Open access
Technical Notes
Sep 26, 2023

Experimental Design and Protocol for Standardized Measurements of Rock Erodibility in Fluvial Impact Erosion

Publication: Journal of Hydraulic Engineering
Volume 149, Issue 12

Abstract

The impacts of moving bedload particles on hydraulic structures or natural bedrock in rivers can cause substantial and sometimes fast erosion, with implications for structural stability and the morphodynamics of channels. For a given set of hydraulic and sediment load conditions (termed erosivity), erosion rates are modulated by the resistance of the substrate, which is quantified in a scaling parameter termed erodibility. In this technical note, we describe in detail an experimental setup and protocol to measure the relative erodibility of natural rocks under fluvial impact erosion. The experiments were designed to achieve four central aims: to provide (1) comparable experimental conditions by keeping erosivity as constant as possible; (2) cheap, easy-to-build, and easy-to-use experimental devices; (3) a straightforward and reproducible experimental protocol; and (4) avoid special needs in terms of space, equipment, connections or fixtures. We suggest that our design and approach can serve to provide a standardized protocol for measuring comparable data on erodibility under fluvial impact erosion of natural rocks and manmade materials in the laboratory.

Formats available

You can view the full content in the following formats:

Data Availability Statement

All data, models, or code that support the findings of this study are available from G. Pruß, J. M. Turowski, M. Reich, M. Naumann, A. Voigtländer, A. Bonnelye, and A. Ludwig, parallel data of rock geotechnical properties and erodibility using erosion mills. GFZ Data Services, https://doi.org/10.5880/GFZ.4.6.2023.002, 2023 (Pruß et al. 2023).

Acknowledgments

We thank the GFZ workshop team headed by Alexander Lachmann for building the erosion mills and for advice on design and production. Fergus McNab and Andreas Ludwig gave helpful comments on a previous draft of the manuscript. This project was funded by NAGRA and supported by Florian Kober and Angela Landgraf.

References

Attal, M., J. Lavé, and J. P. Masson. 2006. “New facility to study river abrasion processes.” J. Hydraul. Eng. 132 (6): 624–628. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:6(624).
Auel, C., I. Albayrak, T. Sumi, and R. M. Boes. 2017. “Sediment transport in high-speed flows over a fixed bed: 2. Particle impacts and abrasion prediction.” Earth Surf. Process. Landforms 42 (9): 1384–1396. https://doi.org/10.1002/esp.4132.
Beer, A. R., and M. P. Lamb. 2021. “Abrasion regimes in fluvial bedrock incision.” Geology 49 (6): 682. https://doi.org/10.1130/G48466.1.
Beer, A. R., and J. M. Turowski. 2015. “Bedload transport controls bedrock erosion under sediment-starved conditions.” Earth Surf. Dyn. 3 (3): 291–309. https://doi.org/10.5194/esurf-3-291-2015.
Bramante, J. F., J. T. Perron, A. D. Ashton, and J. P. Donnelly. 2020. “Experimental quantification of bedrock abrasion under oscillatory flow.” Geology 48 (6): 541–545. https://doi.org/10.1130/G47089.1.
Helbig, U., H. B. Horlacher, J. Stamm, C. Bellmann, M. Butler, and V. Mechtcherine. 2012. “Modeling hydroabrasive stress in the laboratory experiment, part 2—Correlation with wear values and prognosis approaches.” [In German.] Bautechnik 89 (5): 320–330. https://doi.org/10.1002/bate.201200013.
Inoue, T., N. Izumi, Y. Shimizu, and G. Parker. 2014. “Interaction among alluvial cover, bed roughness, and incision rate in purely bedrock and alluvial-bedrock channel.” J. Geophys. Res. Earth Surf. 119 (10): 2123–2146. https://doi.org/10.1002/2014JF003133.
Inoue, T., S. Yamaguchi, and J. M. Nelson. 2017. “The effect of wet-dry weathering on the rate of bedrock river channel erosion by saltating gravel.” Geomorphology 285 (May): 152–161. https://doi.org/10.1016/j.geomorph.2017.02.018.
Johnson, J. P., and K. X. Whipple. 2010. “Evaluating the controls of shear stress, sediment supply, alluvial cover, and channel morphology on experimental bedrock incision rate.” J. Geophys. Res. Earth Surf. 115 (2): F02018. https://doi.org/10.1029/2009JF001335.
Momber, A. W. 2004. “Wear of rocks by water flow.” Int. J. Rock Mech. Min. Sci. 41 (1): 51–68. https://doi.org/10.1016/S1365-1609(03)00075-3.
Mueller-Hagmann, M., I. Albayrak, C. Auel, and R. M. Boes. 2020. “Field investigation on hydroabrasion in high-speed sediment-laden flows at sediment bypass tunnels.” Water 12 (2): 469. https://doi.org/10.3390/w12020469.
Pells, S. E., K. Douglas, C. Auel, and P. J. N. Pells. 2017. “Rock mass erodibility.” J. Hydraul. Eng. 143 (5): 06016031. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001243.
Pruß, G., J. M. Turowski, M. Reich, M. Naumann, A. Voigtländer, A. Bonnelye, and A. Ludwig. 2023. Parallel data of rock geotechnical properties and erodibility using erosion mills. Potsdam, Germany: GFZ Data Services. https://doi.org/10.5880/GFZ.4.6.2023.002.
Scheingross, J. S., F. Brun, D. Y. Lo, K. Omerdin, and M. P. Lamb. 2014. “Experimental evidence for fluvial bedrock incision by suspended and bedload sediment.” Geology 42 (6): 523–526. https://doi.org/10.1130/G35432.1.
Sklar, L. S., and W. E. Dietrich. 2001. “Sediment and rock strength controls on river incision into bedrock.” Geology 29 (12): 1087–1090. https://doi.org/10.1130/0091-7613(2001)029%3C1087:SARSCO%3E2.0.CO;2.
Small, E. E., T. Blom, G. S. Hancock, B. M. Hynek, and C. W. Wobus. 2015. “Variability of rock erodibility in bedrock-floored stream channels based on abrasion mill experiments.” J. Geophys. Res. 120 (8): 1455–1469. https://doi.org/10.1002/2015JF003506.
Sunamura, T., and Y. Matsukura. 2006. “Laboratory test of bedrock abrasion by sediment-entrained water flow: A relationship between abrasion rate and bedrock strength.” Trans. Jpn. Geomorphological Union 27 (1): 85–94.
Sunamura, T., Y. Matsukura, and H. Tsujimoto. 1985. “A laboratory test of tractive abrasion of rocks in water.” Trans. Jpn. Geomorphological Union 6: 65–68.
Turowski, J. M., N. Hovius, M. L. Hsieh, D. Lague, and M. C. Chen. 2008. “Distribution of erosion across bedrock channels.” J. Br. Geomorphological Res. Group 33 (3): 353–363. https://doi.org/10.1002/esp.1559.
Turowski, J. M., G. Pruß, A. Voigtländer, A. Ludwig, A. Landgraf, F. Kober, and A. Bonnelye. 2023. “Geotechnical controls on erodibility in fluvial impact erosion.” Earth Surf. Dyn. 2023 (May): 1–31. https://doi.org/10.5194/egusphere-2023-76.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 149Issue 12December 2023

History

Received: May 12, 2022
Accepted: Jun 2, 2023
Published online: Sep 26, 2023
Published in print: Dec 1, 2023
Discussion open until: Feb 26, 2024

Authors

Affiliations

Helmholtzzentrum Potsdam, GFZ German Research Centre for Geosciences, Telegrafenberg, Potsdam 14473, Germany (corresponding author). ORCID: https://orcid.org/0000-0003-1558-0565. Email: [email protected]
Graduate Geoecologist, Helmholtzzentrum Potsdam, GFZ German Research Centre for Geosciences, Telegrafenberg, Potsdam 14473, Germany. ORCID: https://orcid.org/0000-0001-6552-8621. Email: [email protected]
Markus Reich [email protected]
Graduate Engineer, Helmholtzzentrum Potsdam, GFZ German Research Centre for Geosciences, Telegrafenberg, Potsdam 14473, Germany. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Geotechnical controls on erodibility in fluvial impact erosion, Earth Surface Dynamics, 10.5194/esurf-11-979-2023, 11, 5, (979-994), (2023).

View Options

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share