State-of-the-Art Reviews
Feb 14, 2023

Utilization of Industrial Waste Phosphogypsum as Geomaterial: A Review

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 27, Issue 2

Abstract

Phosphogypsum (PG) is a waste product of phosphate fertilizer and phosphoric acid industries. Vast quantities of the waste product are generally left stockpiled on the ground or discharged into rivers or ponds, and pose serious environmental concerns. Several countries are facing problems with the handling, storage, and utilization of PG. This article is a comprehensive review of the physicochemical, microstructural, geotechnical, radiation, and leaching characteristics of raw PG. The performance of PG with other admixtures (cement, fly ash, lime, ground granulated blast furnace slag) and soils (clays, loess, sands) has also been reviewed. In addition, the factors, such as pH, calcination, forms of PG, and curing methods, that affect the geotechnical, durability, and leaching characteristics of PG mixtures are also discussed. Based on the review, it has been observed that raw PG has high sulfate content, high water absorption capacity, and high variability in strength, leaching, and radioactivity properties; thus, using raw PG alone as a backfill or embankment material is not suitable. However, the geotechnical, durability, and leaching properties of PG may be enhanced by using it in combination with other admixtures. The excessive usage of PG should also be undertaken with caution, as the higher amount of PG may lead to a decrease in the strength and the formation of cracks. There are studies that have reported the optimum content of PG; however, the range is quite varied and can differ for soil types. Therefore, it is recommended to investigate the optimum content of PG before the start of any road or ground improvement project. The compaction characteristics of PG-admixed soils are highly contrasting and hence need more comprehensive studies. The strength characteristics and resilient modulus are also highly variable and hence need more exhaustive research for actual usage of PG in road construction. Other critical issues that require attention have been highlighted, and associated research gaps that could be explored in future research works have been identified.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors thank the Ministry of Education, Govt. of India, for providing financial (teaching) assistance to the first author.

References

ABNT (Brazilian Association of Technical Standards). 2004. Resíduos sólidos—Classificação. [In Portuguese.] No. 1004/04. Sao Paulo, Brazil: ABNT.
Ajam, L., A. ben El Haj Hassen, and N. Reguigui. 2019. “Phosphogypsum utilization in fired bricks: Radioactivity assessment and durability.” J. Build. Eng. 26 (April 2019): 100928. https://doi.org/10.1016/j.jobe.2019.100928.
Altun, I. A., and Y. Sert. 2004. “Utilization of weathered Phosphogypsum as set retarder in Portland cement.” Cem. Concr. Res. 34 (4): 677–680. https://doi.org/10.1016/j.cemconres.2003.10.017.
Amrani, M., Y. Taha, A. Kchikach, M. Benzaazoua, and R. Hakkou. 2020. “Phosphogypsum recycling: New horizons for a more sustainable road material application.” J. Build. Eng. 30 (January): 101267. https://doi.org/10.1016/j.jobe.2020.101267.
Anusha, H., M. Pankaj Bariker, and B. Viswanath. 2021. “Analysis of strength properties of lime stabilized black cotton soil with Phosphogypsum.” In Proc., Indian Geotechnical Conf. Singapore: Springer.
Belahbib, L., F. E. Arhouni, A. Boukhair, A. Essadaoui, S. Ouakkas, M. Hakkar, M. A. S. Abdo, M. Benjelloun, A. Bitar, and A. Nourreddine. 2021. “Impact of phosphate industry on natural radioactivity in sediment, seawater, and coastal marine fauna of El Jadida Province, Morocco.” J. Hazard. Toxic Radioact. Waste 25 (1): 04020064. https://doi.org/10.1061/(asce)hz.2153-5515.0000563.
BIS (Bureau of Indian Standard). 1991. Drinking water-specification. IS 10500. New Delhi, India: BIS.
Bituh, T., B. Petrinec, B. Skoko, D. Babić, and D. Rašeta. 2021. “Phosphogypsum and its potential use in Croatia: Challenges and opportunities.” Arch. Ind. Hyg. Toxicol. 72 (2): 93–100. https://doi.org/10.2478/aiht-2021-72-3504.
Boonserm, K., V. Sata, K. Pimraksa, and P. Chindaprasirt. 2012. “Improved geopolymerization of bottom ash by incorporating fly ash and using waste gypsum as additive.” Cem. Concr. Compos. 34 (7): 819–824. https://doi.org/10.1016/j.cemconcomp.2012.04.001.
Borges, R. C., F. C. A. Ribeiro, D. da C. Lauria, and A. V. B. Bernedo. 2013. “Radioactive characterization of Phosphogypsum from Imbituba, Brazil.” J. Environ. Radioact. 126: 188–195. https://doi.org/10.1016/j.jenvrad.2013.07.020.
Calderón-Morales, B. R., A. García-Martínez, P. Pineda, and R. García-Tenório. 2021. “Valorization of Phosphogypsum in cement-based materials: Limits and potential in eco-efficient construction.” J. Build. Eng. 44: 102506. https://doi.org/10.1016/j.jobe.2021.102506.
Canut, M. M. C., V. M. F. Jacomino, K. Bråtveit, A. M. Gomes, and M. I. Yoshida. 2008. “Microstructural analyses of Phosphogypsum generated by Brazilian fertilizer industries.” Mater. Charact. 59 (4): 365–373. https://doi.org/10.1016/j.matchar.2007.02.001.
CEA (Central Electricity Authority). 2018. Report on fly ash generation at coal/lignite based thermal power plant stations and its utilization in the country for the year 2017–2018. New Delhi, India: CEA.
Chen, Q., Q. Zhang, C. Qi, A. Fourie, and C. Xiao. 2018. “Recycling Phosphogypsum and construction demolition waste for cemented paste backfill and its environmental impact.” J. Cleaner Prod. 186: 418–429. https://doi.org/10.1016/j.jclepro.2018.03.131.
Chen, X., Q. Wang, Q. Wu, X. Xie, S. Tang, G. Yang, L. Luo, and H. Yuan. 2022. “Hydration reaction and microstructural characteristics of hemihydrate Phosphogypsum with variable pH.” Constr. Build. Mater. 316 (June 2021): 125891. https://doi.org/10.1016/j.conbuildmat.2021.125891.
Chernysh, Y., O. Yakhnenko, V. Chubur, and H. Roubík. 2021. “Phosphogypsum recycling: A review of environmental issues, current trends, and prospects.” Appl. Sci. 11 (4): 1–22. https://doi.org/10.3390/app11041575.
CNEN (Comissão Nacional de Energia Nuclear). 2011. Resolução 113. Dispõe sobre o nĩvel de isenção para o uso do fofogesso na agricultura ou na indũstria cimenteria. Rio de Janeio, Brazil: CN EN.
CNN Business. 2019. “The cement industry produces more CO2 emissions than most countries. It may not survive.” Accessed December 27, 2021. https://edition.cnn.com/2019/07/22/investing/cement-climate-change/index.html.
Condren, E., and S. Pavía. 2007. “A comparative study of the moisture transfer properties and durability of PC and GGBS mortars.” In Int. Conf. on Concrete Platform, 468–478. Belfast: Queen’s Univ.
Contreras, M., S. R. Teixeira, G. T. A. Santos, M. J. Gázquez, M. Romero, and J. P. Bolívar. 2018. “Influence of the addition of Phosphogypsum on some properties of ceramic tiles.” Constr. Build. Mater. 175: 588–600. https://doi.org/10.1016/j.conbuildmat.2018.04.131.
CPCB (Central Pollution Control Board). 2014. Guidelines for management and handling of Phosphogypsum generated from phosphoric acid plants. Final Draft. New Delhi, India: CPCB.
CRRI (Central Road Research Institute). 2012. Geotechnical engineering, 100–105. Annual Rep. 2011–12. New Delhi, India: CSIR-CRRI.
Cuadri, A. A., F. J. Navarro, M. García-Morales, and J. P. Bolívar. 2014. “Valorisation of Phosphogypsum waste as asphaltic bitumen modifier.” J. Hazard. Mater. 279: 11–16. https://doi.org/10.1016/j.jhazmat.2014.06.058.
Dapena, E., F. P. De Santayana, and E. D. Flores. 2009. “Characterístics of Phosphogypsum for utilisation in roadwork fills.” In Vol. 1 of Proc., 17th Int. Conf. Soil Mechanics and Geotechnical Engineering: Academia and Practice of Geotechnical Engineering, edited by M. Hamza et al. 116–119. Amsterdam, Netherlands: IOS Press.
Das, S. K. 2006. “Geotechnical properties of low calcium and high calcium fly ash.” Geotech. Geol. Eng. 24 (2): 249–263. https://doi.org/10.1007/s10706-004-5722-y.
Deǧirmenci, N. 2008. “Utilization of Phosphogypsum as raw and calcined material in manufacturing of building products.” Constr. Build. Mater. 22 (8): 1857–1862. https://doi.org/10.1016/j.conbuildmat.2007.04.024.
Değirmenci, N., and A. Okucu. 2007. “Usability of fly ash and Phosphogypsum in manufacturing of building products.” J. Eng. Sci. 2 (13): 273–278.
Degirmenci, N., A. Okucu, and A. Turabi. 2007. “Application of Phosphogypsum in soil stabilization.” Build. Environ. 42 (9): 3393–3398. https://doi.org/10.1016/j.buildenv.2006.08.010.
de Rezende, L. R., T. da Silva Curado, M. V. Silva, M. M. dos, A. Mascarenha, D. A. N. Metogo, M. P. C. Neto, L. Legi, and B. Bernucci. 2017. “Laboratory study of Phosphogypsum, stabilizers, and tropical soil mixtures.” J. Mater. Civ. Eng. 29 (1): 04016188. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001711.
Dutta, R. K., V. N. Khatri, and V. Panwar. 2017. “Strength characteristics of fly ash stabilized with lime and modified with Phosphogypsum.” J. Build. Eng. 14 (July): 32–40. https://doi.org/10.1016/j.jobe.2017.09.010.
Dutta, R. K., and V. Kumar. 2016. “Suitability of flyash-lime-phosphogypsum composite in road pavements.” Period. Polytech. Civ. Eng. 60 (3): 455–469. https://doi.org/10.3311/PPci.7800.
EC (European Commission). 1999a. Radiation protection 112: Radiological protection principles concerning the natural radioactivity of building materials, 1–16. Brussels, Belgium: EC.
EC (European Commission). 1999b. Council Decision of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article and Annex II to Directive 1999/31/EC. Official Journal of the European Communities. Brussels, Belgium: EC.
Ennaciri, Y., and M. Bettach. 2018. “Procedure to convert Phosphogypsum waste into valuable products.” Mater. Manuf. Processes 33 (16): 1727–1733. https://doi.org/10.1080/10426914.2018.1476763.
EPA News Releases. 2020. “EPA Approves Use of Phosphogypsum in Road Construction.” Accessed December 2, 2021. https://www.epa.gov/newsreleases/epa-approves-use-Phosphogypsum-road-construction.
EPA Docket ID: EPA-HQ-OAR-2020-0442. 2021. “Approval of the Request for Other use of Phosphogypsum by The Fertilizer Institute.” Accessed November 8, 2022. https://www.epa.gov/radiation/request-use-Phosphogypsum-government-road-projectssupporting-documents.
Fan, P., M. Zhang, M. Zhao, J. Peng, K. Gao, J. Huang, W. Yi, and C. Zhu. 2022. “The influences of soluble phosphorus on hydration process and mechanical properties of hemihydrate gypsum under deep retarding condition.” Materials 15 (7): 2680. https://doi.org/10.3390/ma15072680.
Farroukh, H., T. Mnif, F. Kamoun, L. Kamoun, and F. Bennour. 2018. “Stabilization of clayey soils with Tunisian Phosphogypsum: Effect on geotechnical properties.” Arabian J. Geosci. 11 (23): 760. https://doi.org/10.1007/s12517-018-4116-z.
Folek, S., B. Walawska, B. Wilczek, and J. Miśkiewicz. 2011. “Use of Phosphogypsum in road construction.” Pol. J. Chem. Technol. 13 (2): 18–22. https://doi.org/10.2478/v10026-011-0018-5.
Gaidučis, S., R. Mačiulaitis, and A. Kaminskas. 2009. “Eco‐balance features and significance of hemihydrate phosphogypsum reprocessing into gypsum binding materials.” J. Civ. Eng. Manag. 15 (2): 250–213. https://doi.org/10.3846/1392-3730.2009.15.205-213.
Gaidajis, G., A. Anagnostopoulos, A. Garidi, E. Mylona, and I. E. Zevgolis. 2018. “Laboratory evaluation of Phosphogypsum for alternative uses.” Environ. Geotech. 5 (6): 310–323. https://doi.org/10.1680/jenge.16.00040.
Gijbels, K., H. Nguyen, P. Kinnunen, P. Samyn, W. Schroeyers, Y. Pontikes, and M. Illikainen. 2020. “Radiological and leaching assessment of an ettringite-based mortar from ladle slag and Phosphogypsum.” Cem. Concr. Res. 128: 105954. https://doi.org/10.1016/j.cemconres.2019.105954.
Gu, K., and B. Chen. 2020. “Loess stabilization using cement, waste Phosphogypsum, fly ash and quicklime for self-compacting rammed earth construction.” Constr. Build. Mater. 231: 117195. https://doi.org/10.1016/j.conbuildmat.2019.117195.
Havanagi, V., A. K. Sinha, and G. S. Parvathi. 2018. “Characterization of Phosphogypsum waste for Road construction.” In Proc., Indian Geotechnical Conf., 13–15. Bengaluru, India: Indian Institute of Science.
Huang, Y., and Z. S. Lin. 2010. “Investigation on Phosphogypsum-steel slag-granulated blast-furnace slag-limestone cement.” Constr. Build. Mater. 24 (7): 1296–1301. https://doi.org/10.1016/j.conbuildmat.2009.12.006.
IAEA (International Atomic Energy Agency). 2003. Extent of environmental contamination by naturally occurring material (NORM) and technological options for mitigation. Vienna, Austria: IAEA.
IAEA (International Atomic Energy Agency). 2013. Radiation protection and management of NORM residues in the phosphate industry. Safety Rep. Series No. 78. Vienna, Austria: IAEA.
IFA (International Fertilizer Association). 2020. Phosphogypsum leadership innovation partnership, 36–44. Paris: IFA.
IRC (Indian Road Congress). 2001. Guidelines for use of fly ash in road embankments. IRC SP 58. New Delhi, India: IRC.
IRC (Indian Road Congress). 2010. Recommended practice for construction of earth embankments and subgrade for road works. IRC 36. New Delhi, India: IRC.
Išek, J. I., L. M. Kaluđerović, N. S. Vuković, M. Milošević, I. Vukašinović, and Z. P. Tomić. 2020. “Refinement of waste Phosphogypsum from Prahovo, Serbia: Characterization and assessment of application in civil engineering.” Clay Miner. 55 (1): 63–70. https://doi.org/10.1180/clm.2020.11.
Islam, G. M. S., F. H. Chowdhury, M. T. Raihan, S. K. S. Amit, and M. R. Islam. 2017. “Effect of Phosphogypsum on the properties of Portland cement.” Procedia Eng. 171: 744–751. https://doi.org/10.1016/j.proeng.2017.01.440.
Jambhulkar, H. P., S. M. S. Shaikh, and M. S. Kumar. 2018. “Fly ash toxicity, emerging issues and possible implications for its exploitation in agriculture; Indian scenario: A review.” Chemosphere 213: 333–344. https://doi.org/10.1016/j.chemosphere.2018.09.045.
James, J., S. Vidhya Lakshmi, and P. Kasinatha Pandian. 2014. “Strength and index properties of Phosphogypsum stabilized expansive soil.” Int. J. Appl. Environ. Sci. 9 (5): 973–6077.
Kumar, A., and D. K. Soni. 2018. “A review on freeze and thaw effects on geotechnical parameters.” In Int. Conf. on Sustainable Waste Management through Design, 148–159. Cham, Switzerland: Springer.
Kumar, S. 2003. “Fly ash-lime-Phosphogypsum hollow blocks for walls and partitions.” Build. Environ. 38 (2): 291–295. https://doi.org/10.1016/S0360-1323(02)00068-9.
Li, X., J. Du, L. Gao, S. He, L. Gan, C. Sun, and Y. Shi. 2017. “Immobilization of Phosphogypsum for cemented paste backfill and its environmental effect.” J. Cleaner Prod. 156: 137–146. https://doi.org/10.1016/j.jclepro.2017.04.046.
Li, X., S. Zhou, Y. Zhou, C. Min, Z. Cao, J. Du, L. Luo, and Y. Shi. 2019. “Durability evaluation of Phosphogypsum-based cemented backfill through drying-wetting cycles.” Minerals 9 (5): 321. https://doi.org/10.3390/min9050321.
Li, B., S. Wei, and Y. W. Zhen. 2020. “An effective recycling direction of water-based drilling cuttings and phosphogypsum co-processing in road cushion layer.” Environ. Sci. Pollut. Res. 27 (14): 17420–17424. https://doi.org/10.1007/s11356-020-08406-y.
Liu, L., Y. Zhang, and K. Tan. 2015. “Cementitious binder of Phosphogypsum and other materials.” Adv. Cem. Res. 27 (10): 567–570. https://doi.org/10.1680/adcr.14.00100.
Liu, S., P. Fang, J. Ren, and S. Li. 2020. “Application of lime neutralised Phosphogypsum in supersulphated cement.” J. Cleaner Prod. 272: 122660. https://doi.org/10.1016/j.jclepro.2020.122660.
Liu, S., L. Wang, and B. Yu. 2019. “Effect of modified Phosphogypsum on the hydration properties of the Phosphogypsum-based supersulphated cement.” Constr. Build. Mater. 214: 9–16. https://doi.org/10.1016/j.conbuildmat.2019.04.052.
López, F. A., M. Gázquez, F. J. Alguacil, J. P. Bolívar, I. García-Díaz, and I. López-Coto. 2011. “Microencapsulation of Phosphogypsum into a sulfur polymer matrix: Physico-chemical and radiological characterization.” J. Hazard. Mater. 192 (1): 234–245.
Lu, T., W. Wang, Z. Wei, Y. Yang, and G. Cao. 2021. “Experimental study on static and dynamic mechanical properties of Phosphogypsum.” Environ. Sci. Pollut. Res. 28 (14): 17468–17481. https://doi.org/10.1007/s11356-020-12148-2.
Macías, F., C. R. Cánovas, P. Cruz-Hernández, S. Carrero, M. P. Asta, J. M. Nieto, and R. Pérez-López. 2017. “An anomalous metal-rich Phosphogypsum: Characterization and classification according to international regulations.” J. Hazard. Mater. 331: 99–108. https://doi.org/10.1016/j.jhazmat.2017.02.015.
Maity, T., and S. Paul. 2021. “A study on the effect of Phosphogypsum on the properties of subgrade soil mixed with fly ash.” In Proc., Indian Geotechnical Conf., 569–579. Singapore: Springer.
Mashifana, T. P., F. N. Okonta, and F. Ntuli. 2018. “Geotechnical properties and microstructure of lime-fly ash-Phosphogypsum-stabilized soil.” Adv. Civ. Eng. 2018: 3640868. https://doi.org/10.1155/2018/3640868.
Mechi, N., M. Ammar, M. Loungou, and E. Elaloui. 2016. “Thermal study of Tunisian Phosphogypsum for use in reinforced plaster.” Br. J. Appl. Sci. Technol. 16 (3): 1–10. https://doi.org/10.9734/bjast/2016/25728.
Meskini, S., A. Samdi, H. Ejjaouani, and T. Remmal. 2021. “Valorization of Phosphogypsum as a road material: Stabilizing effect of fly ash and lime additives on strength and durability.” J. Cleaner Prod. 323: 129161. https://doi.org/10.1016/j.jclepro.2021.129161.
Ng, C. W. W., Y. C. Wang, J. J. Ni, and Z. J. Wang. 2021. “Quality and yield of Pseudostellaria heterophylla treated with GGBS as pH adjuster against the toxicity of Cd and Cu.” Ecotoxicol. Environ. Saf. 216: 112188. https://doi.org/10.1016/j.ecoenv.2021.112188.
Ngo, H. T. T., V. Q. Dang, L. S. Ho, and T. X. Doan. 2022. “Utilization Phosphogypsum as a construction material for road base: A case study in Vietnam.” Innovative Infrastruct. Solutions 7 (1): 1–10. https://doi.org/10.1007/s41062-021-00601-1.
Ong, S., J. B. Metcalf, R. K. Seals, and R. Taha. 1993. “Unconfined compressive strength of various cement-stabilized Phosphogypsum mixes.” Transp. Res. Rec. 1424: 20–24.
Parreira, A. B., A. R. K. Kobayashi, and O. B. Silvestre Jr. 2003. “Influence of Portland cement type on unconfined compressive strength and linear expansion of cement-stabilized Phosphogypsum.” J. Environ. Eng. 129 (10): 956–960. https://doi.org/10.1061/(asce)0733-9372(2003)129:10(956).
Peng, B., Z. Yang, Z. Yang, and J. Peng. 2020. “Effects of pH and fineness of Phosphogypsum on mechanical performance of cement– Phosphogypsum-stabilized soil and classification for road-used Phosphogypsum.” Coatings 10 (11): 1–13. https://doi.org/10.3390/coatings10111021.
Pericleous, M. I., and J. B. Metcalf. 1996. “Resilient modulus of cement-stabilized Phosphogypsum.” J. Mater. Civ. Eng. 8 (1): 7–10. https://doi.org/10.1061/(ASCE)0899-1561(1996)8:1(7).
Puppala, A. J., S. S. Congress, N. Talluri, and E. Wattanasanthicharoen. 2019. “Sulphate-heaving studies on chemically treated sulphate-rich geomaterials.” J. Mater. Civ. Eng. 31 (6): 04019076. https://doi.org/10.1061/%28ASCE%29MT.1943-5533.0002729.
Puppala, A. J., N. S. Talluri, B. S. Chittoori, and A. Gaily. 2012. “Lessons learned from sulphate induced heaving studies in chemically treated soils.” In Vol. 1 of Proc., Int. Conf. on Ground Improvement and Ground Control. Singapore: Research Publishing.
Rao, S. M., and K. Asha. 2013. “Role of fly ash pozzolanic reactions in controlling fluoride release from Phosphogypsum.” J. Mater. Civ. Eng. 25 (8): 999–1005. https://doi.org/10.1061/(asce)mt.1943-5533.0000649.
Rashad, A. M. 2015. “Potential use of Phosphogypsum in alkali-activated fly ash under the effects of elevated temperatures and thermal shock cycles.” J. Cleaner Prod. 87 (1): 717–725. https://doi.org/10.1016/j.jclepro.2014.09.080.
Rashad, A. M. 2017. “Phosphogypsum as a construction material.” J. Cleaner Prod. 166: 732–743. https://doi.org/10.1016/j.jclepro.2017.08.049.
Raviteja, A., B. S. Vinay Kumar, D. Devi Priyanka, and G. Kalyan Kumar. 2015. “Utilization of lime and Phosphogypsum in improving subgrade characteristics of black cotton soil.” In Proc., 50th Indian Geotechnical Conf. Pune, India: College of Engineering.
Saadaoui, E., N. Ghazel, C. Ben Romdhane, and N. Massoudi. 2017. “Phosphogypsum: Potential uses and problems–a review.” Int. J. Environ. Stud. 74 (4): 558–567. https://doi.org/10.1080/00207233.2017.1330582.
Saenko, Y. V., A. M. Shiranov, and A. L. Nevzorov. 2021. “Geotechnical properties of hemihydrate and dihydrate Phosphogypsum.” J. Phys. Conf. Ser. 1928 (1): 012017. https://doi.org/10.1088/1742-6596/1928/1/012017.
Sahoo, P., and J. Joseph. 2021. “Radioactive hazards in utilization of industrial by-products: Comprehensive review.” J. Hazard. Toxic Radioact. Waste 25 (3): 03121001. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000612.
Sahu, S. K., P. Y. Ajmal, R. C. Bhangare, M. Tiwari, and G. G. Pandit. 2014. “Natural radioactivity assessment of a phosphate fertilizer plant area.” J. Radiat. Res. Appl. Sci. 7 (1): 123–128. https://doi.org/10.1016/j.jrras.2014.01.001.
Sharma, A., and B. S. Walia. 2017. “Effect of Phosphogypsum and fly ash on the CBR and UCS of clayey soil.” Int. J. Eng. Trends Technol. 50 (5): 266–270. https://doi.org/10.14445/22315381/ijett-v50p243.
Shen, C. X. 2010. “Characteristics of gypsum block & prospect of gypsum block industry in China.” In Proc., China Int. Symp. on Phosphogypsum Comprehensive Utilization Technology Development and Promotion.
Shen, W., G. Gan, R. Dong, H. Chen, Y. Tan, and M. Zhou. 2012. “Utilization of solidified Phosphogypsum as Portland cement retarder.” J. Mater. Cycles Waste Manage. 14 (3): 228–233. https://doi.org/10.1007/s10163-012-0065-x.
Siddique, R., and M. I. Khan. 2011. Supplementary cementing materials. Berlin: Springer.
Silva, L. F., M. L. Oliveira, T. J. Crissien, M. Santosh, J. Bolivar, L. Shao, G. L. Dotto, J. Gasparotto, and M. Schindler. 2022. “A review on the environmental impact of Phosphogypsum and potential health impacts through the release of nanoparticles.” Chemosphere. 286: 131513. https://doi.org/10.1016/j.chemosphere.2021.131513.
Silva, M. V., L. R. de Rezende, M. M. dos Anjos Mascarenha, and R. B. de Oliveira. 2019. “Phosphogypsum, tropical soil and cement mixtures for asphalt pavements under wet and dry environmental conditions.” Resour. Conserv. Recycl. 144: 123–136. https://doi.org/10.1016/j.resconrec.2019.01.029.
Singh, M., and M. Garg. 2002. “Production of beneficiated Phosphogypsum for cement manufacture.” J. Sci. Ind. Res. 61 (7): 533–537.
Singh, S. P., D. P. Tripathy, and P. G. Ranjith. 2008. “Performance evaluation of cement stabilized fly ash–GBFS mixes as a highway construction material.” Waste Manage. (Oxford) 28 (8): 1331–1337. https://doi.org/10.1016/j.wasman.2007.09.017.
Smadi, M. M., R. H. Haddad, and A. M. Akour. 1999. “Potential use of Phosphogypsum in concrete.” Cem. Concr. Res. 29 (9): 1419–1425. https://doi.org/10.1016/S0008-8846(99)00107-6.
Srinivasalu, K., and P. Raghava. 2017. “A study on influence of Phosphogypsum on durability of the concrete.” Int. J. Emerg. Technol. Eng. Res. 5 (3): 41–47.
Taha, R., R. K. Seals, M. E. Tittlebaum, W. Thornsberry, and J. T. Houston. 1992. “Use of by-product Phosphogypsum in road construction.” Transp. Res. Rec. 1345: 28–35.
Tayibi, H., M. Choura, F. A. López, F. J. Alguacil, and A. López-Delgado. 2009. “Environmental impact and management of Phosphogypsum.” J. Environ. Manage. 90 (8): 2377–2386. https://doi.org/10.1016/j.jenvman.2009.03.007.
Tayibi, H., C. Gascó, N. Navarro, A. López-Delgado, M. Choura, F. J. Alguacil, and F. A. López. 2011. “Radiochemical characterization of Phosphogypsum for engineering use.” J. Environ. Prot. 2: 168–174. https://doi.org/10.4236/jep.2011.22019.
Thakare, R. B., K. G. Hiraskar, and O. P. Bhatia. 2001. “Utilisation of Phosphogypsum in cement concrete for strength and economy.” In Vol. 27 of Proc., 26th Conf. on Our World in Concrete & Structures. Singapore: CI-Premier.
Tran, T. Q., Y. S. Kim, G. O. O. Kang, B. H. Dinh, and T. M. Do. 2019. “Feasibility of reusing marine dredged clay stabilized by a combination of by-products in coastal road construction.” Transp. Res. Rec. 2673 (12): 519–528. https://doi.org/10.1177/0361198119868196.
Türkel, S., and E. Aksin. 2012. “A comparative study on the use of fly ash and Phosphogypsum in the brick production.” Sadhana – Acad. Proc. Eng. Sci. 37 (5): 595–607. https://doi.org/10.1007/s12046-012-0099-8.
UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). 2000. Sources and effect of ionizing radiation. New York: UNSCEAR.
USEPA. 1992. Potential uses of Phosphogypsum and associated risks. Background Information Document. Washington, DC: USEPA.
USEPA. 2003. Contaminant candidate list regulatory determination support. Washington, DC: USEPA.
USEPA. 2009. Hazardous waste characteristics. A user-friendly reference document for sulphate. Washington, DC: USEPA.
Wang, T., Y. Zhou, Q. Lv, Y. Zhu, and C. Jiang. 2011. “A safety assessment of the new Xiangyun Phosphogypsum tailings pond.” Miner. Eng. 24 (10): 1084–1090. https://doi.org/10.1016/j.mineng.2011.05.013.
WHO (World Health Organization). 2007. WHO guidelines for assessing quality of herbal medicines with reference to contaminants and residues. Geneva: WHO.
Yang, J., W. Liu, L. Zhang, and B. Xiao. 2009. “Preparation of load-bearing building materials from autoclaved Phosphogypsum.” Constr. Build. Mater. 23 (2): 687–693. https://doi.org/10.1016/j.conbuildmat.2008.02.011.
Yang, L., Y. Zhang, and Y. Yan. 2016. “Utilization of original Phosphogypsum as raw material for the preparation of self-levelling mortar.” J. Cleaner Prod. 127: 204–213. https://doi.org/10.1016/j.jclepro.2016.04.054.
Zhang, J., X. Wang, B. Jin, C. Liu, X. Zhang, and Z. Li. 2022. “Effect of soluble P2O5 form on the hydration and hardening of hemihydrate Phosphogypsum.” Adv. Mater. Sci. Eng. 2022: 1212649. https://doi.org/10.1155/2022/1212649.
Zhang, P. 2010. “Phosphogypsum management and utilization: A review of research and industry practice.” In AFA Conf. & Exhibition. Tunisia: Arab Fertilisers Association.
Zhou, J., L. Yang, Q. Lin, and J. Cao. 2013. “Analysis of Phosphogypsum’s physical and chemical properties and making of anhydrite cement from Phosphogypsum.” Appl. Mech. Mater. 275–277: 2131–2135. https://doi.org/10.4028/www.scientific.net/AMM.275-277.2131.
Zmemla, R., P. Chaurand, M. Benjdidia, B. Elleuch, and J. Yves. 2016. “Characterization and pH dependent leaching behaviour of Tunisian Phosphogypsum.” Am. Sci. Res. J. Eng. Technol. Sci. 24 (1): 230–244.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 27Issue 2April 2023

History

Received: Jun 9, 2022
Accepted: Nov 9, 2022
Published online: Feb 14, 2023
Published in print: Apr 1, 2023
Discussion open until: Jul 14, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Yatesh Thakur, S.M.ASCE [email protected]
Ph.D. Student, Dept. of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India. Email: [email protected]
Assistant Professor, Dept. of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India (corresponding author). ORCID: https://orcid.org/0000-0003-1359-5413. Email: [email protected]
Sudipta Sarkar [email protected]
Associate Professor, Dept. of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share