kirchheim, and P. J. M. Monteiro. 2017. “Solution chemistry of cubic and orthorhombic tricalcium aluminate hydration.” Cem. Concr. Res. 100 (Nov): 176–185. https://doi.org/10.1016/j.cemconres.2017.06.008.
Neto, J. D. S. A., T. A. Santos, S. de Andrade Pinto, C. M. R. Dias, and D. V. Ribeiro. 2021a. “Effect of the combined use of carbon nanotubes (CNT) and metakaolin on the properties of cementitious matrices.” Constr. Build. Mater. 271 (Feb): 121903. https://doi.org/10.1016/j.conbuildmat.2020.121903.
Neto, J. S. A., J. D. Bersch, T. S. M. Silva, E. D. Rodríguez, S. Suzuki, and A. P. Kirchheim. 2021b. “Influence of phosphogypsum purification with lime on the properties of cementitious matrices with and without plasticizer.” Constr. Build. Mater. 299 (Sep): 123935. https://doi.org/10.1016/j.conbuildmat.2021.123935.
Neto, J. S. A., A. G. De La Torre, and A. P. Kirchheim. 2021c. “Effects of sulfates on the hydration of Portland cement—A review.” Constr. Build. Mater. 279 (Apr): 122428. https://doi.org/10.1016/j.conbuildmat.2021.122428.
Neto, J. S. A., P. R. de Matos, G. Angeles, C. E. Campos, P. J. Gleize, P. J. Monteiro, and A. P. Kirchheim. 2022. “The role of sodium and sulfate sources on the rheology and hydration of C3A polymorphs.” Cem. Concr. Res. 151 (Jan): 106639. https://doi.org/10.1016/j.cemconres.2021.106639.
Ng, S., and H. Justnes. 2016. “Influence of plasticizers on the rheology and early heat of hydration of blended cements with high content of fly ash.” Cem. Concr. Compos. 65 (Jan): 41–54. https://doi.org/10.1016/j.cemconcomp.2015.10.005.
Nicoleau, L., E. Schreiner, and A. Nonat. 2014. “Ion-specific effects influencing the dissolution of tricalcium silicate.” Cem. Concr. Res. 59 (May): 118–138. https://doi.org/10.1016/j.cemconres.2014.02.006.
Panesar, D. K., and R. Zhang. 2020. “Performance comparison of cement replacing materials in concrete: Limestone fillers and supplementary cementing materials—A review.” Constr. Build. Mater. 251 (Aug): 118866. https://doi.org/10.1016/j.conbuildmat.2020.118866.
Potgieter, J. H., S. S. Potgieter, and R. I. Mccrindle. 2004. “A comparison of the performance of various synthetic gypsums in plant trials during the manufacturing of OPC clinker.” Cem. Concr. Res. 34 (12): 2245–2250. https://doi.org/10.1016/j.cemconres.2004.04.002.
Potgieter, J. H., S. S. Potgieter, R. I. McCrindle, and C. A. Strydom. 2003. “An investigation into the effect of various chemical and physical treatments of a South African phosphogypsum to render it suitable as a set retarder for cement.” Cem. Concr. Res. 33 (8): 1223–1227. https://doi.org/10.1016/S0008-8846(03)00036-X.
Pourchet, S., L. Regnaud, J. P. Perez, and A. Nonat. 2009. “Early C3A hydration in the presence of different kinds of calcium sulfate.” Cem. Concr. Res. 39 (11): 989–996. https://doi.org/10.1016/j.cemconres.2009.07.019.
Pustivgar, E., R. K. Mishra, M. Palacios, J. B. Lacaillerie, T. Matschei, A. S. Andreev, H. Heinz, R. Verel, and R. J. Flatt. 2017. “Influence of aluminates on the hydration kinetics of tricalcium silicate.” Cem. Concr. Res. 100 (Oct): 245–262. https://doi.org/10.1016/j.cemconres.2017.06.006.
Quennoz, A., and K. L. Scrivener. 2012. “Hydration of C3A-gypsum systems.” Cem. Concr. Res. 42 (7): 1032–1041. https://doi.org/10.1016/j.cemconres.2012.04.005.
Ramezanianpour, A. A., E. Ghiasvand, I. Nickseresht, and F. Moodi. 2009. “Influence of various amounts of limestone powder on performance of Portland limestone cement concretes.” Cem. Concr. Compos. 31 (10): 715–720. https://doi.org/10.1016/j.cemconcomp.2009.08.003.
Rheinheimer, V., R. S. Chae, E. Rodríguez, G. Geng, A. P. Kirchheim, and P. J. M. Monteiro. 2016. “A scanning transmission X-ray microscopy study of cubic and orthorhombic C3A and their products in the presence of gypsum.” Materials 9 (9): 745. https://doi.org/10.3390/ma9090745.
Rixom, M. R., N. P. Mailvaganam, D. P. Manson, and C. Gonzales. 2001. Chemical admixtures for concrete. London: CRC Press.
Sandberg, P. J., and L. R. Roberts. 2005. “Cement-admixture interactions related to aluminate control.” J. ASTM Int. 2 (6): 219–232. https://doi.org/10.1520/JAI12296.
Schneider, M., M. Romer, M. Tschudin, and H. Bolio. 2011. “Sustainable cement production—Present and future.” Cem. Concr. Res. 41 (7): 642–650. https://doi.org/10.1016/j.cemconres.2011.03.019.
Scrivener, K. L. 2014. “Options for the future of cement.” Indian Concr. J. 88 (7): 11–21.
Scrivener, K. L., P. Juilland, and P. J. M. Monteiro. 2015. “Advances in understanding hydration of Portland cement.” Cem. Concr. Res. 78 (Dec): 38–56. https://doi.org/10.1016/j.cemconres.2015.05.025.
Scrivener, K. L., A. Ouzia, P. Juilland, and A. K. Mohamed. 2019. “Advances in understanding cement hydration mechanisms.” Cem. Concr. Res. 124 (Oct): 105823. https://doi.org/10.1016/j.cemconres.2019.105823.
Shen, W., G. Gan, R. Dong, H. Chen, Y. Tan, and M. Zhou. 2012. “Utilization of solidified phosphogypsum as Portland cement retarder.” J. Mater. Cycles Waste Manage. 14 (3): 228–233. https://doi.org/10.1007/s10163-012-0065-x.
Singh, M., and M. Garg. 2002. “Production of beneficiated phosphogypsum for cement manufacture.” J. Sci. Ind. Res. 61 (7): 533–537.
Singh, M., M. Garg, and S. S. Rehsi. 1993. “Purifying phosphogypsum for cement manufacture.” Constr. Build. Mater. 7 (1): 3–7. https://doi.org/10.1016/0950-0618(93)90018-8.
SNIC (Sindicato Nacional das Indústrias de Cimento). 2019. Relatório anual. Rio de Janeiro, Brazil: SNIC.
Stephan, D., and S. Wistuba. 2006. “Crystal structure refinement and hydration behaviour of 3CaO·SiO2 solid solutions with MgO, Al2O3 and Fe2O3.” J. Eur. Ceram. Soc. 26 (1–2): 141–148. https://doi.org/10.1016/j.jeurceramsoc.2004.10.031.
Suraneni, P., and R. J. Flatt. 2015. “Use of micro-reactors to obtain new insights into the factors influencing tricalcium silicate dissolution.” Cem. Concr. Res. 78 (Dec): 208–215. https://doi.org/10.1016/j.cemconres.2015.07.011.
Tan, Z., S. A. Bernal, and J. L. Provis. 2017. “Reproducible mini-slump test procedure for measuring the yield stress of cementitious pastes.” Mater. Struct. 50 (Dec): 1–12. https://doi.org/10.1617/s11527-017-1103-x.
Taylor, H. F. W. 1997. Cement chemistry. London: Thomas Telford.
UN Environment, K. Scrivener, V. M. John, and E. M. Gartner. 2018. “Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry.” Cem. Concr. Res. 114 (Dec): 2–26. https://doi.org/10.1016/j.cemconres.2018.03.015.
Vance, K., A. Kumar, G. Sant, and N. Neithalath. 2013. “The rheological properties of ternary binders containing Portland cement, limestone and metakaolin or fly ash.” Cem. Concr. Res. 52 (Oct): 196–207. https://doi.org/10.1016/j.cemconres.2013.07.007.
Wallevik, O. H., D. Feys, J. E. Wallevik, and K. H. Khayat. 2015. “Avoiding inaccurate interpretations of rheological measurements for cement-based materials.” Cem. Concr. Res. 78 (Dec): 100–109. https://doi.org/10.1016/j.cemconres.2015.05.003.
Wistuba, S., D. Stephan, G. Raudaschl-Sieber, and J. Plank. 2007. “Hydration and hydration products of two-phase Portland cement clinker doped with Na2O.” Adv. Cem. Res. 19 (3): 125–131. https://doi.org/10.1680/adcr.2007.19.3.125.
Yuan, Q., C. Shi, and D. Jiao. 2022. Rheology of fresh cement-based materials: Fundamentals, measurements, and applications. London: CRC Press.
Zhang, C., X. Kong, J. Yin, and X. Fu. 2021. “Rheology of fresh cement pastes containing polymer nanoparticles.” Cem. Concr. Res. 144 (Jun): 106419. https://doi.org/10.1016/j.cemconres.2021.106419.
Zhang, Y., and X. Kong. 2015. “Correlations of the dispersing capability of NSF and PCE types of superplasticizer and their impacts on cement hydration with the adsorption in fresh cement pastes.” Cem. Concr. Res. 69 (Mar): 1–9. https://doi.org/10.1016/j.cemconres.2014.11.009.
Zingg, A., F. Winnefeld, L. Holzer, J. Pakusch, S. Becker, R. Figi, and L. Gauckler. 2009. “Interaction of polycarboxylate-based superplasticizers with cements containing different C3A amounts.” Cem. Concr. Compos. 31 (3): 153–162. https://doi.org/10.1016/j.cemconcomp.2009.01.005.
Zunino, F., and M. Lopez. 2016. “Decoupling the physical and chemical effects of supplementary cementitious materials on strength and permeability: A multi-level approach.” Cem. Concr. Compos. 65 (Jan): 19–28. https://doi.org/10.1016/j.cemconcomp.2015.10.003.
Zunino, F., and K. Scrivener. 2019. “The influence of the filler effect on the sulfate requirement of blended cements.” Cem. Concr. Res. 126 (Dec): 105918. https://doi.org/10.1016/j.cemconres.2019.105918.
Zunino, F., and K. Scrivener. 2020. “Factors influencing the sulfate balance in pure phase C3S/C3A systems.” Cem. Concr. Res. 133 (Jul): 106085. https://doi.org/10.1016/j.cemconres.2020.106085.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 6June 2024

History

Received: Nov 29, 2022
Accepted: Nov 20, 2023
Published online: Mar 25, 2024
Published in print: Jun 1, 2024
Discussion open until: Aug 25, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Paula de Lima Salum
Ph.D. Candidate, Graduate Program in Civil Engineering: Construction and Infrastructure, Federal Univ. of Rio Grande do Sul (UFRGS), Porto Alegre 90035-190, Brazil.
José da Silva Andrade Neto
Professor, Dept. of Architecture and Urbanism, State Univ. of Santa Catarina, Laguna 88790-000, Brazil; Ph.D. Candidate, Graduate Program in Civil Engineering, Construction and Infrastructure, Federal Univ. of Rio Grande do Sul (UFRGS), Porto Alegre 90035-190, Brazil.
Seiiti Suzuki
Sustainability Manager, InterCement S.A., Av. das Nações Unidas, 12495—13o andar—Cidade Monções, São Paulo 04578-000, Brazil.
Danila Ferraz
Principal Scientist, GCP Applied Technologies, Avenida Paraná, 4690, Sorocaba 18105-000, Brazil.
Maria C. G. Juenger, Ph.D. https://orcid.org/0000-0001-9282-3298
Professor, Dept. of Civil, Architectural, and Environmental Engineering, Univ. of Texas at Austin, Austin, TX 78712. ORCID: https://orcid.org/0000-0001-9282-3298
Professor, Dept. of Civil Engineering, Federal Univ. of Rio Grande do Sul (UFRGS), Porto Alegre 90035-190, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-8241-0331. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share