Abstract

Hydrochar (HC), a carbon (C)-rich solid material produced using a hydrothermal technique at relatively low temperatures and pressures, has gained little attention regarding its use as a nanocatalyst in multiple wastewater treatment technologies. These HC-based nanocatalysts, catalyst support materials, and nano-adsorbents have the advantage of being cost-effective and chemically stable, having a porous structure, semiconductive properties, and oxygen (O)-rich surface functionality. Laboratory-scale trials that have successfully used HC catalysts to accelerate the kinetics of advanced oxidation processes (AOPs) (photocatalysis, electrochemical oxidation, Fenton catalysis) are here reviewed in depth, with a special focus on the mechanisms involved. The potential of HC catalysts in energy and valuables recovery using anaerobic digestion, bioelectrochemical systems, metal air batteries, transesterification, isomerization, and reforming processes are highlighted. In addition, the synthesis of HC from waste biomass (a zero-cost C precursor) would reduce the cost of expensive electrocatalysts, reduce greenhouse gas (GHG) emissions, ensure C capture, offer a low-C economy with less of a C footprint, and enhance environmental sustainability. This review provides a unique and comprehensive sustainability related perspective on HC and HC-based nanocatalysts that can be used to positively impact the United Nations’ Sustainable Development Goals (SDGs), especially SDGs 3, 6, 7, 11, and 13. Finally, a circular economy approach that includes HC and HC catalyst use in wastewater treatment and waste management systems is discussed, along with future perspectives and challenges.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This research was supported by a research grant from the Department of Science and Technology (File No. DST/INT-ETC/IGDF-2022/08), Government of India.

References

Ahmad, A., S. Das, and M. M. Ghangrekar. 2020. “Removal of xenobiotics from wastewater by electrocoagulation: A mini-review.” J. Indian Chem. Soc. 97 (4): 493–500.
Ahmad, A., M. Priyadarshini, R. Raj, S. Das, and M. M. Ghangrekar. 2022a. “Appraising efficacy of existing and advanced technologies for the remediation of beta-blockers from wastewater: A review.” Environ. Sci. Pollut. Res. 187: 1–25.
Ahmad, A., M. Priyadarshini, S. Yadav, M. M. Ghangrekar, and R. Y. Surampalli. 2022b. “The potential of biochar-based catalysts in advanced treatment technologies for efficacious removal of persistent organic pollutants from wastewater: A review.” Chem. Eng. Res. Des. 187: 470–496. https://doi.org/10.1016/j.cherd.2022.09.024.
Alfredo Quevedo-Amador, R., H. Elizabeth Reynel-Avila, D. Ileana Mendoza-Castillo, M. Badawi, and A. Bonilla-Petriciolet. 2022. “Functionalized hydrochar-based catalysts for biodiesel production via oil transesterification: Optimum preparation conditions and performance assessment.” Fuel 312: 122731. https://doi.org/10.1016/j.fuel.2021.122731.
Aller, M. F. 2016. “Biochar properties: Transport, fate, and impact.” Crit. Rev. Env. Sci. Technol. 46 (14–15): 1183–1296. https://doi.org/10.1080/10643389.2016.1212368.
Arun, J., K. P. Gopinath, D. V. N. Vo, P. S. SundarRajan, and M. Swathi. 2020. “Co-hydrothermal gasification of Scenedesmus sp. with sewage sludge for bio-hydrogen production using novel solid catalyst derived from carbon-zinc battery waste.” Bioresour. Technol. Rep. 11: 100459. https://doi.org/10.1016/j.biteb.2020.100459.
Azzaz, A. A., B. Khiari, S. Jellali, C. M. Ghimbeu, and M. Jeguirim. 2020. “Hydrochars production, characterization and application for wastewater treatment: A review.” Renewable Sustainable Energy Rev. 127: 109882. https://doi.org/10.1016/j.rser.2020.109882.
Babeker, T. M. A., and Q. Chen. 2021, “Heavy metal removal from wastewater by adsorption with hydrochar derived from biomass: Current applications and research trends.” Curr. Pollu. Rep. 7: 54 –71. https://doi.org/10.1007/s40726-020-00172-2.
Bardhan, M., T. M. Novera, M. Tabassum, M. A. Islam, M. A. Islam, and B. H. Hameed. 2021. “Co-hydrothermal carbonization of different feedstocks to hydrochar as potential energy for the future world: A review.” J. Cleaner Prod. 298: 126734. https://doi.org/10.1016/j.jclepro.2021.126734.
Belete, Y. Z., E. Ziemann, A. Gross, and R. Bernstein. 2021. “Facile activation of sludge-based hydrochar by Fenton oxidation for ammonium adsorption in aqueous media.” Chemosphere 273: 128526. https://doi.org/10.1016/j.chemosphere.2020.128526.
Benedetti, V., S. S. Ail, F. Patuzzi, and M. Baratieri. 2019. “Valorization of char from biomass gasification as catalyst support in dry reforming of methane.” Front. Chem. 7: 1–12. https://doi.org/10.3389/fchem.2019.00119.
Bhakta Sharma, H., S. Panigrahi, and B. K. Dubey. 2021. “Food waste hydrothermal carbonization: Study on the effects of reaction severities, pelletization and framework development using approaches of the circular economy.” Bioresour. Technol. 333: 125187. https://doi.org/10.1016/j.biortech.2021.125187.
Biswas, J. K., B. Mondal, P. Priyadarshini, P. C. Abhilash, S. Biswas, and A. Bhatnagar. 2022. “Formulation of water sustainability index for India as a performance gauge for realizing the United Nations Sustainable Development Goal 6.” Ambio 51 (6): 1569–1587. https://doi.org/10.1007/s13280-021-01680-1.
Brown, A. E., G. L. Finnerty, M. A. Camargo-Valero, and A. B. Ross. 2020. “Valorisation of macroalgae via the integration of hydrothermal carbonisation and anaerobic digestion.” Bioresour. Technol. 312: 123539. https://doi.org/10.1016/j.biortech.2020.123539.
Cai, J., B. Li, C. Chen, J. Wang, M. Zhao, and K. Zhang. 2016. “Hydrothermal carbonization of tobacco stalk for fuel application.” Bioresour. Technol. 220: 305–311. https://doi.org/10.1016/j.biortech.2016.08.098.
Caprio, F., A. Pellini, R. Zanoni, M. L. Astolfi, P. Altimari, and F. Pagnanelli. 2022. “Two-phase synthesis of Fe-loaded hydrochar for As removal: The distinct effects of initial pH, reaction time and Fe/hydrochar ratio.” J. Environ. Manage. 302 (PA): 114058. https://doi.org/10.1016/j.jenvman.2021.114058.
Cavali, M., N. Libardi Junior, R. d. A. Mohedano, P. Belli Filho, R. H. R. da Costa, and A. B. de Castilhos Junior. 2022. “Biochar and hydrochar in the context of anaerobic digestion for a circular approach: An overview.” Sci. Total Environ. 822: 153614. https://doi.org/10.1016/j.scitotenv.2022.153614.
Chakraborty, I., G. D. Bhowmick, D. Ghosh, B. K. Dubey, D. Pradhan, and M. M. Ghangrekar. 2020. “Novel low-cost activated algal biochar as a cathode catalyst for improving performance of microbial fuel cell.” Sustainable Energy Technol. Assess. 42: 100808. https://doi.org/10.1016/j.seta.2020.100808.
Chandrasekar, R., M. A. Deen, and S. Narayanasamy. 2024. “Performance analysis of hydrochar derived from catalytic hydrothermal carbonization in the multicomponent emerging contaminant systems: Selectivity and modeling studies.” Bioresour. Technol. 393: 130018. https://doi.org/10.1016/j.biortech.2023.130018.
Chen, L., D. Li, Y. Huang, W. Zhu, Y. Ding, and C. Guo. 2020. “Preparation of sludge-based hydrochar at different temperatures and adsorption of BPA.” Water Sci. Technol. 82 (2): 255–265.
Cheng, H., Y. Bian, F. Wang, X. Jiang, R. Ji, C. Gu, X. Yang, and Y. Song. 2019. “Green conversion of crop residues into porous carbons and their application to efficiently remove polycyclic aromatic hydrocarbons from water: Sorption kinetics, isotherms and mechanism.” Bioresour. Technol. 284 (71): 1–8. https://doi.org/10.1016/j.biortech.2019.03.104.
Cheng, L., Y. Ji, and Q. Shao. 2021. “Facile modification of hydrochar derived from cotton straw with excellent sorption performance for antibiotics: Coupling DFT simulations with experiments.” Sci. Total Environ. 760: 144124. https://doi.org/10.1016/j.scitotenv.2020.144124.
Cheng, X., H. Guo, Y. Zhang, X. Wu, and Y. Liu. 2017. “Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes.” Water Res. 113: 80–88. https://doi.org/10.1016/j.watres.2017.02.016.
Codignole Luz, F., M. Volpe, L. Fiori, A. Manni, S. Cordiner, V. Mulone, and V. Rocco. 2018. “Spent coffee enhanced biomethane potential via an integrated hydrothermal carbonization-anaerobic digestion process.” Bioresour. Technol. 256: 102–109. https://doi.org/10.1016/j.biortech.2018.02.021.
Dang, M., D. Chen, P. Lu, and G. Xu. 2022. “Enhanced degradation of DDT using a novel iron-assisted hydrochar catalyst combined with peroxymonosulfate: Experiment and mechanism analysis.” Chemosphere 307 (P4): 135893. https://doi.org/10.1016/j.chemosphere.2022.135893.
Da Silva, A. K., T. G. Ricci, A. L. De Toffoli, E. V. S. Maciel, C. E. D. Nazario, and F. M. L. Lanças. 2020. “The role of magnetic nanomaterials in miniaturized sample preparation techniques.” In Handbook on miniaturization in analytical chemistry: Application of nanotechnology, edited by M. H. Chaudhery, 77–98. Elsevier.
Dehkhoda, A. M., A. H. West, and N. Ellis. 2010. “Biochar based solid acid catalyst for biodiesel production.” Appl. Catal., A 382 (2): 197–204. https://doi.org/10.1016/j.apcata.2010.04.051.
Ding, Y., X. Wang, L. Fu, X. Peng, C. Pan, Q. Mao, C. Wang, and J. Yan. 2021. “Nonradicals induced degradation of organic pollutants by peroxydisulfate (PDS) and peroxymonosulfate (PMS): Recent advances and perspective.” Sci. Total Environ. 765: 142794. https://doi.org/10.1016/j.scitotenv.2020.142794.
Eskikaya, O., Z. Isik, C. Arslantas, E. Yabalak, D. Balakrishnan, N. Dizge, and K. S. Rao. 2023. “Preparation of hydrochar bio-based catalyst for Fenton process in dye-containing wastewater treatment.” Environ. Res. 216 (P1): 114357. https://doi.org/10.1016/j.envres.2022.114357.
Fan, Z., J. Li, Y. Zhou, Q. Fu, W. Yang, X. Zhu, and Q. Liao. 2017. “A green, cheap, high-performance carbonaceous catalyst derived from Chlorella pyrenoidosa for oxygen reduction reaction in microbial fuel cells.” Int. J. Hydrogen Energy 42 (45): 27657–27665. https://doi.org/10.1016/j.ijhydene.2017.07.177.
Fang, G., C. Liu, J. Gao, D. D. Dionysiou, and D. Zhou. 2015. “Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation.” Environ. Sci. Technol. 49 (9): 5645–5653. https://doi.org/10.1021/es5061512.
Filiciotto, L., and R. Luque. 2019. “Nanocatalysis for green chemistry: Chemistry and chemical engineering.” Chem. Eng. Sci. 83–109. https://doi.org/10.1007/978-1-4939-9060-3_1007.
Gasim, M. F., J. W. Lim, S. C. Low, K. Y. A. Lin, and W. D. Oh. 2022. “Can biochar and hydrochar be used as sustainable catalyst for persulfate activation?” Chemosphere 287: 132458. https://doi.org/10.1016/j.chemosphere.2021.132458.
Haris, M., M. W. Khan, J. Paz-Ferreiro, N. Mahmood, and N. Eshtiaghi. 2022. “Synthesis of functional hydrochar from olive waste for simultaneous removal of azo and non-azo dyes from water.” Chem. Eng. J. Adv. 9: 100233. https://doi.org/10.1016/j.ceja.2021.100233.
He, H., N. Zhang, N. Chen, Z. Lei, K. Shimizu, and Z. Zhang. 2019. “Efficient phosphate removal from wastewater by MgAl-LDHs modified hydrochar derived from tobacco stalk.” Bioresour. Technol. Rep. 8: 100348. https://doi.org/10.1016/j.biteb.2019.100348.
He, X., N. Zheng, R. Hu, Z. Hu, and J. C. Yu. 2021. “Hydrothermal and pyrolytic conversion of biomasses into catalysts for advanced oxidation treatments.” Adv. Funct. Mater. 31 (7): 2006505. https://doi.org/10.1002/adfm.202006505.
Hesham, A., Y. Awad, H. Jahin, S. El-Korashy, S. Maher, H. Kalil, and G. Khairy. 2021. “Environmental & analytical toxicology hydrochar for industrial wastewater treatment: An overview on its advantages and applications.” J. Environ. Anal. Toxicol. 11: 2021.
Ho, S. H., Y. d. Chen, R. Li, C. Zhang, Y. Ge, G. Cao, M. Ma, X. Duan, S. Wang, and N. q. Ren. 2019. “N-doped graphitic biochars from C-phycocyanin extracted Spirulina residue for catalytic persulfate activation toward nonradical disinfection and organic oxidation.” Water Res. 159: 77–86. https://doi.org/10.1016/j.watres.2019.05.008.
Hosny, M., and M. Fawzy. 2023. “Sustainable synthesis of a novel hydrothermally carbonized AuNPs-hydrochar nanocomposite for the photocatalytic degradation of cephalexin.” Biomass Convers. Biorefin. 18: 1–18.
Hou, Y., H. Gege, and C. Jinjun. 2019. “Hydrothermal conversion of bamboo shoot shell to biochar: Preliminary studies of adsorption equilibrium and kinetics for rhodamine B removal.” J. Anal. Appl. Pyrolysis 143: 1–2.
Huang, D., Q. Zhang, C. Zhang, R. Wang, R. Deng, H. Luo, T. Li, J. Li, S. Chen, and C. Liu. 2020. “Mn doped magnetic biochar as persulfate activator for the degradation of tetracycline.” Chem. Eng. J. 391: 123532. https://doi.org/10.1016/j.cej.2019.123532.
Inyang, M. I., B. Gao, Y. Yao, Y. Xue, A. Zimmerman, A. Mosa, P. Pullammanappallil, Y. S. Ok, and X. Cao. 2016. “A review of biochar as a low-cost adsorbent for aqueous heavy metal removal.” Crit. Rev. Env. Sci. Technol. 46 (4): 406–433. https://doi.org/10.1080/10643389.2015.1096880.
Islam, M. A., M. J. Ahmed, W. A. Khanday, M. Asif, and B. H. Hameed. 2017. “Mesoporous activated coconut shell-derived hydrochar prepared via hydrothermal carbonization-NaOH activation for methylene blue adsorption.” J. Environ. Manage. 203: 237–244. https://doi.org/10.1016/j.jenvman.2017.07.029.
Islam, M. A., M. A. Akber, S. H. Limon, M. A. Akbor, and M. A. Islam. 2019. “Characterization of solid biofuel produced from banana stalk via hydrothermal carbonization.” Biomass Convers. Biorefin. 9 (4): 651–658. https://doi.org/10.1007/s13399-019-00405-5.
Jain, A., R. Balasubramanian, and M. P. Srinivasan. 2015. “Production of high surface area mesoporous activated carbons from waste biomass using hydrogen peroxide-mediated hydrothermal treatment for adsorption applications.” Chem. Eng. J. 273: 622–629. https://doi.org/10.1016/j.cej.2015.03.111.
Jung, K. W., S. Y. Lee, J. W. Choi, M. J. Hwang, and W. G. Shim. 2021. “Synthesis of Mg-Al layered double hydroxides-functionalized hydrochar composite via an in situ one-pot hydrothermal method for arsenate and phosphate removal: Structural characterization and adsorption performance.” Chem. Eng. J. 420 (P1): 129775. https://doi.org/10.1016/j.cej.2021.129775.
Kaza, S., L. Yao, P. Bhada-Tata, and F. V. Woerden. 2018. What a waste 2.0: Everything you should know about solid waste management. Washington, DC: The World Bank, Urban Development Washington.
Khan, N., S. Mohan, and P. Dinesha. 2021. “Regimes of hydrochar yield from hydrothermal degradation of various lignocellulosic biomass: A review.” J. Cleaner Prod. 288: 125629. https://doi.org/10.1016/j.jclepro.2020.125629.
Khoshbouy, R., F. Takahashi, and K. Yoshikawa. 2019. “Preparation of high surface area sludge-based activated hydrochar via hydrothermal carbonization and application in the removal of basic dye.” Environ. Res. 175: 457–467. https://doi.org/10.1016/j.envres.2019.04.002.
Kimbi Yaah, V. B., M. Zbair, S. Botelho de Oliveira, and S. Ojala. 2021. “Hydrochar-derived adsorbent for the removal of diclofenac from aqueous solution.” Nanotechnol. Environ. Eng. 6 (1): 1–12. https://doi.org/10.1007/s41204-020-00099-5.
Krzyzyński, S., and M. Kozłowski. 2008. “Activated carbons as catalysts for hydrogen production via methane decomposition.” Int. J. Hydrogen Energy 33 (21): 6172–6177. https://doi.org/10.1016/j.ijhydene.2008.07.091.
Ledesma, B., M. Olivares-Marín, A. Álvarez-Murillo, S. Roman, and J. M. V. Nabais. 2018. “Method for promoting in-situ hydrochar porosity in hydrothermal carbonization of almond shells with air activation.” J. Supercrit. Fluids 138: 187–192. https://doi.org/10.1016/j.supflu.2018.04.018.
Lee, E. K., S. Y. Lee, G. Y. Han, B. K. Lee, T. J. Lee, J. H. Jun, and K. J. Yoon. 2004. “Catalytic decomposition of methane over carbon blacks for CO2-free hydrogen production.” Carbon 42 (12–13): 2641–2648. https://doi.org/10.1016/j.carbon.2004.06.003.
Li, B., J. Guo, K. Lv, and J. Fan. 2019a. “Adsorption of methylene blue and Cd(II) onto maleylated modified hydrochar from water.” Environ. Pollut. 254: 113014. https://doi.org/10.1016/j.envpol.2019.113014.
Li, H., Y. N. Zhang, J. Z. Guo, J. Q. Lv, W. W. Huan, and B. Li. 2021. “Preparation of hydrochar with high adsorption performance for methylene blue by co-hydrothermal carbonization of polyvinyl chloride and bamboo.” Bioresour. Technol. 337: 125442. https://doi.org/10.1016/j.biortech.2021.125442.
Li, J., L. Pan, M. Suvarna, Y. W. Tong, and X. Wang. 2020. “Fuel properties of hydrochar and pyrochar: Prediction and exploration with machine learning.” Appl. Energy 269: 115166. https://doi.org/10.1016/j.apenergy.2020.115166.
Li, L., et al. 2019b. “Degradation of naphthalene with magnetic bio-char activate hydrogen peroxide: Synergism of bio-char and Fe–Mn binary oxides.” Water Res. 160: 238–248. https://doi.org/10.1016/j.watres.2019.05.081.
Li, S., C. Cheng, and A. Thomas. 2017. “Carbon-based microbial-fuel-cell electrodes: From conductive supports to active catalysts.” Adv. Mater. 29 (8): 1602547. https://doi.org/10.1002/adma.201602547.
Li, S., Q. Ma, L. Chen, Z. Yang, M. Aqeel Kamran, and B. Chen. 2022. “Hydrochar-mediated photocatalyst Fe3O4/BiOBr@HC for highly efficient carbamazepine degradation under visible LED light irradiation.” Chem. Eng. J. 433: 134492. https://doi.org/10.1016/j.cej.2021.134492.
Li, W., X. Wu, S. Li, W. Tang, and Y. Chen. 2018. “Magnetic porous Fe3O4/carbon octahedra derived from iron-based metal-organic framework as heterogeneous Fenton-like catalyst.” Appl. Surf. Sci. 436: 252–262. https://doi.org/10.1016/j.apsusc.2017.11.151.
Li, X., E. Bonjour, P. Jame, P. Kuzhir, and C. Hurel. 2023. “Production of hydrochar from biomass waste as economical adsorbents for methylene blue—Insight of occurring adsorption phenomena.” Biomass Convers. Biorefin. 1–15.
Li, Y., J. Qu, F. Gao, S. Lv, L. Shi, C. He, and J. Sun. 2015b. “In situ fabrication of Mn3O4 decorated graphene oxide as a synergistic catalyst for degradation of methylene blue.” Appl. Catal., B 162: 268–274. https://doi.org/10.1016/j.apcatb.2014.06.058.
Liang, B., K. Li, Y. Liu, and X. Kang. 2019. “Nitrogen and phosphorus dual-doped carbon derived from chitosan: An excellent cathode catalyst in microbial fuel cell.” Chem. Eng. J. 358: 1002–1011. https://doi.org/10.1016/j.cej.2018.09.217.
Liu, J., M. Yang, C. Gong, S. Zhang, K. Sheng, and X. Zhang. 2021a. “Insights into the glucose isomerization mechanism of Al-hydrochar catalyst probed by Al-oxide species transformation.” J. Environ. Chem. Eng. 9 (6): 106721. https://doi.org/10.1016/j.jece.2021.106721.
Liu, J., X. Zhang, L. Yang, U. A. Danhassan, S. Zhang, M. Yang, K. Sheng, and X. Zhang. 2021b. “Glucose isomerization catalyzed by swollen cellulose derived aluminum-hydrochar.” Sci. Total Environ. 777: 146037. https://doi.org/10.1016/j.scitotenv.2021.146037.
Liu, T., Y. Li, N. Peng, Q. Lang, Y. Xia, C. Gai, Q. Zheng, and Z. Liu. 2017. “Heteroatoms doped porous carbon derived from hydrothermally treated sewage sludge: Structural characterization and environmental application.” J. Environ. Manage. 197: 151–158. https://doi.org/10.1016/j.jenvman.2017.03.082.
Liu, X., C. Sun, L. Chen, H. Yang, Z. Ming, Y. Bai, S. Feng, and S. T. Yang. 2018. “Decoloration of methylene blue by heterogeneous Fenton-like oxidation on Fe3O4/SiO2/C nanospheres in neutral environment.” Mater. Chem. Phys. 213: 231–238. https://doi.org/10.1016/j.matchemphys.2018.04.032.
Liu, Y., L. Wang, X. Wang, F. Jing, R. Chang, and J. Chen. 2020. “Oxidative ageing of biochar and hydrochar alleviating competitive sorption of Cd(II) and Cu(II).” Sci. Total Environ. 725: 138419. https://doi.org/10.1016/j.scitotenv.2020.138419.
Liu, Z., Z. Wang, H. Chen, T. Cai, and Z. Liu. 2021c. “Hydrochar and pyrochar for sorption of pollutants in wastewater and exhaust gas: A critical review.” Environ. Pollut. 268: 115910. https://doi.org/10.1016/j.envpol.2020.115910.
Ma, R., S. Fakudze, Q. Shang, Y. Wei, J. Chen, C. Liu, J. Han, and Q. Chu. 2021. “Catalytic hydrothermal carbonization of pomelo peel for enhanced combustibility of coal/hydrochar blends and reduced CO2 emission.” Fuel 304: 121422. https://doi.org/10.1016/j.fuel.2021.121422.
Malghani, S., E. Jüschke, J. Baumert, A. Thuille, M. Antonietti, S. Trumbore, and G. Gleixner. 2015. “Carbon sequestration potential of hydrothermal carbonization char (hydrochar) in two contrasting soils; results of a 1-year field study.” Biol. Fertil. Soils 51 (1): 123–134. https://doi.org/10.1007/s00374-014-0980-1.
Masoumi, S., V. B. Borugadda, S. Nanda, and A. K. Dalai. 2021. “Hydrochar: A review on its production technologies and applications.” Catalysts 11 (8): 939. https://doi.org/10.3390/catal11080939.
Mestre, A. S., E. Tyszko, M. A. Andrade, M. Galhetas, C. Freire, and A. P. Carvalho. 2015. “Sustainable activated carbons prepared from a sucrose-derived hydrochar: Remarkable adsorbents for pharmaceutical compounds.” RSC Adv. 5 (25): 19696–19707. https://doi.org/10.1039/C4RA14495C.
Nidheesh, P. V., A. Gopinath, N. Ranjith, A. Praveen Akre, V. Sreedharan, and M. Suresh Kumar. 2021. “Potential role of biochar in advanced oxidation processes: A sustainable approach.” Chem. Eng. J. 405: 126582. https://doi.org/10.1016/j.cej.2020.126582.
Nogueira, G. D. R., C. R. Duarte, and M. A. S. Barrozo. 2019. “Hydrothermal carbonization of acerola (Malphigia emarginata D.C.) wastes and its application as an adsorbent.” Waste Manage. (Oxford) 95: 466–475. https://doi.org/10.1016/j.wasman.2019.06.039.
Owsianiak, M., M. W. Ryberg, M. Renz, M. Hitzl, and M. Z. Hauschild. 2016. “Environmental performance of hydrothermal carbonization of four wet biomass waste streams at industry-relevant scales.” ACS Sustainable Chem. Eng. 4 (12): 6783–6791. https://doi.org/10.1021/acssuschemeng.6b01732.
Padhye, L. P., E. R. Bandala, B. Wijesiri, A. Goonetilleke, and N. Bolan. 2022. “Hydrochar: A promising step towards achieving a circular economy and sustainable development goals.” Front. Chem. Eng. 4: 0–8. https://doi.org/10.3389/fceng.2022.867228.
Pandey, P., V. N. Shinde, R. L. Deopurkar, S. P. Kale, S. A. Patil, and D. Pant. 2016. “Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery.” Appl. Energy 168: 706–723. https://doi.org/10.1016/j.apenergy.2016.01.056.
Panganoron, H. O., J. D. A. Pascasio, E. A. Esparcia, J. A. D. Del Rosario, and J. D. Ocon. 2020. “Hydrothermally carbonized waste biomass as electrocatalyst support for α-MnO2 in oxygen reduction reaction.” Catalysts 10 (2): 1–18. https://doi.org/10.3390/catal10020177.
Phan, K. A., D. Phihusut, and N. Tuntiwiwattanapun. 2022. “Preparation of rice husk hydrochar as an atrazine adsorbent: Optimization, characterization, and adsorption mechanisms.” J. Environ. Chem. Eng. 10 (3): 107575. https://doi.org/10.1016/j.jece.2022.107575.
Priyadarshini, M., I. Das, M. M. Ghangrekar, and L. Blaney. 2022. “Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies.” J. Environ. Manage. 316: 115295. https://doi.org/10.1016/j.jenvman.2022.115295.
Qi, K., Z. Wang, X. Xie, and Z. Wang. 2023. “Photocatalytic performance of pyrochar and hydrochar in heterojunction photocatalyst for organic pollutants degradation: Activity comparison and mechanism insight.” Chem. Eng. J. 467: 143424. https://doi.org/10.1016/j.cej.2023.143424.
Quintana-Najera, J., A. J. Blacker, L. A. Fletcher, and A. B. Ross. 2021. “The effect of augmentation of biochar and hydrochar in anaerobic digestion of a model substrate.” Bioresour. Technol. 321: 124494. https://doi.org/10.1016/j.biortech.2020.124494.
Ramírez, Á., M. Muñoz-Morales, F. J. Fernández-Morales, and J. Llanos. 2023. “Valorization of polluted biomass waste for manufacturing sustainable cathode materials for the production of hydrogen peroxide.” Electrochim. Acta 456: 142383. https://doi.org/10.1016/j.electacta.2023.142383.
Ren, S., M. Usman, D. C. W. Tsang, S. O-Thong, I. Angelidaki, X. Zhu, S. Zhang, and G. Luo. 2020. “Hydrochar-facilitated anaerobic digestion: Evidence for direct interspecies electron transfer mediated through surface oxygen-containing functional groups.” Environ. Sci. Technol. 54 (9): 5755–5766. https://doi.org/10.1021/acs.est.0c00112.
Rena, R., K. M. Bin Zacharia, S. Yadav, N. P. Machhirake, S. H. Kim, B. D. Lee, H. Jeong, L. Singh, S. Kumar, and R. Kumar. 2020. “Bio-hydrogen and bio-methane potential analysis for production of bio-hythane using various agricultural residues.” Bioresour. Technol. 309: 123297. https://doi.org/10.1016/j.biortech.2020.123297.
Rena, R., S. Yadav, S. Patel, D. J. Killedar, S. Kumar, and R. Kumar. 2022. “Eco-innovations and sustainability in solid waste management: An Indian upfront in technological, organizational, start-ups and financial framework.” J. Environ. Manage. 302 (PA): 113953. https://doi.org/10.1016/j.jenvman.2021.113953.
Rotaru, A. E., P. M. Shrestha, F. Liu, M. Shrestha, D. Shrestha, M. Embree, K. Zengler, C. Wardman, K. P. Nevin, and D. R. Lovley. 2014. “A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane.” Energy Environ. Sci. 7 (1): 408–415. https://doi.org/10.1039/C3EE42189A.
Sachan, D., and G. Das. 2024. “Selective adsorption of drug micropollutants from synthetic wastewater using hydrochar derived from carbonisation of unused leaves.” Int. J. Environ. Anal. Chem. 104 (1): 7–26. https://doi.org/10.1080/03067319.2021.2015583.
Santana, M. S., R. P. Alves, L. S. Santana, M. A. Gonçalves, and M. C. Guerreiro. 2022. “Structural, inorganic, and adsorptive properties of hydrochars obtained by hydrothermal carbonization of coffee waste.” J. Environ. Manage. 302: 114021. https://doi.org/10.1016/j.jenvman.2021.114021.
Sathe, S. M., I. Chakraborty, B. K. Dubey, and M. M. Ghangrekar. 2024. “Wastewater sludge-derived hydrochar: Effect of operating conditions, activation, and potential use as adsorbent.” Process Saf. Environ. Prot. 184: 1400–1410. https://doi.org/10.1016/j.psep.2024.02.063.
Selvi Gökkaya, D., T. Çokkuvvetli, M. Sağlam, M. Yüksel, and L. Ballice. 2019. “Hydrothermal gasification of poplar wood chips with alkali, mineral, and metal impregnated activated carbon catalysts.” J. Supercrit. Fluids 152: 1–8. https://doi.org/10.1016/j.supflu.2019.104542.
Shan, R., J. Han, J. Gu, H. Yuan, B. Luo, and Y. Chen. 2020. “A review of recent developments in catalytic applications of biochar-based materials.” Resour. Conserv. Recycl. 162: 105036. https://doi.org/10.1016/j.resconrec.2020.105036.
Shuang, E., C. Jin, J. Liu, L. Yang, M. Yang, E. Xu, K. Wang, K. Sheng, and X. Zhang. 2022. “Engineering functional hydrochar based catalyst with corn stover and model components for efficient glucose isomerization.” Energy 249: 123668. https://doi.org/10.1016/j.energy.2022.123668.
Song, E., S. Park, and H. Kim. 2019. “Hydrochar from sewage sludge.” Energies 12: 1–9.
Su, F., H. Peng, H. Yin, C. Luo, L. Zhu, W. Zhong, L. Mao, and D. Yin. 2021. “Biowaste-derived hydrochar microspheres: Realizing metal-free visible-light photocatalytic oxidation of amines.” J. Catal. 404: 149–162. https://doi.org/10.1016/j.jcat.2021.09.019.
Sun, C., T. Chen, Q. Huang, M. Zhan, X. Li, and J. Yan. 2020. “Activation of persulfate by CO2-activated biochar for improved phenolic pollutant degradation: Performance and mechanism.” Chem. Eng. J. 380: 122519. https://doi.org/10.1016/j.cej.2019.122519.
Sztancs, G., L. Juhasz, B. J. Nagy, A. Nemeth, A. Selim, A. Andre, A. J. Toth, P. Mizsey, and D. Fozer. 2020. “Co-hydrothermal gasification of Chlorella vulgaris and hydrochar: The effects of waste-to-solid biofuel production and blending concentration on biogas generation.” Bioresour. Technol. 302: 122793. https://doi.org/10.1016/j.biortech.2020.122793.
Tan, X., S. Liu, Y. Liu, Y. Gu, G. Zeng, X. Cai, Z. L. Yan, C. Yang, X. Hu, and B. Chen. 2016. “One-pot synthesis of carbon supported calcined-Mg/Al layered double hydroxides for antibiotic removal by slow pyrolysis of biomass waste.” Sci. Rep. 6: 1–12. https://doi.org/10.1038/s41598-016-0001-8.
Tian, Y., J. Li, T. W. Whitcombe, W. B. McGill, and R. Thring. 2020. “Application of oily sludge-derived char for lead and cadmium removal from aqueous solution.” Chem. Eng. J. 384: 123386. https://doi.org/10.1016/j.cej.2019.123386.
Tong, S., D. Chen, P. Mao, X. Jiang, A. Sun, Z. Xu, X. Liu, and J. Shen. 2022. “Synthesis of magnetic hydrochar from Fenton sludge and sewage sludge for enhanced anaerobic decolorization of azo dye AO7.” J. Hazard. Mater. 424 (PC): 127622. https://doi.org/10.1016/j.jhazmat.2021.127622.
UNO. 2018. The sustainable development goals report 2019, 64. New York: United Nations publication issued by the Department of Economic and Social Affairs.
Variny, M., A. Varga, M. Rimár, J. Janošovský, J. Kizek, L. Lukáč, G. Jablonský, and O. Mierka. 2021. “Advances in biomass co-combustion with fossil fuels in the European context: A review.” Processes 9 (1): 1–34. https://doi.org/10.3390/pr9010100.
Vithanage, M., A. Ashiq, S. Ramanayaka, and A. Bhatnagar. 2020. “Implications of layered double hydroxides assembled biochar composite in adsorptive removal of contaminants: Current status and future perspectives.” Sci. Total Environ. 737: 139718. https://doi.org/10.1016/j.scitotenv.2020.139718.
Wang, C., R. Huang, and R. Sun. 2020a. “Green one-spot synthesis of hydrochar supported zero-valent iron for heterogeneous Fenton-like discoloration of dyes at neutral pH.” J. Mol. Liq. 320: 114421. https://doi.org/10.1016/j.molliq.2020.114421.
Wang, G., Q. Li, C. Yuwen, K. Gong, L. Sheng, Y. Li, Y. Xing, and R. Chen. 2021a. “Biochar triggers methanogenesis recovery of a severely acidified anaerobic digestion system via hydrogen-based syntrophic pathway inhibition.” Int. J. Hydrogen Energy 46 (15): 9666–9677. https://doi.org/10.1016/j.ijhydene.2020.03.115.
Wang, J., H. Cui, J. Wang, Z. Li, M. Wang, and W. Yi. 2021b. “Kinetic insight into glucose conversion to 5-hydroxymethyl furfural and levulinic acid in LiCl⋅3H2O without additional catalyst.” Chem. Eng. J. 415: 128922. https://doi.org/10.1016/j.cej.2021.128922.
Wang, M., Z. Zhao, J. Niu, and Y. Zhang. 2019. “Potential of crystalline and amorphous ferric oxides for biostimulation of anaerobic digestion.” ACS Sustainable Chem. Eng. 7 (1): 697–708. https://doi.org/10.1021/acssuschemeng.8b04267.
Wang, T., Y. Zhai, Y. Zhu, C. Li, and G. Zeng. 2018. “A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties.” Renewable Sustainable Energy Rev. 90: 223–247. https://doi.org/10.1016/j.rser.2018.03.071.
Wang, W., H. Wang, G. Li, P. K. Wong, and T. An. 2020b. “Visible light activation of persulfate by magnetic hydrochar for bacterial inactivation: Efficiency, recyclability and mechanisms.” Water Res. 176: 115746. https://doi.org/10.1016/j.watres.2020.115746.
Wang, X., et al. 2017. “Evaluating the potential impact of hydrochar on the production of short-chain fatty acid from sludge anaerobic digestion.” Bioresour. Technol. 246: 234–241. https://doi.org/10.1016/j.biortech.2017.07.051.
Wei, J., Y. Liu, Y. Zhu, and J. Li. 2020. “Enhanced catalytic degradation of tetracycline antibiotic by persulfate activated with modified sludge bio-hydrochar.” Chemosphere 247: 125854. https://doi.org/10.1016/j.chemosphere.2020.125854.
Wu, J., J. Yang, P. Feng, G. Huang, C. Xu, and B. Lin. 2020. “High-efficiency removal of dyes from wastewater by fully recycling litchi peel biochar.” Chemosphere 246: 125734. https://doi.org/10.1016/j.chemosphere.2019.125734.
Xia, Y., T. Yang, N. Zhu, D. Li, Z. Chen, Q. Lang, Z. Liu, and W. Jiao. 2019. “Enhanced adsorption of Pb(II) onto modified hydrochar: Modeling and mechanism analysis.” Bioresour. Technol. 288: 1–8.
Xiao, X., B. Chen, L. Zhu, and J. L. Schnoor. 2017. “Sugar cane-converted graphene-like material for the superhigh adsorption of organic pollutants from water via coassembly mechanisms.” Environ. Sci. Technol. 51 (21): 12644–12652. https://doi.org/10.1021/acs.est.7b03639.
Xu, J., A. M. Mustafa, H. Lin, U. Y. Choe, and K. Sheng. 2018. “Effect of hydrochar on anaerobic digestion of dead pig carcass after hydrothermal pretreatment.” Waste Manage. (Oxford) 78: 849–856. https://doi.org/10.1016/j.wasman.2018.07.003.
Xu, L., Y. Liu, Y. Li, Z. Lin, X. Ma, Y. Zhang, M. D. Argyle, and M. Fan. 2014. “Catalytic CH4 reforming with CO2 over activated carbon based catalysts.” Appl. Catal., A 469: 387–397. https://doi.org/10.1016/j.apcata.2013.10.022.
Xu, N., Q. Nie, L. Luo, C. Yao, Q. Gong, Y. Liu, X. D. Zhou, and J. Qiao. 2019. “Controllable hortensia-like MnO 2 synergized with carbon nanotubes as an efficient electrocatalyst for long-term metal-air batteries.” ACS Appl. Mater. Interfaces 11 (1): 578–587. https://doi.org/10.1021/acsami.8b15047.
Xu, S., C. Wang, Y. Duan, and J. W. C. Wong. 2020. “Impact of pyrochar and hydrochar derived from digestate on the co-digestion of sewage sludge and swine manure.” Bioresour. Technol. 314: 123730. https://doi.org/10.1016/j.biortech.2020.123730.
Yang, L., E. Shuang, J. Liu, K. Sheng, and X. Zhang. 2022. “Endogenous calcium enriched hydrochar catalyst derived from water hyacinth for glucose isomerization.” Sci. Total Environ. 807: 150660. https://doi.org/10.1016/j.scitotenv.2021.150660.
Yaqoob, A. A., T. Parveen, K. Umar, M. Nasir, and I. Nasir. 2020. “Role of nanomaterials in the treatment of waste water.” Water 12: 495. https://doi.org/10.3390/w12020495.
Ye, Q., et al. 2020. “Promoting the photogeneration of hydrochar reactive oxygen species based on FeAl layered double hydroxide for diethyl phthalate degradation.” J. Hazard. Mater. 388: 122120. https://doi.org/10.1016/j.jhazmat.2020.122120.
Yoo, S. H., S. C. Lee, H. Y. Jang, and S. B. Kim. 2023. “Characterization of ibuprofen removal by calcined spherical hydrochar through adsorption experiments, molecular modeling, and artificial neural network predictions.” Chemosphere 311 (P1): 137074. https://doi.org/10.1016/j.chemosphere.2022.137074.
Yu, I. K. M., and D. C. W. Tsang. 2017. “Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms.” Bioresour. Technol. 238: 716–732. https://doi.org/10.1016/j.biortech.2017.04.026.
Yu, J., Z. Zhu, H. Zhang, T. Chen, Y. Qiu, Z. Xu, and D. Yin. 2019. “Efficient removal of several estrogens in water by Fe-hydrochar composite and related interactive effect mechanism of H2O2 and iron with persistent free radicals from hydrochar of pinewood.” Sci. Total Environ. 658: 1013–1022. https://doi.org/10.1016/j.scitotenv.2018.12.183.
Yu, J., Z. Zhu, H. Zhang, X. Shen, Y. Qiu, D. Yin, and S. Wang. 2020. “Persistent free radicals on N-doped hydrochar for degradation of endocrine disrupting compounds.” Chem. Eng. J. 398: 125538. https://doi.org/10.1016/j.cej.2020.125538.
Zhan, T., X. Liu, S. S. Lu, and W. Hou. 2017. “Nitrogen doped NiFe layered double hydroxide/reduced graphene oxide mesoporous nanosphere as an effective bifunctional electrocatalyst for oxygen reduction and evolution reactions.” Appl. Catal., B 205: 551–558. https://doi.org/10.1016/j.apcatb.2017.01.010.
Zhang, B., Y. Jiang, M. Gao, T. Ma, W. Sun, and H. Pan. 2021a. “Recent progress on hybrid electrocatalysts for efficient electrochemical CO2 reduction.” Nano Energy 80: 105504. https://doi.org/10.1016/j.nanoen.2020.105504.
Zhang, B. T., Z. Yan, Y. Liu, Z. Chen, Y. Zhang, and M. Fan. 2022a. “Nanoconfinement in advanced oxidation processes.” Crit. Rev. Env. Sci. Technol. 53 (12): 1197–1228. https://doi.org/10.1080/10643389.2022.2146981.
Zhang, M., B. Gao, J. Fang, A. E. Creamer, and J. L. Ullman. 2014. “Self-assembly of needle-like layered double hydroxide (LDH) nanocrystals on hydrochar: Characterization and phosphate removal ability.” RSC Adv. 4 (53): 28171–28175. https://doi.org/10.1039/c4ra02332c.
Zhang, N., G. Wang, J. Zhang, X. Ning, Y. Li, W. Liang, and C. Wang. 2020a. “Study on co-combustion characteristics of hydrochar and anthracite coal.” J. Energy Inst. 93 (3): 1125–1137. https://doi.org/10.1016/j.joei.2019.10.006.
Zhang, X., et al. 2022b. “Comparison of the performance of hydrochar, raw biomass, and pyrochar as precursors to prepare porous biochar for the efficient sorption of phthalate esters.” Sci. Total Environ. 846: 157511. https://doi.org/10.1016/j.scitotenv.2022.157511.
Zhang, X., Y. Zhang, H. H. Ngo, W. Guo, H. Wen, D. Zhang, C. Li, and L. Qi. 2020b. “Characterization and sulfonamide antibiotics adsorption capacity of spent coffee grounds based biochar and hydrochar.” Sci. Total Environ. 716: 137015. https://doi.org/10.1016/j.scitotenv.2020.137015.
Zhang, Y., C. Liu, P. Nian, H. Ma, J. Hou, and Y. Zhang. 2024. “Facile preparation of high-performance hydrochar/TiO2 heterojunction visible light photocatalyst for treating Cr(VI)-polluted water.” Colloids Surf., A 681: 132775. https://doi.org/10.1016/j.colsurfa.2023.132775.
Zhang, Y., J. Zhou, X. Chen, L. Wang, and W. Cai. 2019a. “Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: Synergistic effect and degradation pathway.” Chem. Eng. J. 369: 745–757. https://doi.org/10.1016/j.cej.2019.03.108.
Zhang, Z., J. Yang, J. Qian, Y. Zhao, T. Wang, and Y. Zhai. 2021b. “Biowaste hydrothermal carbonization for hydrochar valorization: Skeleton structure, conversion pathways and clean biofuel applications.” Bioresour. Technol. 324: 124686. https://doi.org/10.1016/j.biortech.2021.124686.
Zhang, Z., Z. Zhu, B. Shen, and L. Liu. 2019b. “Insights into biochar and hydrochar production and applications: A review.” Energy 171: 581–598. https://doi.org/10.1016/j.energy.2019.01.035.
Zhao, C., et al. 2021. “Activation of peroxymonosulfate by biochar-based catalysts and applications in the degradation of organic contaminants: A review.” Chem. Eng. J. 416: 128829. https://doi.org/10.1016/j.cej.2021.128829.
Zhou, L., M. Cai, X. Zhang, N. Cui, G. Chen, and G. Y. Zou. 2019. “Key role of hydrochar in heterogeneous photocatalytic degradation of sulfamethoxazole using Ag3PO4-based photocatalysts.” RSC Adv. 9 (61): 35636–35645. https://doi.org/10.1039/C9RA07843F.
Zhou, Y., N. Engler, Y. Li, and M. Nelles. 2020. “The influence of hydrothermal operation on the surface properties of kitchen waste-derived hydrochar: Biogas upgrading.” J. Cleaner Prod. 259: 121020. https://doi.org/10.1016/j.jclepro.2020.121020.
Zhuang, X., J. Liu, and L. Ma. 2022. “Facile synthesis of hydrochar-supported catalysts from glucose and its catalytic activity towards the production of functional amines.” Green Energy and Environment 8 (5): 1358–1370. https://doi.org/10.1016/j.gee.2022.01.012.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 29Issue 1January 2025

History

Received: Jan 13, 2024
Accepted: Apr 24, 2024
Published online: Sep 12, 2024
Published in print: Jan 1, 2025
Discussion open until: Feb 12, 2025

Permissions

Request permissions for this article.

Authors

Affiliations

Research Scholar, School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India. ORCID: https://orcid.org/0000-0003-2420-0026. Email: [email protected]
Research Scholar, School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India. ORCID: https://orcid.org/0000-0002-6756-587X. Email: [email protected]
Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India. ORCID: https://orcid.org/0000-0001-9494-9599. Email: [email protected]
Professor, Dept. of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India (corresponding author). ORCID: https://orcid.org/0000-0002-0691-9873. Email: [email protected]
Professor, Dept. of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India. ORCID: https://orcid.org/0000-0002-6991-7314. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share