Open access
Technical Papers
Jul 1, 2024

Deep Vibrocompaction at the Natural Frequency of the Soil Response

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 150, Issue 9

Abstract

Deep horizontal vibrocompaction is an efficient method of compacting granular soils that has been used and optimized over decades. The state of research indicates that the best possible compaction results are achieved when the vibrator operates at the natural frequency of the vibrator-soil interaction system. However, this approach proved to be unsustainable in practical application. This paper presents a concept for determining the soil response by means of the soil contact force and its phase angle and proposes that an optimized compaction is possible at the natural frequency of the soil response. The considerations are explained using a single-degree-of-freedom (SDOF) model. The admissibility of the approach is demonstrated using measured data as an example. The soil contact force and the phase angle of the soil response are evaluated for selected compaction tests. The evaluation shows that reducing the excitation frequency allows compaction close to the natural frequency of the soil response, requiring less electrical energy, shorter compaction time, and less jetted water. Approaching the natural frequency of the soil response promises to be a valuable criterion for optimizing the deep vibrocompaction process.

Formats available

You can view the full content in the following formats:

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

Arnold, M., and I. Herle. 2009. “Comparison of vibrocompaction methods by numerical simulations.” Int. J. Numer. Anal. Methods Geomech. 33 (16): 1823–1838. https://doi.org/10.1002/nag.798.
Bałachowski, L., and N. Kurek. 2015. “Vibroflotation control of sandy soils using DMT and CPTU.” In Proc., 3rd Int. Conf. on the Flat Dilatometer. Rome: Marchetti Dilatometer.
Bitri, A., K. Samyn, S. Brûlé, and E. Javelaud. 2013. “Assessment of ground compaction using multi-channel analysis of surface wave data and cone penetration tests.” Near Surf. Geophys. 11 (6): 683–690. https://doi.org/10.3997/1873-0604.2013037.
Bo, M. W., M.-F. Chang, A. Arulrajah, and V. Choa. 2012. “Ground investigations for Changi East reclamation projects.” Geotech. Geol. Eng. 30 (1): 45–62. https://doi.org/10.1007/s10706-011-9448-3.
Brumund, W. F., and G. A. Leonards. 1972. “Subsidence of sand due to surface vibration.” J. Soil Mech. Found. Div. 98 (1): 27–42. https://doi.org/10.1061/JSFEAQ.0001731.
Chopra, A. K. 2007. “Dynamics of structures: Theory and applications to earthquake engineering.” In Prentice-Hall international series in civil engineering and engineering mechanics, 72–85. Upper Saddle River, NJ: Prentice Hall.
Covil, C. S., M. C. W. Luk, and A. R. Pickles. 1997. “Case history: Ground treatment of the sandfill at the new airport at Chek Lap Kok, Hong Kong.” In Proc., Conf. Ground Improvement Geosystems Densification and Reinforcement, 148–156. London: Thomas Telford.
D’Appolonia, E. 1953. “Loose sands: Their compaction by vibroflotation.” In Proc., Symp. on Dynamic Testing of Soils, 138–162. West Conshohocken, PA: ASTM.
Das, B. M., and Z. Luo. 2016. Principles of soil dynamics. Boston, MA: Cengage Learning.
Fellin, W. 2000. Rütteldruckverdichtung Als Plastodynamisches problem. London: CRC Press.
Fellin, W., G. Hochenwarter, and A. Geiß. 2003. “Großversuche zur Entwicklung eines Qualitätssicherungssystems für die Rütteldruckverdichtung.” Bauingenieur 78 (9): 433–439.
Karray, M., G. Lefebvre, Y. Ethier, and A. Bigras. 2010. “Assessment of deep compaction of the Péribonka dam foundation using ‘modal analysis of surface waves’ (MASW).” Can. Geotech. J. 47 (3): 312–326. https://doi.org/10.1139/T09-108.
Kim, D. S., and H. C. Park. 1999. “Evaluation of ground densification using spectral analysis of surface waves (SASW) and resonant column (RC) tests.” Can. Geotech. J. 36 (2): 291–299. https://doi.org/10.1139/t98-103.
Kirsch, K., and F. Kirsch. 2017. Ground improvement by deep vibratory methods. London: Taylor & Francis.
Kopf, F., C. Kummerer, D. Adam, and J. Pistrol. 2023. “Tiefenrüttler–optimale verdichtung in eigenfrequenz der bodenkontaktkraft.” In Vol 16 of Beiträge zum 37 Christian Veder Kolloquium, 297–316. Graz, Austria: Technische Universität Graz.
Massarsch, K. R. 2023. “Applications of deep vertical vibratory compaction.” In Proc., 5th Int. Conf. on Geotechnics for Sustainable Infrastructure Development. Berlin: Springer.
Massarsch, K. R., and B. H. Fellenius. 2002. “Vibratory compaction of coarse-grained soils.” Can. Geotech. J. 39 (3): 695–709. https://doi.org/10.1139/t02-006.
Massarsch, K. R., C. Wersäll, and B. H. Fellenius. 2020. “Horizontal stress increase induced by deep vibratory compaction.” Proc. Inst. Civ. Eng. Geotech. Eng. 173 (3): 228–253. https://doi.org/10.1680/jgeen.19.00040.
Massarsch, R. K., and B. H. Fellenius. 2005. “Deep vibratory compaction of granular soils.” In Vol. 3 of Ground improvement—Case histories, edited by B. Indraratna and J. Chu, 539–561. Amsterdam, Netherlands: Elsevier.
Mitchell, J. K., and Z. V. Solymar. 1984. “Time-dependent strength gain in freshly deposited or densified sand.” J. Geotech. Eng. 110 (11): 1559–1576. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:11(1559).
Morgan, J. G. D., and G. H. Thomson. 1983. “Instrumentation methods for control of ground density in deep vibrocompaction.” In Proc., 8th European Conf. on Soil Mechanics and Foundation Engineering, 59–64. Amsterdam, Netherlands: A.A. Balkema.
Nagula, S., and J. Grabe. 2017. “2-Phase dynamic simulation of deep sand compaction to reduce liquefaction.” Procedia Eng. 199 (Jan): 2396–2401. https://doi.org/10.1016/j.proeng.2017.09.277.
Nagula, S. S., and J. Grabe. 2020. “Coupled Eulerian Lagrangian based numerical modelling of vibro-compaction with model vibrator.” Comput. Geotech. 123 (Jul): 103545. https://doi.org/10.1016/j.compgeo.2020.103545.
Nagy, P. 2018. “Rütteldruckverdichtung: Dynamische Verdichtungskontrolle auf Basis der Rüttlerbewegung.” Ph.D. thesis, Dept. of Civil Engineering, TU Wien.
Nagy, P., J. Pistrol, F. Kopf, and D. Adam. 2021. “Integrated compaction control based on the motion behavior of a deep vibrator.” Transp. Geotech. 28 (Apr): 100539. https://doi.org/10.1016/j.trgeo.2021.100539.
Nendza, M. 2006. “Untersuchungen zu den Mechanismen der dynamischen Bodenverdichtung bei Anwendung des Rütteldruckverfahrens.” Ph.D. thesis, Dept. of Architecture, Civil Engineering and Environmental Sciences, Technische Universität Braunschweig.
Poteur, M. 1968. “Beitrag zur Untersuchung von Böden unter dem Einfluß von Tauchrüttlern.” Ph.D. thesis, Dept. of Civil Engineering, Technische Hochschule München.
Poteur, M. 1971. “Beitrag zur Tauchrüttelung in rolligen Böden.” Baumaschine und Bautechnik 18 (7): 303–309.
Robertson, P. K. 1990. “Soil classification using the cone penetration test.” Can. Geotech. J. 27 (1): 151–158. https://doi.org/10.1139/t90-014.
Robertson, P. K. 2006. “Suggested QC criteria for deep compaction using the CPT.” In Proc., 5th Int. Conf. on Geotechnical and Geophysical Site Characterisation, 711–715. Sydney, Australia: Australian Geomechanics Society.
Seed, H. B., and M. L. Silver. 1972. “Settlement of dry sands during earthquakes.” J. Soil Mech. Found. Div. 98 (4): 381–397. https://doi.org/10.1061/JSFEAQ.0001745.
Studer, J. A., M. G. Koller, and J. Laue. 2008. Bodendynamik: Grundlagen, Kennziffern, Probleme und Lösungsansätze. Berlin: Springer.
Thorburn, S. 1975. “Building structures supported by stabilized ground.” Géotechnique 25 (1): 83–94. https://doi.org/10.1680/geot.1975.25.1.83.
Triantafyllidis, T., and I. Kimmig. 2019. “A simplified model for vibro compaction of granular soils.” Soil Dyn. Earthquake Eng. 122 (Apr): 261–273. https://doi.org/10.1016/j.soildyn.2018.12.008.
Wehr, J. 2005. “Variation der Frequenz von Tiefenrüttlern zur Optimierung der Rütteldruckverdichtung.” In Mitteilungen des Fachgebiets Grundbau und Bodenmechanik, 67–77. Berlin: Technische Universität Berlin.
Wehr, J., and W. Sondermann. 2012. “Deep vibro techniques.” In Ground improvement, edited by K. Kirsch and A. Bell, 57–92. London: CRC Press.
Wotzlaw, M., D. Aubram, and F. Rackwitz. 2023. “Numerical analysis of deep vibrocompaction at small and full scale.” Comput. Geotech. 157 (May): 105321. https://doi.org/10.1016/j.compgeo.2023.105321.
Youd, T. L. 1972. “Compaction of sands by repeated shear straining.” J. Soil Mech. Found. Div. 98 (7): 709–725. https://doi.org/10.1061/JSFEAQ.0001762.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 150Issue 9September 2024

History

Received: Oct 5, 2023
Accepted: Apr 18, 2024
Published online: Jul 1, 2024
Published in print: Sep 1, 2024
Discussion open until: Dec 1, 2024

Authors

Affiliations

Assistant Professor, Dept. of Civil and Environmental Engineering, TU Wien, Institute of Geotechnics, Karlsplatz 13/220-02, Vienna 1040, Austria (corresponding author). ORCID: https://orcid.org/0000-0003-4262-2791. Email: [email protected]
Fritz Kopf, Dr.Tech.
Senior Consultant, FCP–Fritsch, Chiari & Partner ZT GmbH, Marxergasse 1B, Vienna 1030, Austria.
Dietmar Adam, Dr.Tech.
Professor, Dept. of Civil and Environmental Engineering, TU Wien, Institute of Geotechnics, Karlsplatz 13/220-02, Vienna 1040, Austria.
Clemens Kummerer, Dr.Tech. https://orcid.org/0009-0002-0939-9807
Director, Keller Group Europe Division, Packerstraße 167, Söding 8561, Austria. ORCID: https://orcid.org/0009-0002-0939-9807

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share