Abstract

Construction and demolition waste (CDW) produced in a construction work site generates problems in its management. Among the CDW, we can find polymers, which create an added problem because of their slow decomposition, nonreuse, and whose manufacture generates greenhouse gases, which are harmful to the environment. Therefore, to reduce and recycle CDW as an alternative raw material to manufacture construction materials and elements and minimize the waste sent to landfill is urgently needed. This article analyzes the incorporation of CDW polypropylene fibers from single-use slings into gypsum and plaster composites. Additionally, commercial polypropylene fibers were also incorporated to compare the results. For this, several specimens were prepared adding different weight percentages of CDW fibers from 1% to 4% and tested to determine their physical and mechanical properties: bulk density; superficial hardness; flexural and compression strength; and bonding strength. Results show that it is viable to use CDW polypropylene fibers to manufacture new gypsum-based composites, as all the results surpass the minimum values determined by the applicable standards. Better results were obtained when CDW polypropylene fibers were used instead of commercial ones. The increase of flexural strength is more representative than other mechanical properties. The inclusion of CDW fibers in composites allows the reduction of slings thrown into landfills, which reduces the generation of greenhouse gases to the environment in the manufacture of new fibers for mortar reinforcement.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors acknowledge PLACO Saint Gobain for providing the materials needed to develop this study.

References

Adams, K., M. Osmani, T. Thorpe, and J. Thornback. 2017. “Circular economy in construction: Current awareness, challenges and enablers.” Proc. Inst. Civ. Eng. Waste Resour. Manage. 170 (Jun): 15–24.
AENOR (Spanish Association for Standardization and Certification). 2006. Gypsum binders and gypsum plasters. Part 2: Test methods. Madrid, Spain: AENOR.
AENOR (Spanish Association for Standardization and Certification). 2007. Eslingas textiles. Seguridad. Eslingas de cintas tejidas planas, fabricadas con fibras químicas, para uso no reutilizable. Textile slings. Security. Flat woven webbing slings, made of chemical fibers, for non-reusable use. Madrid, Spain: AENOR.
AENOR (Spanish Association for Standardization and Certification). 2009. Gypsum binders and gypsum plasters. Part 1: Definitions and requirements. Madrid, Spain: AENOR.
AENOR (Spanish Association for Standardization and Certification). 2014. Yesos de construcción. Otros métodos de ensayo (“Gypsum plasters. Other test methods”). Madrid, Spain: AENOR.
Alameda, L., V. Calderón, C. Junco, A. Rodríguez, J. Gadea, and S. Gutiérrez-González. 2016. “Characterization of gypsum plasterboard with polyurethane foam waste reinforced with polypropylene fibers.” Mater. de Constr. 66 (Aug): 100. https://doi.org/10.3989/mc.2016.06015.
Chindaprasirt, P., K. Boonserm, T. Chairuangsri, W. Vichit-Vadakan, T. Eaimsin, T. Sato, and K. Pimraksa. 2011. “Plaster materials from waste calcium sulfate containing chemicals, organic fibers and inorganic additives.” Constr. Build. Mater. 25 (Jun): 3193–3203. https://doi.org/10.1016/j.conbuildmat.2011.03.004.
del Rio Merino, M. 1999. “Elaboration and constructive applications of prefabricated panels with lightened plaster and reinforced with glass fibers E and other additives” [Elaboración y aplicaciones constructivas de paneles prefabricados de escayola aligerada y reforzada con fibras de vidrio E y otros aditivos]. Ph.D. thesis, School of Architecture, Universidad Politécnica de Madrid.
del Rio Merino, M., P. Villoria Sáez, I. Longobardi, J. Santa Cruz Astorqui, and C. Porras-Amores. 2019. “Redesigning lightweight gypsum with mixes of polystyrene waste from construction and demolition waste.” J. Cleaner Prod. 220 (May): 144–151. https://doi.org/10.1016/j.jclepro.2019.02.132.
del Río Merino, M., F. H. Olivares, and P. C. Almenara. 2004. “Estado del arte sobre el comportamiento físico-mecánico de la escayola reforzada con fibras de vidrio E.” Informes de la Construcción 56 (Jun): 33–37.
del Río Merino, M., J. Santa Cruz Astorqui, P. Villoria Sáez, R. Santos Jiménez, and M. González Cortina. 2018. “Eco plaster mortars with addition of waste for high hardness coatings.” Constr. Build. Mater. 158 (Jan): 649–656. https://doi.org/10.1016/j.conbuildmat.2017.10.037.
del Río-Merino, M., A. Vidales-Barriguete, C. Piña-Ramírez, V. Vitiello, J. Santa Cruz-Astorqui, and R. Castelluccio. 2022. “A review of the research about gypsum mortars with waste aggregates.” J. Build. Eng. 45 (Jan): 103338. https://doi.org/10.1016/j.jobe.2021.103338.
de Villanueva Domínguez, L., and A. García Santos. 2001. Manual del yeso. Cie Inversiones Editoriales Dossat. Madrid, Spain: Dossat Editorial S. A.
European Commission. 2015. “Closing the loop-An EU action plan for the circular economy.” In Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions COM. Brussels, Belgium: European Commission.
European Commission. 2020. Horizon Europe. EU’s research and innovation funding programme from 2020-2027. Brussels, Belgium: European Commission.
European Parliament. 2008. Directive 2008/98/CE of the European Parliament and of the council of 19 November 2008 on waste and repealing certain directives, 3–30. Luxembourg: Official Journal of the European Union.
Eurostat. 2022. Eurostat waste statistics. Brussels, Belgium: European Commission.
Fleck, W., M. Jones, R. Kuntze, and H. McAdie. 1960. “The differential thermal analysis of natural and synthetic hydrates of calcium sulphate.” Can. J. Chem. 38 (131): 936–943. https://doi.org/10.1139/v60-131.
García Santos, A. 2009. “PPF-reinforced, ESP-lightened gypsum plaster.” Materiales de Construcción 59 (293): 105–124. https://doi.org/10.3989/mc.2009.41107.
Jia, R., Q. Wang, and P. Feng. 2021. “A comprehensive overview of fibre-reinforced gypsum-based composites (FRGCs) in the construction field.” Compos. Part B 205 (Jan): 108540. https://doi.org/10.1016/j.compositesb.2020.108540.
Jiménez Rivero, A., and J. García Navarro. 2017. “Characterization of quality recycled gypsum and plasterboard with maximized recycled content.” Mater. Constr. 67 (328): e137–e137. https://doi.org/10.3989/mc.2017.06016.
Leiva Aguilera, M., and M. Del Rio Merino. 2014. Additived plaster with rice husk waste, construction and building research, 463–470. Berlin: Springer.
Li, Z., X. Wang, Z. Zhu, and Z. Wu. 2022. “Effect of mixing methods on the dispersion of fibers in the gypsum matrix and performance improvement mechanism.” Constr. Build. Mater. 320 (Feb): 126193. https://doi.org/10.1016/j.conbuildmat.2021.126193.
Lozano-Díez, R. V., Ó. López-Zaldívar, S. Herrero-del-Cura, P. L. Mayor-Lobo, and F. Hernández-Olivares. 2021. “Mechanical behavior of plaster composites based on rubber particles from end-of-life tires reinforced with carbon fibers.” Materials (Basel) 14 (Jun): 3979. https://doi.org/10.3390/ma14143979.
Manzello, S. L., R. G. Gann, S. R. Kukuck, and D. B. Lenhert. 2007. “Influence of gypsum board type (X or C) on real fire performance of partition assemblies.” Fire Mater. Int. J. 31 (Jun): 425–442. https://doi.org/10.1002/fam.940.
Mercader-Moyano, M. P., and A. Ramirez-de-Arellano-Agudo. 2013. “Selective classification and quantification model of C&D waste from material resources consumed in residential building construction.” Waste Manage. Res. 31 (5): 458–474. https://doi.org/10.1177/0734242X13477719.
Morales Conde, M. J., C. Rodríguez Liñán, and M. A. Pedreño Rojas. 2016. “Physical and mechanical properties of wood-gypsum composites from demolition material in rehabilitation works.” Constr. Build. Mater. 114 (Apr): 6–14. https://doi.org/10.1016/j.conbuildmat.2016.03.137.
Morales-Conde, M., C. Rodríguez-Liñán, and M. Pedreño-Rojas. 2016. “Physical and mechanical properties of wood-gypsum composites from demolition material in rehabilitation works.” Constr. Build. Mater. 114 (3): 6–14. https://doi.org/10.1016/j.conbuildmat.2016.03.137.
Morales-Conde, M., P. Rubio-de-Hita, and F. Pérez-Gálvez. 2017. “Composite mortars produced with wood waste from demolition: Assessment of new compounds with enhanced thermal properties.” J. Mater. Civ. Eng. 30 (2): 04017273. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002148.
Morales-Segura, M., C. Porras-Amores, P. Villoria-Sáez, and D. Caballol-Bartolomé. 2020. “Characterization of gypsum composites containing cigarette butt waste for building applications.” Sustainability 12 (17): 7022. https://doi.org/10.3390/su12177022.
Murtagh, N., L. Scott, and J. Fan. 2020. “Sustainable and resilient construction: Current status and future challenges.” J. Cleaner Prod. 268 (Apr): 122264. https://doi.org/10.1016/j.jclepro.2020.122264.
Pedreño-Rojas, M., M. Morales-Conde, F. Pérez-Gálvez, and C. Rodríguez-Liñán. 2017. “Eco-efficient acoustic and thermal conditioning using false ceiling plates made from plaster and wood waste.” J. Cleaner Prod. 166 (Nov): 690–705. https://doi.org/10.1016/j.jclepro.2017.08.077.
Pedreño-Rojas, M. A., M. J. Morales-Conde, F. Pérez-Gálvez, and P. Rubio-de-Hita. 2020. “Reuse of CD and DVD wastes as reinforcement in gypsum plaster plates.” Materials (Basel) 13 (4): 989. https://doi.org/10.3390/ma13040989.
Pedreño-Rojas, M. A., M. J. Morales-Conde, P. Rubio-de-Hita, and F. Pérez-Gálvez. 2019. “Impact of wetting–drying cycles on the mechanical properties and microstructure of wood waste–gypsum composites.” Materials (Basel) 12 (Jun): 1829. https://doi.org/10.3390/ma12111829.
Porras Amores, C., J. Santa Cruz Astorqui, M. Del Rio Merino, P. Villoria Sáez, and C. Viñas Arrebola. 2019. “Thermal behavior of traditional lightweight gypsum with construction and demolition waste materials.” Dynamics 94 (4): 431–436. https://doi.org/10.6036/8983.
Rodríguez-Orejón, A., M. Del Río-Merino, and F. Fernández-Martínez. 2014. “Characterization mixtures of thick gypsum with addition of treated waste from laminated plasterboards.” Mater. de Constr. 64 (314): 18. https://doi.org/10.3989/mc.2014.03413.
Romaniega Piñeiro, S., M. del Río Merino, and C. Pérez García. 2015. “New plaster composite with mineral wool fibres from CDW recycling.” Adv. Mater. Sci. Eng. 2015 (Oct): 11. https://doi.org/10.1155/2015/854192.
Romero-Gómez, M., M. Pedreño-Rojas, F. Pérez-Galvez, and P. Rubio-de-Hita. 2021. “Characterization of gypsum composites with polypropylene fibers from non-degradable wet wipes.” J. Build. Eng. 34 (Aug): 101874. https://doi.org/10.1016/j.jobe.2020.101874.
Ryan, J. 1962. “Study of gypsum plasters exposed to fire.” J. Res. Nat. Bur. Standard 66 (Oct): 373–394. https://doi.org/10.6028/jres.066C.033.
Santa Cruz Astorqui, J., M. del Río Merino, P. Villoria Sáez, and C. Porras-Amores. 2017. “Analysis of the relationship between density and mechanical strength of lightened gypsums: Proposal for a coefficient of lightening.” Adv. Mater. Sci. Eng. 2017 (Oct): 10. https://doi.org/10.1155/2017/7092521.
Santa-Cruz-Astorqui, J., M. Del-Río-Merino, P. Villoria-Sáez, and C. Porras-Amores. 2019. “Analysis of the viability of prefabricated elements for partitions manufactured with plaster and EPS from waste recycling.” DYNA-Ingeniería e Industria 94 (Apr): 415–420. https://doi.org/10.6036/8984.
Santamaria Vicario, I., L. Alameda Cuenca-Romero, S. Gutierrez Gonzalez, V. Calderon Carpintero, and A. Rodriguez Saiz. 2020. “Design and characterization of gypsum mortars dosed with polyurethane foam waste PFW.” Materials (Basel) 13 (7): 1497. https://doi.org/10.3390/ma13071497.
Singh, M., and M. Garg. 1994. “Gypsum-based fibre-reinforced composites: An alternative to timber.” Constr. Build. Mater. 8 (3): 155–160. https://doi.org/10.1016/S0950-0618(09)90028-9.
Strydom, C., and J. Potgieter. 1999. “Dehydration behaviour of a natural gypsum and a phosphogypsum during milling.” Thermochim. Acta 332 (Apr): 89–96. https://doi.org/10.1016/S0040-6031(99)00083-0.
Vidales Barriguete, A., M. del Río Merino, E. Atanes Sánchez, C. Piña Ramírez, and C. Viñas Arrebola. 2018. “Analysis of the feasibility of the use of CDW as a low-environmental-impact aggregate in conglomerates.” Constr. Build. Mater. 178 (Jul): 83–91. https://doi.org/10.1016/j.conbuildmat.2018.05.011.
Villoria Sáez, P., M. del Río Merino, E. Atanes Sánchez, J. Santa Cruz Astorqui, and C. Porras-Amores. 2018. “Viability of gypsum composites with addition of glass waste for applications in construction.” J. Mater. Civ. Eng. 31 (3): 04018403. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002604.
Villoria Sáez, P., M. del Río Merino, M. Sorrentino, C. Porras Amores, J. Santa Cruz Astorqui, and C. Viñas Arrebola. 2020. “Mechanical characterization of gypsum composites containing inert and insulation materials from construction and demolition waste and further application as a gypsum block.” Materials (Basel) 13 (1): 193. https://doi.org/10.3390/ma13010193.
Xie, S., Z. Ji, Y. Yang, G. Hou, and J. Wang. 2017. “Layered gypsum-based composites with grid structures for S-band electromagnetic wave absorption.” Compos. Struct. 180 (Jun): 513–520. https://doi.org/10.1016/j.compstruct.2017.07.102.
Zak, P., T. Ashour, A. Korjenic, S. Korjenic, and W. Wu. 2016. “The influence of natural reinforcement fibers, gypsum and cement on compressive strength of earth bricks materials.” J. Constr. Build. Mater. 106 (Dec): 179–188. https://doi.org/10.1016/j.conbuildmat.2015.12.031.
Zhu, C., J. Zhang, J. Peng, W. Cao, and J. Liu. 2018. “Physical and mechanical properties of gypsum-based composites reinforced with PVA and PP fibers.” Constr. Build. Mater. 163 (Aug): 695–705. https://doi.org/10.1016/j.conbuildmat.2017.12.168.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 5May 2024

History

Received: Oct 26, 2022
Accepted: Oct 10, 2023
Published online: Feb 20, 2024
Published in print: May 1, 2024
Discussion open until: Jul 20, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Dany Tasán Cruz [email protected]
Universidad Politécnica de Madrid, Escuela Técnica Superior de Edificación, Departamento de Construcciones Arquitectónicas y su control, Avenida Juan de Herrera, 6, Madrid 28040, Spain; Universidad Nacional de Chimborazo, Facultad de Ingeniería, Escuela de Arquitectura, Avda Antonio José de Sucre, Riobamba 060150, Ecuador. Email: [email protected]
Professor, Universidad Politécnica de Madrid, Escuela Técnica Superior de Edificación, Departamento de Construcciones Arquitectónicas y su control, TEMA Research Group, Avenida Juan de Herrera, 6, Madrid 28040, Spain (corresponding author). ORCID: https://orcid.org/0000-0003-4096-6881. Email: [email protected]
Mariano González Cortina, Ph.D. [email protected]
Professor, Universidad Politécnica de Madrid, Escuela Técnica Superior de Edificación, Departamento de Construcciones Arquitectónicas y su control, Avenida Juan de Herrera, 6, Madrid 28040, Spain. Email: [email protected]
Anis Asadi Ardebili [email protected]
Universidad Politécnica de Madrid, Escuela Técnica Superior de Edificación, Departamento de Construcciones Arquitectónicas y su control, Avenida Juan de Herrera, 6, Madrid 28040, Spain. Email: [email protected]
Professor, Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingeniería y Diseño Industrial, Departamento de Ingeniería Mecánica, Química y Diseño Industrial, ACOM Research Group, Ronda de Valencia, 3, Madrid 28012, Spain. ORCID: https://orcid.org/0000-0002-0006-4595. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share