Technical Papers
Aug 19, 2024

Biochemical Methane Potential of Microalgae Cultivated in High-Strength Beverage Wastewater: Implications for Energy Enhancement

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 29, Issue 1

Abstract

This study aimed to assess the biochemical methane potential (BMP) of microalgal substrates grown on high-strength beverage wastewater as a potential end-use application for biomass. Two microalgal species, Scenedesmus obliquus and Chlorella pyrenoidosa, were cultivated in standard Blue Green-11 (BG-11) media and high-strength beverage wastewater with a COD of around 5,000 mg L−1. A BMP of 185.53 ± 2.66 mL CH4 g−1 VSadded was obtained from Scenedesmus grown in BG-11 media, which increased to 336.35 ± 26.56 mL CH4 g−1 VSadded after being grown in beverage wastewater. Similar increasing patterns were also observed in the case of Chlorella, where the BMP increased from 179.64 ± 4.14 to 245.51 ± 29.35 mL CH4 g−1 VSadded when changing the media from BG-11 to beverage wastewater. After lipid extraction, microalgae substrates yielded higher methane production, with 393.66 ± 41.08 and 421.86 ± 47.52 mL CH4 g−1 VSadded from Scenedesmus and Chlorella, respectively. Theoretical methane estimation from carbohydrate, protein, and lipid contents resulted in overestimating BMP. However, ANOVA statistics highlighted significant differences in experimental methane yields, and the modified Gompertz model validated the predicted BMP with the experimental values, with an R2 above 0.94. Overall, this study outlines the potential for biomethane enhancement from microalgae grown in wastewater, with an extended energy recovery opportunity after lipid extraction.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and codes generated or used during the study appear in the published article.

Acknowledgments

The FIRST@IITH initiative of the Indian Institute of Technology, Hyderabad supported this study financially. The authors express gratitude to the institute and Office of International Relations for all the resources that enabled the completion of this research.

References

Abdelfattah, A., et al. 2023. “Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects.” Environ. Sci. Ecotechnol. 13: 100205. https://doi.org/10.1016/j.ese.2022.100205.
Ali, S. S., S. G. Mastropetros, M. Schagerl, M. Sakarika, T. Elsamahy, M. El-Sheekh, J. Sun, and M. Kornaros. 2022. “Recent advances in wastewater microalgae-based biofuels production: A state-of-the-art review.” Energy Rep. 8: 13253–13280. https://doi.org/10.1016/j.egyr.2022.09.143.
AlMomani, F., and B. Örmeci. 2020. “Assessment of algae-based wastewater treatment in hot climate region: Treatment performance and kinetics.” Process Saf. Environ. Prot. 141: 140–149. https://doi.org/10.1016/j.psep.2020.03.031.
Alzate, M. E., R. Muñoz, F. Rogalla, F. Fdz-Polanco, and S. I. Pérez-Elvira. 2014. “Biochemical methane potential of microalgae biomass after lipid extraction.” Chem. Eng. J. 243: 405–410. https://doi.org/10.1016/j.cej.2013.07.076.
APHA, AWWA, and WEF (American Public Health Association, American Water Works Association, and Water Environment Federation). 2017. “Physical and aggregate properties.” In Standard methods for the examination of water and wastewater, edited by R. B. Baird, A. D. Eaton, and E. W. Rice. Washington, DC: APHA, AWWA, and WEF.
Angelidaki, I., and W. Sanders. 2004. “Assessment of the anaerobic biodegradability of macropollutants.” Rev. Environ. Sci. Biotechnol. 3 (2): 117–129. https://doi.org/10.1007/s11157-004-2502-3.
Avila, R., E. Carrero, T. Vicent, and P. Blánquez. 2021. “Integration of enzymatic pretreatment and sludge co-digestion in biogas production from microalgae.” Waste Manage. (Oxford) 124: 254–263. https://doi.org/10.1016/j.wasman.2021.01.042.
Bligh, E. G., and W. J. Dyer. 1959. “A rapid method of total lipid extraction and purification.” Can. J. Biochem. Physiol. 37 (8): 911–917. https://doi.org/10.1139/o59-099.
Bohutskyi, P., D. Phan, A. M. Kopachevsky, S. Chow, E. J. Bouwer, and M. J. Betenbaugh. 2018. “Synergistic co-digestion of wastewater grown algae–bacteria polyculture biomass and cellulose to optimize carbon-to-nitrogen ratio and application of kinetic models to predict anaerobic digestion energy balance.” Bioresour. Technol. 269: 210–220. https://doi.org/10.1016/j.biortech.2018.08.085.
Borowski, S., W. Cieciura-Włoch, and P. Liczbiński. 2024. “Enhancement of biogas production from vegetable waste by application of mineral fertilizers.” Bioenergy Res. 17 (2): 972–982. https://doi.org/10.1007/s12155-023-10700-9.
Cai, Y., et al. 2022. “Effects of C/N ratio on the growth and protein accumulation of heterotrophic Chlorella in broken rice hydrolysate.” Biotechnol. Biofuels Bioprod. 15 (1): 102. https://doi.org/10.1186/s13068-022-02204-z.
Chen, S., X. Li, X. Ma, R. Qing, Y. Chen, H. Zhou, Y. Yu, J. Li, and Z. Tan. 2023. “Lighting the way to sustainable development: Physiological response and light control strategy in microalgae-based wastewater treatment under illumination.” Sci. Total Environ. 903: 166298. https://doi.org/10.1016/j.scitotenv.2023.166298.
Dasa, K. T., S. Y. Westman, R. Millati, M. N. Cahyanto, M. J. Taherzadeh, and C. Niklasson. 2016. “Inhibitory effect of long-chain fatty acids on biogas production and the protective effect of membrane bioreactor.” Biomed. Res. Int. 2016: 1–9. https://doi.org/10.1155/2016/7263974.
El-Sheekh, M. M., H. R. Galal, A. S. H. H. Mousa, and A. A. M. Farghl. 2023. “Coupling wastewater treatment, biomass, lipids, and biodiesel production of some green microalgae.” Environ. Sci. Pollut. Res. 30 (12): 35492–35504. https://doi.org/10.1007/s11356-023-25628-y.
Eusébio, A., C. A. Santos, and I. P. Marques. 2023. “Anaerobic digestion of microalga Chlorella protothecoides and metagenomic analysis of reddish-colored digestate.” Appl. Sci. 13 (5): 3325. https://doi.org/10.3390/app13053325.
Filer, J., H. H. Ding, and S. Chang. 2019. “Biochemical methane potential (BMP) assay method for anaerobic digestion research.” Water 11 (5): 921. https://doi.org/10.3390/w11050921.
Gao, F., H.-L. Yang, C. Li, Y.-Y. Peng, M.-M. Lu, W.-H. Jin, J.-J. Bao, and Y.-M. Guo. 2019. “Effect of organic carbon to nitrogen ratio in wastewater on growth, nutrient uptake and lipid accumulation of a mixotrophic microalgae Chlorella sp.” Bioresour. Technol. 282: 118–124. https://doi.org/10.1016/j.biortech.2019.03.011.
Guo, S., C. Lu, K. Wang, J. Wang, Z. Zhang, Y. Jing, and Q. Zhang. 2020. “Enhancement of pH values stability and photo-fermentation biohydrogen production by phosphate buffer.” Bioengineered 11 (1): 291–300. https://doi.org/10.1080/21655979.2020.1736239.
Hillig, F., S. Annemüller, M. Chmielewska, M. Pilarek, S. Junne, and P. Neubauer. 2013. “Bioprocess development in single-use systems for heterotrophic marine microalgae.” Chem. Ing. Tech. 85 (1–2): 153–161. https://doi.org/10.1002/cite.201200143.
Jafari-Sejahrood, A., B. Najafi, S. Faizollahzadeh Ardabili, S. Shamshirband, A. Mosavi, and K. Chau. 2019. “Limiting factors for biogas production from cow manure: Energo-environmental approach.” Eng. Appl. Comput. Fluid Mech. 13 (1): 954–966. https://doi.org/10.1080/19942060.2019.1654411.
Katam, K., R. Ananthula, S. Anumala, M. Sriariyanun, and D. Bhattacharyya. 2022. “The impact of light intensity and wavelength on the performance of algal–bacterial culture treating domestic wastewater.” E3S Web Conf. 355: 02003. https://doi.org/10.1051/e3sconf/202235502003.
Kendir, E., and A. Ugurlu. 2018. “A comprehensive review on pretreatment of microalgae for biogas production.” Int. J. Energy Res. 42 (12): 3711–3731. https://doi.org/10.1002/er.4100.
Kilbane, J. J. 2022. “Shining a light on wastewater treatment with microalgae.” Arabian J. Sci. Eng. 47 (1): 45–56. https://doi.org/10.1007/S13369-021-06444-3.
Klassen, V., O. Blifernez-Klassen, D. Wibberg, A. Winkler, J. Kalinowski, C. Posten, and O. Kruse. 2017. “Highly efficient methane generation from untreated microalgae biomass.” Biotechnol. Biofuels 10 (1): 186. https://doi.org/10.1186/s13068-017-0871-4.
Lage, S., A. Willfors, A. Hörnberg, and F. G. Gentili. 2021. “Impact of organic solvents on lipid-extracted microalgae residues and wastewater sludge co-digestion.” Bioresour. Technol. Rep. 16: 100850. https://doi.org/10.1016/j.biteb.2021.100850.
Leong, W. H., et al. 2023. “Energy balance and life cycle assessments in producing microalgae biodiesel via a continuous microalgal–bacterial photobioreactor loaded with wastewater.” Chemosphere 341: 139953. https://doi.org/10.1016/j.chemosphere.2023.139953.
Li, S., S. Zhao, S. Yan, Y. Qiu, C. Song, Y. Li, and Y. Kitamura. 2019. “Food processing wastewater purification by microalgae cultivation associated with high value-added compounds production—A review.” Chin. J. Chem. Eng. 27 (12): 2845–2856. https://doi.org/10.1016/j.cjche.2019.03.028.
Liu, T., Z. Chen, Y. Xiao, M. Yuan, C. Zhou, G. Liu, J. Fang, and B. Yang. 2022. “Biochemical and morphological changes triggered by nitrogen stress in the oleaginous microalga chlorella vulgaris.” Microorganisms 10 (3): 566. https://doi.org/10.3390/microorganisms10030566.
Loewus, F. A. 1952. “Improvement in anthrone method for determination of carbohydrates.” Anal. Chem. 24 (1): 219. https://doi.org/10.1021/ac60061a050.
Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. “Protein measurement with the folin phenol reagent.” J. Biol. Chem. 193 (1): 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6.
Magdalena, J. A., M. Ballesteros, and C. González-Fernandez. 2018. “Efficient anaerobic digestion of microalgae biomass: Proteins as a key macromolecule.” Molecules 23 (5): 1098. https://doi.org/10.3390/molecules23051098.
Mendez, L., A. Mahdy, M. Ballesteros, and C. González-Fernández. 2015. “Chlorella vulgaris vs cyanobacterial biomasses: Comparison in terms of biomass productivity and biogas yield.” Energy Convers. Manage. 92: 137–142. https://doi.org/10.1016/j.enconman.2014.11.050.
Milledge, J. J., B. V. Nielsen, S. Maneein, and P. J. Harvey. 2019. “A brief review of anaerobic digestion of algae for bioenergy.” Energies 12 (6): 1166. https://doi.org/10.3390/en12061166.
Musa Ardo, F., et al. 2023. “Green hydrogen derived from municipal wastewater via bioconversion by attached microalgae onto various sizes of polyurethane foam cubes.” Fuel 350: 128894. https://doi.org/10.1016/j.fuel.2023.128894.
Nagappan, S., S. Devendran, P.-C. Tsai, H. Jayaraman, V. Alagarsamy, A. Pugazhendhi, and V. K. Ponnusamy. 2020. “Metabolomics integrated with transcriptomics and proteomics: Evaluation of systems reaction to nitrogen deficiency stress in microalgae.” Process Biochem. 91: 1–14. https://doi.org/10.1016/j.procbio.2019.11.027.
Najjar, Y. S. H., and A. Abu-Shamleh. 2020. “Harvesting of microalgae by centrifugation for biodiesel production: A review.” Algal. Res. 51: 102046. https://doi.org/10.1016/j.algal.2020.102046.
Nielfa, A., R. Cano, and M. Fdz-Polanco. 2015. “Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge.” Biotechnol. Rep 5: 14–21. https://doi.org/10.1016/j.btre.2014.10.005.
Obeid, W., E. Salmon, and P. G. Hatcher. 2014. “The effect of different isolation procedures on algaenan molecular structure in Scenedesmus green algae.” Org. Geochem. 76: 259–269. https://doi.org/10.1016/j.orggeochem.2014.09.004.
Otondo, A., B. Kokabian, S. Stuart-Dahl, and V. G. Gude. 2018. “Energetic evaluation of wastewater treatment using microalgae, Chlorella vulgaris.” J. Environ. Chem. Eng. 6 (2): 3213–3222. https://doi.org/10.1016/j.jece.2018.04.064.
Park, K. Y., J. Kweon, P. Chantrasakdakul, K. Lee, and H. Y. Cha. 2013. “Anaerobic digestion of microalgal biomass with ultrasonic disintegration.” Int. Biodeterior. Biodegrad. 85: 598–602. https://doi.org/10.1016/j.ibiod.2013.03.035.
Passos, F., L. Felix, H. Rocha, J. d. O. Pereira, and S. de Aquino. 2016. “Reuse of microalgae grown in full-scale wastewater treatment ponds: Thermochemical pretreatment and biogas production.” Bioresour. Technol. 209: 305–312. https://doi.org/10.1016/j.biortech.2016.03.006.
Perazzoli, S., B. M. Bruchez, W. Michelon, R. L. R. Steinmetz, M. P. Mezzari, E. O. Nunes, and M. L. B. da Silva. 2016. “Optimizing biomethane production from anaerobic degradation of Scenedesmus spp. biomass harvested from algae-based swine digestate treatment.” Int. Biodeterior. Biodegrad. 109: 23–28. https://doi.org/10.1016/j.ibiod.2015.12.027.
Plöhn, M., O. Spain, S. Sirin, M. Silva, C. Escudero-Oñate, L. Ferrando-Climent, Y. Allahverdiyeva, and C. Funk. 2021. “Wastewater treatment by microalgae.” Physiol. Plant. 173 (2): 568–578. https://doi.org/10.1111/ppl.13427.
Rafa, N., S. F. Ahmed, I. A. Badruddin, M. Mofijur, and S. Kamangar. 2021. “Strategies to produce cost-effective third-generation biofuel from microalgae.” Front. Energy Res. 9: 749968. https://doi.org/10.3389/fenrg.2021.749968.
Rajagopal, R., S. E. Mousavi, B. Goyette, and S. Adhikary. 2021. “Coupling of microalgae cultivation with anaerobic digestion of poultry wastes: Toward sustainable value added bioproducts.” Bioengineering 8 (5): 57. https://doi.org/10.3390/bioengineering8050057.
Roy, S. S., and R. Pal. 2015. “Microalgae in aquaculture: A review with special references to nutritional value and fish dietetics.” Proc. Zool. Soc. 68 (1): 1–8. https://doi.org/10.1007/s12595-013-0089-9.
Sartori, R. B., R. G. Vendruscolo, S. R. Ribeiro, V. J. M. Furlan, R. Wagner, L. Q. Zepka, and E. Jacob-Lopes. 2022. “The role of photo-cycles in the modulation of growth and biochemical profile of microalgae: Part I—Food interest compounds.” Life 12 (3): 462. https://doi.org/10.3390/life12030462.
Sharma, J., V. Kumar, S. S. Kumar, S. K. Malyan, T. Mathimani, N. R. Bishnoi, and A. Pugazhendhi. 2020. “Microalgal consortia for municipal wastewater treatment—Lipid augmentation and fatty acid profiling for biodiesel production.” J. Photochem. Photobiol. B 202: 111638. https://doi.org/10.1016/j.jphotobiol.2019.111638.
Sialve, B., N. Bernet, and O. Bernard. 2009. “Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable.” Biotechnol. Adv. 27 (4): 409–416. https://doi.org/10.1016/j.biotechadv.2009.03.001.
Singh, J., and S. Gu. 2010. “Commercialization potential of microalgae for biofuels production.” Renewable Sustainable Energy Rev. 14 (9): 2596–2610. https://doi.org/10.1016/j.rser.2010.06.014.
Srivastava, G., V. Kumar, R. Tiwari, R. Patil, A. Kalamdhad, and V. Goud. 2022. “Anaerobic co-digestion of defatted microalgae residue and rice straw as an emerging trend for waste utilization and sustainable biorefinery development.” Biomass. Convers. Biorefin. 12 (4): 1193–1202. https://doi.org/10.1007/s13399-020-00736-8.
Stanier, R. Y., R. Kunisawa, M. Mandel, and G. Cohen-Bazire. 1971. “Purification and properties of unicellular blue-green algae (order Chroococcales).” Bacteriol. Rev. 35 (2): 171–205. https://doi.org/10.1128/MMBR.35.2.171-205.1971.
Sun, X. M., L. J. Ren, Q. Y. Zhao, X. J. Ji, and H. Huang. 2018. “Microalgae for the production of lipid and carotenoids: A review with focus on stress regulation and adaptation.” Biotechnol. Biofuels 11 (1): 272. https://doi.org/10.1186/S13068-018-1275-9.
Tan, Y. H., M. K. Chai, J. Y. Na, and L. S. Wong. 2023. “Microalgal growth and nutrient removal efficiency in non-sterilised primary domestic wastewater.” Sustainability 15 (8): 6601. https://doi.org/10.3390/su15086601.
Tian, Y., K. Yang, L. Zheng, X. Han, Y. Xu, Y. Li, S. Li, X. Xu, H. Zhang, and L. Zhao. 2020. “Modelling biogas production kinetics of various heavy metals exposed anaerobic fermentation process using sigmoidal growth functions.” Waste Biomass Valorization 11 (9): 4837–4848. https://doi.org/10.1007/s12649-019-00810-x.
Torres, A., S. Padrino, A. Brito, and L. Díaz. 2023. “Biogas production from anaerobic digestion of solid microalgae residues generated on different processes of microalgae-to-biofuel production.” Biomass Convers. Biorefin. 13 (6): 4659–4672. https://doi.org/10.1007/s13399-021-01898-9.
Torres-Franco, A., F. Passos, C. Figueredo, C. Mota, and R. Muñoz. 2021. “Current advances in microalgae-based treatment of high-strength wastewaters: Challenges and opportunities to enhance wastewater treatment performance.” Rev. Environ. Sci. Biotechnol. 20 (1): 209–235. https://doi.org/10.1007/s11157-020-09556-8.
Ummalyma, S. B., R. Sirohi, A. Udayan, P. Yadav, A. Raj, S. J. Sim, and A. Pandey. 2023. “Sustainable microalgal biomass production in food industry wastewater for low-cost biorefinery products: A review.” Phytochem. Rev. 22 (4): 969–991. https://doi.org/10.1007/s11101-022-09814-3.
Yaakob, M. A., R. M. S. R. Mohamed, A. Al-Gheethi, R. Aswathnarayana Gokare, and R. R. Ambati. 2021. “Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: An overview.” Cells 10 (2): 393. https://doi.org/10.3390/cells10020393.
Yang, W., S. Li, M. Qv, D. Dai, D. Liu, W. Wang, C. Tang, and L. Zhu. 2022. “Microalgal cultivation for the upgraded biogas by removing CO2, coupled with the treatment of slurry from anaerobic digestion: A review.” Bioresour. Technol. 364: 128118. https://doi.org/10.1016/j.biortech.2022.128118.
Zabed, H. M., S. Akter, J. Yun, G. Zhang, Y. Zhang, and X. Qi. 2020. “Biogas from microalgae: Technologies, challenges and opportunities.” Renewable Sustainable Energy Rev. 117: 109503. https://doi.org/10.1016/j.rser.2019.109503.
Zhang, X., H. Yuan, L. Guan, X. Wang, Y. Wang, Z. Jiang, L. Cao, and X. Zhang. 2019a. “Influence of photoperiods on microalgae biofilm: Photosynthetic performance, biomass yield, and cellular composition.” Energies 12 (19): 3724. https://doi.org/10.3390/en12193724.
Zhang, Y., G. S. Caldwell, A. M. Zealand, and P. J. Sallis. 2019b. “Anaerobic co-digestion of microalgae Chlorella vulgaris and potato processing waste: Effect of mixing ratio, waste type and substrate to inoculum ratio.” Biochem. Eng. J. 143: 91–100. https://doi.org/10.1016/j.bej.2018.12.021.
Zhao, B., J. Ma, Q. Zhao, L. Laurens, E. Jarvis, S. Chen, and C. Frear. 2014. “Efficient anaerobic digestion of whole microalgae and lipid-extracted microalgae residues for methane energy production.” Bioresour. Technol. 161: 423–430. https://doi.org/10.1016/j.biortech.2014.03.079.
Zhen, G., X. Lu, T. Kobayashi, G. Kumar, and K. Xu. 2016. “Anaerobic co-digestion on improving methane production from mixed microalgae (Scenedesmus sp., Chlorella sp.) and food waste: Kinetic modeling and synergistic impact evaluation.” Chem. Eng. J. 299: 332–341. https://doi.org/10.1016/j.cej.2016.04.118.
Zhu, S., L. Qin, P. Feng, C. Shang, Z. Wang, and Z. Yuan. 2019. “Treatment of low C/N ratio wastewater and biomass production using co-culture of Chlorella vulgaris and activated sludge in a batch photobioreactor.” Bioresour. Technol. 274: 313–320. https://doi.org/10.1016/j.biortech.2018.10.034.
Zhu, Z., J. Sun, Y. Fa, X. Liu, and P. Lindblad. 2022. “Enhancing microalgal lipid accumulation for biofuel production.” Front. Microbiol. 13: 1–11. https://doi.org/10.3389/fmicb.2022.1024441.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 29Issue 1January 2025

History

Received: Feb 2, 2024
Accepted: May 31, 2024
Published online: Aug 19, 2024
Published in print: Jan 1, 2025
Discussion open until: Jan 19, 2025

Permissions

Request permissions for this article.

Authors

Affiliations

Md Abul Hasanath, S.M.ASCE [email protected]
Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, India. Email: [email protected]
Assistant Professor, Dept. of Civil Engineering and Dept. of Climate Change, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, India (corresponding author). ORCID: https://orcid.org/0000-0002-7989-6131. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share