Technical Papers
Jun 24, 2023

Long-Term Self-Healing Efficiency of Bioconcrete Based on Integrated Sulfate- and Nitrate-Reducing Bacterial Granules

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 9

Abstract

This study evaluated the mechanical properties and self-healing performance of freshly casted and 19-month-aged bioconcrete samples with integrated sulfate-reducing bacteria (SRB) and nitrate-reducing bacteria (NRB) granules that were cultivated in an upflow anaerobic sludge blanket (UASB) reactor with synthetic wastewater. The 28-day compressive strength fulfilled the design requirement of 50 MPa. The apparent volume of permeable voids (AVPV) of fresh and aged bioconcrete met the limit of 13%. The self-healing ability was determined by exposing cracked bioconcrete to water media such as glucose, calcium acetate, tap water, and wastewater, which have shown calcite deposition in fresh and aged samples. The highest amount of calcite deposition was seen on fresh samples after glucose exposure (420  μm) and on aged bioconcrete after calcium acetate exposure (320  μm). Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS/XRD) results demonstrated that SRB/NRB granules survived mortar integration and deposition of calcite in both fresh and aged samples. The water permeability and acid resistance of bioconcrete samples were correlated to the amount of deposited calcite.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models, or code were generated or used during the study.

Acknowledgments

Kirthi Chetty receives the support from a University of Wollongong PhD scholarship and the Australian Nuclear Science and Technology Organization (ANSTO) Industry Foundations Scholarship. Guangming Jiang was the recipient of an Australian Research Council DECRA Fellowship (DE170100694).

References

Achal, V., A. Mukherjee, and M. S. Reddy. 2011. “Microbial concrete: Way to enhance the durability of building structures.” J. Mater. Civ. Eng. 23 (6): 730–734. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000159.
Albina, P., N. Durban, A. Bertron, A. Albrecht, J.-C. Robinet, and B. Erable. 2019. “Influence of hydrogen electron donor, alkaline pH, and high nitrate concentrations on microbial denitrification: A review.” Int. J. Mol. Sci. 20 (20): 5163. https://doi.org/10.3390/ijms20205163.
Alghamri, R., A. Kanellopoulos, and A. Al-Tabbaa. 2016. “Impregnation and encapsulation of lightweight aggregates for self-healing concrete.” Constr. Build. Mater. 124 (Oct): 910–921. https://doi.org/10.1016/j.conbuildmat.2016.07.143.
Alshalif, A., J. M. Irwan, N. Othman, and L. Anneza. 2016. “Isolation of sulphate reduction bacteria (SRB) to improve compress strength and water penetration of bio-concrete.” In Vol. 47 of Proc., MATEC Web of Conf., 1016. Les Ulis, France: EDP Sciences. https://doi.org/10.1051/matecconf/20164701016.
Al Zuhair, S., M. H. El-Naas, and H. Al Hassani. 2008. “Sulfate inhibition effect on sulfate reducing bacteria.” J. Biochem. Technol. 1 (2): 39–44.
AS (Australia Standards). 1998. Methods of testing concrete, method 12.2: Determination of mass per unit volume of hardened concrete—Rapid measuring method. AS 1012.12.1. Sydney, NSW, Australia: AS.
AS (Australia Standards). 1999. Method 21: Determination of water absorption and apparent volume of permeable voids in hardened concrete. AS 1012.21-1999. Sydney, NSW, Australia: AS.
AS (Australia Standards). 2006. Methods of testing Portland, blended and masonry cements—Compressive strength. AS 2350.11. Sydney, NSW, Australia: AS.
Bahareh, T., and M. Davood. 2019. “Penetrability, corrosion potential, and electrical resistivity of bacterial concrete.” J. Mater. Civ. Eng. 31 (3): 04019002. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002618.
Ben-Jacob, E., I. Cohen, and H. Levine. 2000. “Cooperative self-organization of microorganisms.” Adv. Phys. 49 (4): 395–554. https://doi.org/10.1080/000187300405228.
Braissant, O., A. W. Decho, C. Dupraz, C. Glunk, K. M. Przekop, and P. T. Visscher. 2007. “Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals.” Geobiology 5 (4): 401–411. https://doi.org/10.1111/j.1472-4669.2007.00117.x.
Cagatay Ersan, Y., and Y. Erşan. 2016. Microbial nitrate reduction induced autonomous self-healing in concrete. Ghent, Belgium: Ghent Univ.
Cam, N., K. Benzerara, T. Georgelin, M. Jaber, J.-F. Lambert, M. Poinsot, F. Skouri-Panet, and L. Cordier. 2016. “Selective uptake of alkaline earth metals by cyanobacteria forming intracellular carbonates.” Environ. Sci. Technol. 50 (21): 11654–11662. https://doi.org/10.1021/acs.est.6b02872.
Castanier, S., G. Le Métayer-Levrel, and J.-P. Perthuisot. 1999. “Ca-carbonates precipitation and limestone genesis—The microbiogeologist point of view.” Sediment. Geol. 126 (1): 9–23. https://doi.org/10.1016/S0037-0738(99)00028-7.
Castanier, S., G. Le Métayer-Levrel, and J.-P. Perthuisot. 2000. “Bacterial roles in the precipitation of carbonate minerals.” In Microbial sediments, edited by R. E. Riding and S. M. Awramik, 32–39. Berlin: Springer.
Chahal, N., R. Siddique, and A. Rajor. 2012. “Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete.” Constr. Build. Mater. 28 (1): 351–356. https://doi.org/10.1016/j.conbuildmat.2011.07.042.
Chang, Y.-J., Y.-T. Chang, C.-H. Hung, J.-W. Lee, H.-M. Liao, and H.-L. Chou. 2014. “Microbial community analysis of anaerobic bio-corrosion in different ORP profiles.” Int. Biodeterior. Biodegrad. 95 (Nov): 93–101. https://doi.org/10.1016/j.ibiod.2014.04.008.
Cherrak, M., A. Bali, and K. Silhadi. 2013. “Concrete mix design containing calcareous tuffs as a partial sand substitution.” Constr. Build. Mater. 47 (Oct): 318–323. https://doi.org/10.1016/j.conbuildmat.2013.05.051.
Chetty, K., S. Xie, Y. Song, T. McCarthy, U. Garbe, X. Li, and G. Jiang. 2021. “Self-healing bioconcrete based on non-axenic granules: A potential solution for concrete wastewater infrastructure.” J. Water Process Eng. 42 (Aug): 102139. https://doi.org/10.1016/j.jwpe.2021.102139.
Couradeau, E., K. Benzerara, E. Gérard, D. Moreira, S. Bernard, G. E. Brown Jr., and P. López-García. 2012. “An early-branching microbialite cyanobacterium forms intracellular carbonates.” Science 336 (6080): 459–462. https://doi.org/10.1126/science.1216171.
De Belie, N., et al. 2018. “A review of self-healing concrete for damage management of structures.” Adv. Mater. Interfaces 5 (17): 1800074. https://doi.org/10.1002/admi.201800074.
De Belie, N., and J. Wang. 2016. “Bacteria-based repair and self-healing of concrete.” J. Sustainable Cem.-Based Mater. 5 (1–2): 35–56. https://doi.org/10.1080/21650373.2015.1077754.
Dejong, J., B. Martinez, T. Ginn, C. Hunt, D. Major, and B. Tanyu. 2014. “Development of a scaled repeated five-spot treatment model for examining microbial induced calcite precipitation feasibility in field applications.” Geotech. Test. J. 37 (3): 424–435. https://doi.org/10.1520/GTJ20130089.
De Muynck, W., K. Cox, N. De Belie, and W. Verstraete. 2008. “Bacterial carbonate precipitation as an alternative surface treatment for concrete.” Constr. Build. Mater. 22 (5): 875–885. https://doi.org/10.1016/j.conbuildmat.2006.12.011.
Dhami, N. K., M. S. Reddy, and A. Mukherjee. 2013. “Biomineralization of calcium carbonates and their engineered applications: A review.” Front. Microbiol. 4 (Oct): 314. https://doi.org/10.3389/fmicb.2013.00314.
Erşan, Y., and T. H. Erguder. 2014. “The effect of seed sludge type on aerobic granulation via anoxic-aerobic operation.” Environ. Technol. 35 (33): 2928–2939. https://doi.org/10.1080/09593330.2014.925513.
Erşan, Y., E. Gruyaert, G. Louis, C. Lors, N. Belie, and N. Boon. 2015a. “Self-protected nitrate reducing culture for intrinsic repair of concrete cracks.” Front. Microbiol. 6 (Nov): 1228. https://doi.org/10.3389/fmicb.2015.01228.
Erşan, Y., K. Tittelboom, N. Boon, and N. Belie. 2018. “Nitrite producing bacteria inhibit reinforcement bar corrosion in cementitious materials.” Sci. Rep. 8 (1): 14092. https://doi.org/10.1038/s41598-018-32463-6.
Erşan, Y. Ç., F. B. Da Silva, N. Boon, W. Verstraete, and N. De Belie. 2015b. “Screening of bacteria and concrete compatible protection materials.” Constr. Build. Mater. 88 (Jul): 196–203. https://doi.org/10.1016/j.conbuildmat.2015.04.027.
Erşan, Y. Ç., E. Hernandez-Sanabria, N. Boon, and N. de Belie. 2016. “Enhanced crack closure performance of microbial mortar through nitrate reduction.” Cem. Concr. Compos. 70 (Jul): 159–170. https://doi.org/10.1016/j.cemconcomp.2016.04.001.
Fowler, D. W., and D. P. Whitney. 2011. Long-term performance of polymer concrete for bridge decks. Washington, DC: Transportation Research Board.
Gao, M., J. Guo, H. Cao, H. Wang, X. Xiong, R. Krastev, K. Nie, H. Xu, and L. Liu. 2020. “Immobilized bacteria with pH-response hydrogel for self-healing of concrete.” J. Environ. Manage. 261 (May): 110225. https://doi.org/10.1016/j.jenvman.2020.110225.
Görgen, S., K. Benzerara, F. Skouri-Panet, M. Gugger, F. Chauvat, and C. Cassier-Chauvat. 2021. “The diversity of molecular mechanisms of carbonate biomineralization by bacteria.” Discover Mater. 1 (1): 1–20. https://doi.org/10.1007/s43939-020-00001-9.
Gupta, S., H. W. Kua, and S. Dai Pang. 2018. “Healing cement mortar by immobilization of bacteria in biochar: An integrated approach of self-healing and carbon sequestration.” Cem. Concr. Compos. 86 (Feb): 238–254. https://doi.org/10.1016/j.cemconcomp.2017.11.015.
Gupta, S., S. D. Pang, and H. W. Kua. 2017. “Autonomous healing in concrete by bio-based healing agents: A review.” Constr. Build. Mater. 146 (Aug): 419–428. https://doi.org/10.1016/j.conbuildmat.2017.04.111.
Hao, T. W., P. Y. Xiang, H. R. Mackey, K. Chi, H. Lu, H. Kwong Chui, M. C. M. van Loosdrecht, and G. H. Chen. 2014. “A review of biological sulfate conversions in wastewater treatment.” Water Res. 65 (Nov): 1–21. https://doi.org/10.1016/j.watres.2014.06.043.
Huseien, G. F., J. Mirza, N. F. Ariffin, and M. W. Hussin. 2015. “Synthesis and characterization of self-healing mortar with modified strength.” J. Teknologi 76 (1): 195–200. https://doi.org/10.11113/jt.v76.3688.
Huseien, G. F., M. L. Nehdi, I. Faridmehr, S. K. Ghoshal, H. K. Hamzah, O. Benjeddou, and F. Alrshoudi. 2022. “Smart bio-agents-activated sustainable self-healing cementitious materials: An all-inclusive overview on progress, benefits and challenges.” Sustainability 14 (4): 1980. https://doi.org/10.3390/su14041980.
Jiang, G., A. Keating, S. Corrie, K. O’halloran, L. Nguyen, and Z. Yuan. 2013. “Dosing free nitrous acid for sulfide control in sewers: Results of field trials in Australia.” Water Res. 47 (13): 4331–4339. https://doi.org/10.1016/j.watres.2013.05.024.
Jiang, G., K. R. Sharma, A. Guisasola, J. Keller, and Z. Yuan. 2009. “Sulfur transformation in rising main sewers receiving nitrate dosage.” Water Res. 43 (17): 4430–4440. https://doi.org/10.1016/j.watres.2009.07.001.
Jiang, G., X. Sun, J. Keller, and P. L. Bond. 2015. “Identification of controlling factors for the initiation of corrosion of fresh concrete sewers.” Water Res. 80 (Sep): 30–40. https://doi.org/10.1016/j.watres.2015.04.015.
Jin, C., and M. Baskaran. 2018. “Analysis of explicit vs. implicit tasking in OpenMP using Kripke.” In Proc., 2018  IEEE/ACM 4th Int. Workshop on Extreme Scale Programming Models and Middleware (ESPM2), 62–70. New York: IEEE.
Jonkers, H. M. 2007. “Self healing concrete: A biological approach.” In Self healing materials: An alternative approach to 20 centuries of materials science, 195–204. Dordrecht, Netherlands: Springer.
Jonkers, H. M., and E. Schlangen. 2007. “Crack repair by concrete-immobilized bacteria.” In Proc., 1st Int. Conf. Self Healing Materials, 20. Dordrecht, Netherlands: Springer.
Jonkers, H. M., and E. Schlangen. 2008. “A two component bacteria-based self-healing concrete.” In Concrete repair, rehabilitation and retrofitting II, 137–138. Boca Raton, FL: CRC Press.
Jonkers, H. M., A. Thijssen, G. Muyzer, O. Copuroglu, and E. Schlangen. 2010. “Application of bacteria as self-healing agent for the development of sustainable concrete.” Ecol. Eng. 36 (2): 230–235. https://doi.org/10.1016/j.ecoleng.2008.12.036.
Kirov, G. K., I. Vesselinov, and Z. Cherneva. 1972. “Conditions of formation of calcite crystals of tabular and acute rhombohedral habits.” Krist. Tech. 7 (5): 497–509. https://doi.org/10.1002/crat.19720070503.
Krause, S., V. Liebetrau, C. R. Löscher, F. Böhm, S. Gorb, A. Eisenhauer, and T. Treude. 2018. “Marine ammonification and carbonic anhydrase activity induce rapid calcium carbonate precipitation.” Geochim. Cosmochim. Acta 243 (Dec): 116–132. https://doi.org/10.1016/j.gca.2018.09.018.
Li, L., Q. Zheng, Z. Li, A. Ashour, and B. Han. 2019a. “Bacterial technology-enabled cementitious composites: A review.” Compos. Struct. 225 (Oct): 111170. https://doi.org/10.1016/j.compstruct.2019.111170.
Li, Q., L. Csetenyi, and G. M. Gadd. 2014. “Biomineralization of metal carbonates by Neurospora crassa.” Environ. Sci. Technol. 48 (24): 14409–14416. https://doi.org/10.1021/es5042546.
Li, Q., L. Csetenyi, G. I. Paton, and G. M. Gadd. 2015. “CaCO3 and SrCO3 bioprecipitation by fungi isolated from calcareous soil.” Environ. Microbiol. 17 (8): 3082–3097. https://doi.org/10.1111/1462-2920.12954.
Li, X., P. L. Bond, L. O’Moore, S. Wilkie, L. Hanzic, I. Johnson, K. Mueller, Z. Yuan, and G. Jiang. 2020a. “Increased resistance of nitrite-admixed concrete to microbially induced corrosion in real sewers.” Environ. Sci. Technol. 54 (4): 2323–2333. https://doi.org/10.1021/acs.est.9b06680.
Li, X., L. O’Moore, Y. Song, P. L. Bond, Z. Yuan, S. Wilkie, L. Hanzic, and G. Jiang. 2019b. “The rapid chemically induced corrosion of concrete sewers at high H2S concentration.” Water Res. 162 (Oct): 95–104. https://doi.org/10.1016/j.watres.2019.06.062.
Li, X., L. O’Moore, S. Wilkie, Y. Song, J. Wei, P. L. Bond, Z. Yuan, L. Hanzic, and G. Jiang. 2020b. “Nitrite admixed concrete for wastewater structures: Mechanical properties, leaching behavior and biofilm development.” Constr. Build. Mater. 233 (Feb): 117341. https://doi.org/10.1016/j.conbuildmat.2019.117341.
Li, Z., C. Leung, and Y. Xi. 2009. Structural renovation in concrete. Boca Raton, FL: CRC Press.
Luukkonen, T., Z. Abdollahnejad, J. Yliniemi, P. Kinnunen, and M. Illikainen. 2018. “One-part alkali-activated materials: A review.” Cem. Concr. Res. 103 (Jan): 21–34. https://doi.org/10.1016/j.cemconres.2017.10.001.
Lv, Y., C. Wan, X. Liu, Y. Zhang, D.-J. Lee, and J.-H. Tay. 2013. “Drying and re-cultivation of aerobic granules.” Bioresour. Technol. 129 (Feb): 700–703. https://doi.org/10.1016/j.biortech.2012.12.178.
Ma, C., B. Chen, and L. Chen. 2016. “Effect of organic matter on strength development of self-compacting earth-based construction stabilized with cement-based composites.” Constr. Build. Mater. 123 (Oct): 414–423. https://doi.org/10.1016/j.conbuildmat.2016.07.018.
Mehta, N., K. Benzerara, B. D. Kocar, and V. Chapon. 2019. “Sequestration of radionuclides radium-226 and strontium-90 by cyanobacteria forming intracellular calcium carbonates.” Environ. Sci. Technol. 53 (21): 12639–12647. https://doi.org/10.1021/acs.est.9b03982.
Meng, W., M. Valipour, and K. H. Khayat. 2017. “Optimization and performance of cost-effective ultra-high performance concrete.” Mater. Struct. 50 (1): 1–16. https://doi.org/10.1617/s11527-016-0896-3.
Muyzer, G., and A. J. M. Stams. 2008. “The ecology and biotechnology of sulphate-reducing bacteria.” Nat. Rev. Microbiol. 6 (6): 441. https://doi.org/10.1038/nrmicro1892.
Nemati, M., and G. Voordouw. 2003. “Modification of porous media permeability, using calcium carbonate produced enzymatically in situ.” Enzyme Microbiol. Technol. 33 (5): 635–642. https://doi.org/10.1016/S0141-0229(03)00191-1.
Nodehi, M., T. Ozbakkaloglu, and A. Gholampour. 2022. “A systematic review of bacteria-based self-healing concrete: Biomineralization, mechanical, and durability properties.” J. Build. Eng. 49 (May): 104038. https://doi.org/10.1016/j.jobe.2022.104038.
Nosouhian, F., D. Mostofinejad, H. Hasheminejad, N. Farzaneh, M. Davood, and H. Hasti. 2016. “Concrete durability improvement in a sulfate environment using bacteria.” J. Mater. Civ. Eng. 28 (1): 04015064. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001337.
O’Flaherty, V., and E. Colleran. 1999. “Effect of sulphate addition on volatile fatty acid and ethanol degradation in an anaerobic hybrid reactor. I: Process disturbance and remediation.” Bioresour. Technol. 68 (2): 101–107. https://doi.org/10.1016/S0960-8524(98)00145-X.
Pham, V. P., L. A. van Paassen, W. R. L. van der Star, and T. J. Heimovaara. 2018. “Evaluating strategies to improve process efficiency of denitrification-based MICP.” J. Geotech. Geoenviron. Eng. 144 (8): 04018049. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001909.
Randall, D. J., and T. K. N. Tsui. 2002. “Ammonia toxicity in fish.” Mar. Pollut. Bull. 45 (1): 17–23. https://doi.org/10.1016/S0025-326X(02)00227-8.
Sarda, D., H. S. Choonia, D. D. Sarode, and S. S. Lele. 2009. “Biocalcification by Bacillus pasteurii urease: A novel application.” J. Ind. Microbiol. Biotechnol. 36 (8): 1111–1115. https://doi.org/10.1007/s10295-009-0581-4.
Satoh, H., M. Odagiri, T. Ito, and S. Okabe. 2009. “Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system.” Water Res. 43 (18): 4729–4739. https://doi.org/10.1016/j.watres.2009.07.035.
Schuab, M. R., W. J. dos Santos, and P. H. R. Borges. 2021. “On the development of MK/BFS alkali-activated materials as repair mortars: Performance under free and restrained shrinkage tests.” Constr. Build. Mater. 275 (Mar): 122109. https://doi.org/10.1016/j.conbuildmat.2020.122109.
Seifan, M., A. Samani, and A. Berenjian. 2016. “Bioconcrete: Next generation of self-healing concrete.” Appl. Microbiol. Biotechnol. 100 (6): 2591–2602. https://doi.org/10.1007/s00253-016-7316-z.
Sierra-Beltran, M. G., H. M. Jonkers, and E. Schlangen. 2014. “Characterization of sustainable bio-based mortar for concrete repair.” Constr. Build. Mater. 67 (Sep): 344–352. https://doi.org/10.1016/j.conbuildmat.2014.01.012.
Silva, F. B., N. Boon, N. De Belie, and W. Verstraete. 2015a. “Industrial application of biological self-healing concrete: Challenges and economical feasibility.” J. Commer. Biotechnol. 21 (Jan): 31–38. https://doi.org/10.5912/jcb662.
Silva, F. B., N. De Belie, N. Boon, and W. Verstraete. 2015b. “Production of non-axenic ureolytic spores for self-healing concrete applications.” Constr. Build. Mater. 93 (Sep): 1034–1041. https://doi.org/10.1016/j.conbuildmat.2015.05.049.
Son, H. M., H. Y. Kim, S. M. Park, and H. K. Lee. 2018. “Ureolytic/non-ureolytic bacteria co-cultured self-healing agent for cementitious materials crack repair.” Materials 11 (5): 782. https://doi.org/10.3390/ma11050782.
Song, Y., K. Chetty, U. Garbe, J. Wei, H. Bu, L. O’moore, X. Li, Z. Yuan, T. McCarthy, and G. Jiang. 2021. “A novel granular sludge-based and highly corrosion-resistant bio-concrete in sewers.” Sci. Total Environ. 791 (Oct): 148270. https://doi.org/10.1016/j.scitotenv.2021.148270.
Stengel, T., and P. Schießl. 2014. “Life cycle assessment (LCA) of ultra high performance concrete (UHPC) structures.” In Eco-efficient construction and building materials, 528–564. Sawston, UK: Woodhead Publishing.
Sun, X., G. Jiang, P. L. Bond, and J. Keller. 2015. “Impact of fluctuations in gaseous H2S concentrations on sulfide uptake by sewer concrete: The effect of high H2S loads.” Water Res. 81 (Sep): 84–91. https://doi.org/10.1016/j.watres.2015.05.044.
Sun, X., G. Jiang, P. L. Bond, T. Wells, and J. Keller. 2014. “A rapid, non-destructive methodology to monitor activity of sulfide-induced corrosion of concrete based on H2S uptake rate.” Water Res. 59 (Aug): 229–238. https://doi.org/10.1016/j.watres.2014.04.016.
van Paassen, L. A., C. M. Daza, M. Staal, D. Y. Sorokin, W. van der Zon, and M. C. M. van Loosdrecht. 2010. “Potential soil reinforcement by biological denitrification.” Ecol. Eng. 36 (2): 168–175. https://doi.org/10.1016/j.ecoleng.2009.03.026.
Van Tittelboom, K., et al. 2016. “Comparison of different approaches for self-healing concrete in a large-scale lab test.” Constr. Build. Mater. 107 (Mar): 125–137. https://doi.org/10.1016/j.conbuildmat.2015.12.186.
Wang, J., N. Belie, and W. Verstraete. 2011a. “Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete.” J. Ind. Microbiol. Biotechnol. 39 (4): 567–577. https://doi.org/10.1007/s10295-011-1037-1.
Wang, J., N. De Belie, and W. Verstraete. 2011b. “A microbial based system developed for self-healing concrete cracks.” In Proc., 7th Int. Symp. on Cement Based Materials for a Sustainable Agriculture, 17–24. Ghent, Belgium: Ghent Univ.
Wang, J., A. Mignon, D. Snoeck, V. Wiktor, N. Boon, and N. Belie. 2015. “Application of modified-alginate encapsulated carbonate producing bacteria in concrete: A promising strategy for crack self-healing.” Front. Microbiol. 6 (Oct): 1088. https://doi.org/10.3389/fmicb.2015.01088.
Wang, J., H. Soens, W. Verstraete, and N. De Belie. 2014a. “Self-healing concrete by use of microencapsulated bacterial spores.” Cem. Concr. Res. 56 (Feb): 139–152. https://doi.org/10.1016/j.cemconres.2013.11.009.
Wang, J., K. Van Tittelboom, N. De Belie, and W. Verstraete. 2012. “Use of silica gel or polyurethane immobilized bacteria for self-healing concrete.” Constr. Build. Mater. 26 (1): 532–540. https://doi.org/10.1016/j.conbuildmat.2011.06.054.
Wang, J. Y., D. Snoeck, S. Van Vlierberghe, W. Verstraete, and N. De Belie. 2014b. “Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete.” Constr. Build. Mater. 68 (Oct): 110–119. https://doi.org/10.1016/j.conbuildmat.2014.06.018.
Wei, S., M. Sanchez, D. Trejo, and C. Gillis. 2010. “Microbial mediated deterioration of reinforced concrete structures.” Int. Biodeterior. Biodegrad. 64 (8): 748–754. https://doi.org/10.1016/j.ibiod.2010.09.001.
Whiffin, V., L. van Paassen, and M. P. Harkes. 2007. “Microbial carbonate precipitation as a soil improvement technique.” Geomicrobiol. J. 24 (5): 417–423. https://doi.org/10.1080/01490450701436505.
Wiktor, V., and H. M. Jonkers. 2011. “Quantification of crack-healing in novel bacteria-based self-healing concrete.” Cem. Concr. Compos. 33 (7): 763–770. https://doi.org/10.1016/j.cemconcomp.2011.03.012.
Wille, K., A. E. Naaman, S. El-Tawil, and G. J. Parra-Montesinos. 2012. “Ultra-high performance concrete and fiber reinforced concrete: Achieving strength and ductility without heat curing.” Mater. Struct. 45 (3): 309–324. https://doi.org/10.1617/s11527-011-9767-0.
Xu, J., and X. Wang. 2018. “Self-healing of concrete cracks by use of bacteria-containing low alkali cementitious material.” Constr. Build. Mater. 167 (Aug): 1–14. https://doi.org/10.1016/j.conbuildmat.2018.02.020.
Zhang, W., Q. Zheng, A. Ashour, and B. Han. 2020. “Self-healing cement concrete composites for resilient infrastructures: A review.” Composites, Part B 189 (May): 107892. https://doi.org/10.1016/j.compositesb.2020.107892.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 9September 2023

History

Received: Jul 5, 2022
Accepted: Feb 15, 2023
Published online: Jun 24, 2023
Published in print: Sep 1, 2023
Discussion open until: Nov 24, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

School of Civil, Mining, and Environmental Engineering, Univ. of Wollongong, Wollongong, NSW 2522, Australia. ORCID: https://orcid.org/0000-0002-8067-5424. Email: [email protected]
Instrument Scientist, Australia’s Nuclear Science and Technology Organisation, Australian Centre for Neutron Scattering (ACNS), New Illawarra Rd., Lucas Heights, NSW 2234, Australia. Email: [email protected]
Timothy McCarthy [email protected]
Professor, School of Civil, Mining, and Environmental Engineering, Univ. of Wollongong, Wollongong, NSW 2522, Australia. Email: [email protected]
Professor, School of Civil, Mining, and Environmental Engineering, Univ. of Wollongong, Wollongong, NSW 2522, Australia. Email: [email protected]
Associate Professor, School of Civil, Mining, and Environmental Engineering, Univ. of Wollongong, Wollongong, NSW 2522, Australia (corresponding author). ORCID: https://orcid.org/0000-0001-5399-8239. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share