Abstract

Pipe wall condition assessment is critical for targeted maintenance and failure prevention in water distribution systems. This paper proposes a spatially distributed pipeline condition assessment technique using persistent hydraulic transient waves of a small magnitude (microtransient waves), with a focus on the detection and reconstruction of extended and irregular pipe wall anomalies (e.g., nonuniform blockages and internal or external corrosion that is distributed along a short extent of the pipe). For an extended and irregular anomaly, a pipe’s response to any incident waves will be complex and impose challenges in interpretation. To identify the complex response patterns, an optimization technique has been developed using a differential evolution algorithm to separate the directional impulse response functions (IRFs) and then to differentiate the anomaly-induced response in a directional IRF from noise. A layer-peeling method is then applied to the directional IRF to reconstruct the pipe impedances, which are related to the localized wave speed and pipe wall thickness. Numerical verifications have been conducted on a pipe with a deteriorated section that is assumed to have a constant internal diameter but varying wave speeds along its length (simulating a section with nonuniform external corrosion and wall thinning). The results show that the nonuniformly deteriorated section can be successfully detected and accurately reconstructed using the techniques proposed in this paper.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The research presented in this paper has been supported by the Australian Research Council through the Discovery Project Grants DP190102484 and DP 210103565.

References

Amir, N., U. Shimony, and G. Rosenhouse. 1995. “Discrete model for tubular acoustic systems with varying cross section—The direct and inverse problems. Part 1: Theory.” Acustica 81 (5): 450–462.
Blasten, E., F. Zouari, M. Louati, and M. S. Ghidaoui. 2019. “Blockage detection in networks: The area reconstruction method.” Math. Eng. 1 (4): 849–880. https://doi.org/10.3934/mine.2019.4.849.
Brunone, B., and M. Ferrante. 2001. “Detecting leaks in pressurised pipes by means of transients.” J. Hydraul. Res. 39 (5): 539–547. https://doi.org/10.1080/00221686.2001.9628278.
Brunone, B., M. Ferrante, and S. Meniconi. 2008. “Portable pressure wave-maker for leak detection and pipe system characterization.” J. AWWA 100 (4): 108–116. https://doi.org/10.1002/j.1551-8833.2008.tb09607.x.
Colombo, A. F., P. Lee, and B. W. Karney. 2009. “A selective literature review of transient-based leak detection methods.” J. Hydro-environ. Res. 2 (4): 212–227. https://doi.org/10.1016/j.jher.2009.02.003.
Duan, H. F., P. J. Lee, A. Kashima, J. Lu, M. S. Ghidaoui, and Y. K. Tung. 2013. “Extended blockage detection in pipes using the system frequency response: Analytical analysis and experimental verification.” J. Hydraul. Eng. 139 (7): 763–771. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000736.
Forbes, B. J., D. B. Sharp, J. A. Kemp, and A. Li. 2003. “Singular system methods in acoustic pulse reflectometry.” Acta Acust. united Acust. 89 (5): 11.
Ghazali, M. F., S. B. M. Beck, J. D. Shucksmith, J. B. Boxall, and W. J. Staszewski. 2012. “Comparative study of instantaneous frequency based methods for leak detection in pipeline networks.” Mech. Syst. Sig. Process. 29 (5): 187–200. https://doi.org/10.1016/j.ymssp.2011.10.011.
Gong, J., M. F. Lambert, A. C. Zecchin, and A. R. Simpson. 2016. “Experimental verification of pipeline frequency response extraction and leak detection using the inverse repeat signal.” J. Hydraul. Res. 54 (2): 210–219. https://doi.org/10.1080/00221686.2015.1116115.
Gong, J., G. M. Png, J. W. Arkwright, A. W. Papageorgiou, P. R. Cook, M. F. Lambert, A. R. Simpson, and A. C. Zecchin. 2018. “In-pipe fibre optic pressure sensor array for hydraulic transient measurement with application to leak detection.” Measurement 126 (10): 309–317. https://doi.org/10.1016/j.measurement.2018.05.072.
Jing, L., Z. Li, W. Wang, A. Dubey, P. Lee, S. Meniconi, B. Brunone, and R. D. Murch. 2018. “An approximate inverse scattering technique for reconstructing blockage profiles in water pipelines using acoustic transients.” J. Acoust. Soc. Am. 143 (5): EL322–EL327. https://doi.org/10.1121/1.5036957.
Lee, P. J., J. P. Vítkovský, M. F. Lambert, A. R. Simpson, and J. A. Liggett. 2007. “Leak location in pipelines using the impulse response function.” J. Hydraul. Res. 45 (5): 643–652. https://doi.org/10.1080/00221686.2007.9521800.
Lee, P. J., J. P. Vítkovský, M. F. Lambert, A. R. Simpson, and J. A. Liggett. 2008. “Discrete blockage detection in pipelines using the frequency response diagram: Numerical study.” J. Hydraul. Eng. 134 (5): 658–663. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:5(658).
Louati, M., and M. S. Ghidaoui. 2017. “High-frequency acoustic wave properties in a water-filled pipe. Part 1: Dispersion and multi-path behaviour.” J. Hydraul. Res. 55 (5): 613–631. https://doi.org/10.1080/00221686.2017.1354931.
Meniconi, S., B. Brunone, M. Ferrante, and C. Massari. 2012. “Transient hydrodynamics of in-line valves in viscoelastic pressurized pipes: Long-period analysis.” Exp. Fluids 53 (1): 265–275. https://doi.org/10.1007/s00348-012-1287-3.
Meniconi, S., H. F. Duan, P. J. Lee, B. Brunone, M. S. Ghidaoui, and M. Ferrante. 2013. “Experimental investigation of coupled frequency and time-domain transient test-based techniques for partial blockage detection in pipelines.” J. Hydraul. Eng. 139 (10): 1033–1040. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000768.
Mohapatra, P. K., M. H. Chaudhry, A. A. Kassem, and J. Moloo. 2006. “Detection of partial blockage in single pipelines.” J. Hydraul. Eng. 132 (2): 200–206. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:2(200).
Nguyen, S. T. N., J. Gong, M. F. Lambert, A. C. Zecchin, and A. R. Simpson. 2018. “Least squares deconvolution for leak detection with a pseudo random binary sequence excitation.” Mech. Syst. Sig. Process. 99 (1): 846–858. https://doi.org/10.1016/j.ymssp.2017.07.003.
Sanz, G., R. Pérez, Z. Kapelan, and D. Savic. 2016. “Leak detection and localization through demand components calibration.” J. Water Resour. Plann. Manage. 142 (2): 04015057. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000592.
Sharp, D. B. 1996. “Acoustic pulse reflectometry for the measurement of musical wind instruments.” Ph.D. thesis, Dept. of Physics, Univ. of Edinburgh.
Storn, R., and K. Price. 1997. “Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces.” J. Global Optim. 11 (4): 341–359. https://doi.org/10.1023/A:1008202821328.
Tijsseling, A., M. Lambert, A. Simpson, M. Stephens, J. Vítkovský, and A. Bergant. 2008. “Skalak’s extended theory of water hammer.” J. Sound Vib. 310 (3): 718–728. https://doi.org/10.1016/j.jsv.2007.10.037.
Wang, X., M. S. Ghidaoui, and P. J. Lee. 2020. “Linear model and regularization for transient wave-based pipeline-condition assessment.” J. Water Resour. Plann. Manage. 146 (5): 04020028. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001205.
Wang, X., J. Lin, A. Keramat, M. S. Ghidaoui, S. Meniconi, and B. Brunone. 2019. “Matched-field processing for leak localization in a viscoelastic pipe: An experimental study.” Mech. Syst. Sig. Process. 124 (6): 459–478. https://doi.org/10.1016/j.ymssp.2019.02.004.
Wang, X. J., M. F. Lambert, and A. R. Simpson. 2005. “Detection and location of a partial blockage in a pipeline using damping of fluid transients.” J. Water Resour. Plann. Manage. 131 (3): 244–249. https://doi.org/10.1061/(ASCE)0733-9496(2005)131:3(244).
Wylie, E. B., and V. L. Streeter. 1993. Fluid transients in systems. Englewood Cliffs, NJ: Prentice Hall.
Zanganeh, R., E. Jabbari, A. Tijsseling, and A. Keramat. 2020. “Fluid-structure interaction in transient-based extended defect detection of pipe walls.” J. Hydraul. Eng. 146 (4): 04020015. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001693.
Zeng, W., J. Gong, M. F. Lambert, A. R. Simpson, B. S. Cazzolato, and A. C. Zecchin. 2019. “Detection of extended blockages in pressurised pipelines using hydraulic transients with a layer-peeling method.” IOP Conf. Ser. Earth Environ. Sci. 240 (Nov): 052019. https://doi.org/10.1088/1755-1315/240/5/052019.
Zeng, W., J. Gong, A. R. Simpson, B. S. Cazzolato, A. C. Zecchin, and M. F. Lambert. 2020a. “Paired-IRF method for detecting leaks in pipe networks.” J. Water Resour. Plann. Manage. 146 (5): 04020021. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001193.
Zeng, W., J. Z. Gong, P. R. Cook, J. W. Arkwright, A. R. Simpson, B. S. Cazzolato, A. C. Zecchin, and M. F. Lambert. 2020b. “Leak detection for pipelines using in-pipe optical fiber pressure sensors and a paired-IRF technique.” J. Hydraul. Eng. 146 (10): 06020013. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001812.
Zeng, W., J. Z. Gong, A. C. Zecchin, M. F. Lambert, A. R. Simpson, and B. S. Cazzolato. 2018. “Condition assessment of water pipelines using a modified layer-peeling method.” J. Hydraul. Eng. 144 (12): 04018076. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001547.
Zeng, W., A. C. Zecchin, B. S. Cazzolato, A. R. Simpson, J. Gong, and M. F. Lambert. 2021. “Extremely sensitive anomaly detection in pipe networks using a higher-order paired-impulse response function with a correlator.” J. Water Resour. Plann. Manage. 147 (10): 04021068. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001446.
Zeng, W., A. C. Zecchin, J. Gong, M. F. Lambert, A. R. Simpson, and B. S. Cazzolato. 2020c. “Inverse wave reflectometry method for hydraulic transient-based pipeline condition assessment.” J. Hydraul. Eng. 146 (8): 04020056. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001785.
Zhang, C., J. Gong, A. C. Zecchin, M. F. Lambert, and A. R. Simpson. 2018. “Faster inverse transient analysis with a head based method of characteristics and a flexible computational grid for pipeline condition assessment.” J. Hydraul. Eng. 144 (4): 04018007. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001438.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 149Issue 1January 2023

History

Received: Oct 14, 2021
Accepted: Sep 19, 2022
Published online: Nov 10, 2022
Published in print: Jan 1, 2023
Discussion open until: Apr 10, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Research Fellow, School of Civil, Environmental and Mining Engineering, Univ. of Adelaide, Adelaide, SA 5005, Australia (corresponding author). ORCID: https://orcid.org/0000-0003-3525-0432. Email: [email protected]
Senior Lecturer, School of Engineering, Deakin Univ., Geelong Waurn Ponds Campus, Waurn Ponds, VIC 3216, Australia. ORCID: https://orcid.org/0000-0002-6344-5993. Email: [email protected]
Aaron C. Zecchin [email protected]
Senior Lecturer, School of Civil, Environmental and Mining Engineering, Univ. of Adelaide, Adelaide, SA 5005, Australia. Email: [email protected]
Martin F. Lambert, A.M.ASCE [email protected]
Professor, School of Civil, Environmental and Mining Engineering, Univ. of Adelaide, Adelaide, SA 5005, Australia. Email: [email protected]
Benjamin S. Cazzolato [email protected]
Professor, School of Mechanical Engineering, Univ. of Adelaide, Adelaide, SA 5005, Australia. Email: [email protected]
Angus R. Simpson, M.ASCE [email protected]
Emeritus Professor, School of Civil, Environmental and Mining Engineering, Univ. of Adelaide, Adelaide, SA 5005, Australia. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Investigation on the Water Depth of Choked Flow due to Bottom Blockages in Circular Open Channels, Journal of Hydraulic Engineering, 10.1061/JHEND8.HYENG-13905, 150, 5, (2024).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share