Technical Papers
Mar 2, 2023

Experimental Study on the Time-Dependent Oedometric Compression Behavior of Calcareous Sand

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 149, Issue 5

Abstract

A series of compression tests were carried out on two types of calcareous sand to study the time-dependent behavior of calcareous sand under oedometric conditions. Consolidation, creep, stress relaxation, and constant strain/stress rate tests were conducted. At the same time, the effects of input energy and grain shape on particle breakage were investigated. The test results show that a large amount of particle breakage occurs in the calcareous soils under different modes of loading, leading to a significant time effect on the oedometric compression responses. Under the same level of vertical stress, the large-grain calcareous sand has a higher creep or relaxation rate. Over-consolidated sand has a much smaller creep or relaxation response than normally consolidated sand, and the response decreases with an increase in the overconsolidation ratio. Loading rate has an influence on the compressibility of calcareous sand, especially when the particle breakage is significant. In addition, it is also shown that a unique relationship exists between the relative breakage and the input energy for the same kind of calcareous sand, which is independent of the loading mode.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The study was partially supported by the National Natural Science Foundation of China (Grant No. 52278353), which is gratefully acknowledged.

References

AASHTO. 2020. LRFD bridge design specifications. 9th ed. Washington, DC: AASHTO.
Altuhafi, F., C. O’Sullivan, and I. Cavarretta. 2013. “Analysis of an image-based method to quantify the size and shape of sand particles.” J. Geotech. Geoenviron. Eng. 139 (8): 1290–1307. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000855.
Altuhafi, F. N., M. R. Coop, and V. N. Georgiannou. 2016. “Effect of particle shape on the mechanical behavior of natural sands.” J. Geotech. Geoenviron. Eng. 142 (12): 04016071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001569.
Altuhafi, F. N., R. J. Jardine, V. N. Georgiannou, and W. W. Moinet. 2018. “Effects of particle breakage and stress reversal on the behaviour of sand around displacement piles.” Géotechnique 68 (6): 546–555. https://doi.org/10.1680/jgeot.17.P.117.
AnhDan, L., F. Tatsuoka, and J. Koseki. 2006. “Viscous effects on the stress-strain behavior of gravelly soil in drained triaxial compression.” Geotech. Test. J. 29 (4): 330–340. https://doi.org/10.1520/GTJ.12720.
ASTM. 2006. Standard test method for permeability of granular soils (Constant Head). ASTM D2434-68. West Conshohocken, PA: ASTM.
ASTM. 2011. Standard test methods for one-dimensional consolidation properties of soils using incremental loading. ASTM D2435. West Conshohocken, PA: ASTM.
ASTM. 2014. Standard test method for specific gravity of soil solids by gas pycnometer. ASTM D5550-14. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard test methods for maximum index density and unit weight of soils using a vibratory table. ASTM D4253-16. West Conshohocken, PA: ASTM.
ASTM. 2017a. Standard practice for classification of soils for engineering purposes. ASTM D2487. West Conshohocken, PA: ASTM.
ASTM. 2017b. Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. ASTM D6913/D6913M-17. West Conshohocken, PA: ASTM.
Augustesen, A., M. Liingaard, and P. V. Lade. 2004. “Evaluation of time-dependent behavior of soils.” Int. J. Geomech. 4 (3): 137–156. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:3(137).
Blott, S. J., and K. Pye. 2008. “Particle shape: A review and new methods of characterization and classification.” Sedimentology 55 (1): 31–63. https://doi.org/10.1111/j.1365-3091.2007.00892.x.
Bowman, E. T., and K. Soga. 2003. “Creep, ageing and microstructural change in dense granular materials.” Soils Found. 43 (4): 107–117. https://doi.org/10.3208/sandf.43.4_107.
Brandes, H. G. 2011. “Simple shear behavior of calcareous and quartz sands.” Geotech. Geol. Eng. 29 (1): 113–126. https://doi.org/10.1007/s10706-010-9357-x.
Briaud, J. L., and R. Gibbens. 1999. “Behavior of five large spread footings in sand.” J. Geotech. Geoenviron. Eng. 125 (9): 787–796. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:9(787).
Brzesowsky, R. H., S. J. T. Hangx, N. Brantut, and C. J. Spiers. 2014. “Compaction creep of sands due to time-dependent grain failure: Effects of chemical environment, applied stress and grain size.” J. Geophys. Res. Solid Earth 119 (10): 7521–7541. https://doi.org/10.1002/2014JB011277.
Burland, J. B., and M. C. Burbridge. 1985. “Settlement of foundations on sand and gravel.” Proc. Inst. Civ. Eng. 78 (6): 1325–1381. https://doi.org/10.1680/iicep.1985.1058.
Clements, R. P. 1981. “The deformation of rockfill: Inter-particle behaviour, bulk properties and behaviour in dams.” Ph.D. thesis, Faculty of Engineering, King’s College, Univ. of London.
Coop, M. R., K. K. Sorensen, T. B. Freitas, and G. Georgoutsos. 2004. “Particle breakage during shearing of a carbonate sand.” Géotechnique 54 (3): 157–163. https://doi.org/10.1680/geot.2004.54.3.157.
Cudmani, R., R. Jörger, and K. Wolski. 2011. “Hafenerweiterung Port Botany: Wirtschaftliche Lösungen für höchste geotechnische Anforderungen.” In Proc., 7. Hans-Lorenz-Symp., 231–250. Helsinki, Finland: Earthworks and Foundation Engineering.
Desai, C. S., and D. Zhang. 1987. “Viscoplastic model for geologic materials with generalized flow rule.” Int. J. Numer. Anal. Methods Geomech. 11 (6): 603–620. https://doi.org/10.1002/nag.1610110606.
Di Benedetto, H., F. Tatsuoka, and M. Ishihara. 2002. “Time-dependent shear deformation characteristics of sand and their constitutive modeling.” Soils Found. 42 (2): 1–22. https://doi.org/10.3208/sandf.42.2_1.
Di Prisco, C., S. Imposimato, and I. Vardoulakis. 2000. “Mechanical modelling of drained creep triaxial tests on loose sand.” Géotechnique 50 (1): 73–82. https://doi.org/10.1680/geot.2000.50.1.73.
Ghiabi, H., and A. P. S. Selvadurai. 2009. “Time-dependent mechanical behavior of a granular medium used in laboratory investigations.” Int. J. Geomech. 9 (1): 1–8. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:1(1).
Guyon, E., and J. P. Troadec. 1994. Du sac de billes au tas de sable. Paris: Editions Odile Jacob.
Hagerty, M. M., D. R. Hite, C. R. Ullrich, and D. J. Hagerty. 1993. “One-dimensional high-pressure compression of granular media.” J. Geotech. Eng. 119 (1): 1–18. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(1).
Ham, T., Y. Nakata, R. P. Orense, and M. Hyodo. 2010. “Influence of gravel on the compression characteristics of decomposed granite soil.” J. Geotech. Geoenviron. Eng. 136 (11): 1574–1577. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000370.
Hardin, B. O. 1985. “Crushing of soil particles.” J. Geotech. Eng. 111 (10): 1177–1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177).
Karimpour, H., and P. V. Lade. 2010. “Time effects relate to crushing in sand.” J. Geotech. Geoenviron. Eng. 136 (9): 1209–1219. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000335.
Karimpour, H., and P. V. Lade. 2013. “Creep behavior in Virginia Beach sand.” Can. Geotech. J. 50 (11): 1159–1178. https://doi.org/10.1139/cgj-2012-0467.
King, R., and M. Lodg. 1988. “North west shelf development the foundation engineering challenge.” In Proc., Int. Conf. on Calcareous Sediments, 333–342. Rotterdam, Netherlands: A.A. Balkema.
Kiyota, T., and F. Tatsuoka. 2006. “Viscous property of loose sand in triaxial compression, extension and cyclic loading.” Soils Found. 46 (5): 665–684. https://doi.org/10.3208/sandf.46.665.
Kuwano, R., and R. J. Jardine. 2002. “On measuring creep behaviour in granular materials through triaxial testing.” Can. Geotech. J. 39 (5): 1061–1074. https://doi.org/10.1139/t02-059.
Lade, P. V., and H. Karimpour. 2010. “Static fatigue controls particle crushing and time effects in granular materials.” Soils Found. 50 (5): 573–583. https://doi.org/10.3208/sandf.50.573.
Lade, P. V., and H. Karimpour. 2015. “Stress relaxation behavior in Virginia Beach sand.” Can. Geotech. J. 52 (7): 813–835. https://doi.org/10.1139/cgj-2013-0463.
Lade, P. V., C. D. Liggio, and J. Nam. 2009. “Strain rate, creep and stress drop-creep experiments on crushed coral sand.” J. Geotech. Geoenviron. Eng. 135 (7): 941–953. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000067.
Lade, P. V., and C. T. Liu. 1998. “Experimental study of drained creep behavior of sand.” J. Eng. Mech. 124 (8): 912–920. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(912.
Lade, P. V., J. Nam, and C. D. Liggio. 2010. “Effects of particle crushing in stress drop-relaxation experiments on crushed coral sand.” J. Geotech. Geoenviron. Eng. 136 (3): 500–509. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000212.
Levin, F. 2021. “Time-dependent compression behavior of sands under oedometric conditions.” J. Geotech. Geoenviron. Eng. 147 (12): 04021144. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002664.
Levin, F., and S. Vogt. 2015. “Creep of sand in filled open cast mining pits.” In Proc., Int. Conf. on Creep and Deformation Characteristics in Geomaterials, 47–49. Gothenburg, Sweden: Chalmers Univ. of Technology.
Liingaard, M., A. Augustesen, and P. V. Lade. 2004. “Characterization of models for time-dependent behavior of soils.” Int. J. Geomech. 4 (3): 157–177. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:3(157).
Liu, H. B., K. F. Zeng, and Y. Zou. 2020. “Particle breakage of calcareous sand and its correlation with input energy.” Int. J. Geomech. 20 (2): 04019151. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001541.
Luzzani, L., and M. R. Coop. 2002. “On the relationship between particle breakage and the critical state of sands.” Soils Found. 42 (2): 71–82. https://doi.org/10.3208/sandf.42.2_71.
Lv, Y., L. Feng, Y. Liu, P. Fen, and M. Wang. 2017. “Comparative study of coral sand and silica sand in creep under general stress states.” Can. Geotech. J. 54 (11): 1601–1611. https://doi.org/10.1139/cgj-2016-0295.
Marsal, R. J. 1973. “Mechanical properties of rockfill.” In Embankment dam engineering. New York: Wiley.
Matsushita, M., F. Tatsuoka, J. Koseki, B. Cazacliu, and S. J. M. Yasin. 1999. “Time effects on the prepeak deformation properties of sands.” In Prefailure deformation characteristics of geomaterials, 681–689. Rotterdam, Netherlands: A.A. Balkema.
Mcdowell, G. R., and J. J. Khan. 2003. “Creep of granular materials.” Granular Matter 5 (3): 115–120. https://doi.org/10.1007/s10035-003-0142-x.
McDowell, G. R. 2002. “On the yielding and plastic compression of sand.” Soils Found. 42 (1): 139–145. https://doi.org/10.3208/sandf.42.139.
McDowell, G. R., and M. D. Bolton. 1998. “On the micromechanics of crushable aggregates.” Géotechnique 48 (5): 667–679. https://doi.org/10.1680/geot.1998.48.5.667.
MWR (Ministry of Water Resources). 2019. Standard for geotechnical testing method. GB/T 50123-2019. Beijing: MWR.
Nakata, Y., Y. Kato, M. Hyodo, A. F. L. Hyde, and H. Murata. 2001. “One-dimensional compression behaviour of uniformly graded sand related to single particle crushing strength.” Soils Found. 41 (2): 39–51. https://doi.org/10.3208/sandf.41.2_39.
Nobari, E. S., and J. M. Duncan. 1972. Effect of reservoir filling on stresses and movements in earth and rockfill dams. Los Angeles: Univ. of California.
Oldecop, L. A., and E. E. Alonso. 2001. “A model for rockfill compressibility.” Géotechnique 51 (2): 127–139. https://doi.org/10.1680/geot.2001.51.2.127.
Olson, R. E. 1986. “State of the art: Consolidation testing.” Consolidation of soils: Testing and evaluation. West Conshohocken, PA: ASTM.
Pestana, J. M., and A. J. Whittle. 1995. “Compression model for cohesionless soils.” Géotechnique 45 (4): 611–631. https://doi.org/10.1680/geot.1995.45.4.611.
Pino, L. F. M., and B. Baudet. 2015. “The effect of the particle size distribution on the mechanics of fibre-reinforced sands under onedimensional compression.” Geotext. Geomembr. 43 (3): 250–258. https://doi.org/10.1016/j.geotexmem.2015.02.004.
Sanzeni, A., A. Whittle, J. Germaine, and F. Colleselli. 2012. “Compression and creep of Venice lagoon sands.” J. Geotech. Geoenviron. Eng. 138 (10): 1266–1276. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000696.
Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. “NIH image to ImageJ: 25 years of image analysis.” Nat. Methods 9 (5): 671–675. https://doi.org/10.1038/nmeth.2089.
Shahnazari, H., and R. Rezvani. 2013. “Effective parameters for the particle breakage of calcareous sands: An experimental study.” Eng. Geol. 159 (12): 98–105. https://doi.org/10.1016/j.enggeo.2013.03.005.
Sivrikaya, O. 2006. “Measurement of side friction between specimen and consolidation ring with newly designed oedometer cell.” Geotech. Test. J. 29 (1): 87–94. https://doi.org/10.1520/GTJ12513.
Takei, M., O. Kusakabe, and T. Hayashi. 2001. “Time-dependent behavior of crushable materials in one-dimensional compression tests.” Soils Found. 41 (1): 97–121. https://doi.org/10.3208/sandf.41.97.
Tatsuoka, F., T. Enomoto, and T. Kiyota. 2006. “Viscous property of geomaterial in drained shear.” In Proc., 2nd Japan–U.S. Workshop Geomechanics II—Testing, Modeling and Simulation, 285–312. Reston, VA: ASCE.
Tatsuoka, F., F. S. D. Magistris, K. Hayano, Y. Momoya, and J. Koseki. 2000. “Some new aspects of time effects on the stress-strain behaviour of stiff geomaterials.” In The geotechnics of hard soils-soft rocks. Rotterdam, Netherlands: A.A. Balkema.
Tatsuoka, F., M. Shihara, H. Di Benedetto, and R. Kuwano. 2002. “Time-dependent shear deformation characteristics of geomaterials and their simulation.” Soils Found. 42 (2): 103–129. https://doi.org/10.3208/sandf.42.2_103.
Wang, J., P. Fan, M. Wang, L. Dong, L. Ma, and L. Gao. 2020. “Experimental study of one-dimensional compression creep in crushed dry coral sand.” Can. Geotech. J. 57 (12): 1854–1869. https://doi.org/10.1139/cgj-2019-0406.
Wang, T., S. H. Liu, S. R. Zheng, and Y. Lu. 2019. “Experimental study on compression characteristics of rockfill materials with composite grout.” [In Chinese.] Rock Soil Mech. 40 (4): 1–7. https://doi.org/10.16285/j.rsm.2017.2183.
Wang, X. Z., Y. Y. Jiao, R. Wang, M. J. Hu, Q. S. Meng, and F. Y. Tan. 2011a. “Engineering characteristics of the calcareous sand in Nansha islands, South China Sea.” Eng. Geol. 120 (3): 40–47. https://doi.org/10.1016/j.enggeo.2011.03.011.
Wang, X. Z., X. Wang, Z. C. Jin, Q. S. Meng, C. Q. Zhu, and R. Wang. 2017. “Shear characteristics of calcareous gravelly soil.” Bull. Eng. Geol. Environ. 76 (2): 561–573. https://doi.org/10.1007/s10064-016-0978-z.
Wang, Y. H., Y. M. Lau, and Y. Gao. 2014. “Examining the mechanisms of sand creep using DEM simulations.” Granular Matter 16 (5): 733–750. https://doi.org/10.1007/s10035-014-0514-4.
Wang, Z., R. C. K. Wong, and L. Qiao. 2011b. “Investigation on relations between grain crushing amount and void ratio change of granular materials in one-dimensional compression and creep tests.” J. Rock Mech. Geotech. Eng. 3 (Sep): 415–420. https://doi.org/10.3724/SP.J.1235.2011.00415.
Wei, H. Z., T. Zhao, J. Q. He, Q. S. Meng, and X. Z. Wang. 2018. “Evolution of particle breakage for calcareous sands during ring shear tests.” Int. J. Geomech. 18 (2): 04017153. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001073.
Xiao, Y., H. Liu, Q. Chen, Q. Ma, Y. Xiang, and Y. Zheng. 2017. “Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process.” Acta Geotech. 12 (5): 1177–1184. https://doi.org/10.1007/s11440-017-0580-y.
Xiao, Y., L. Long, T. M. Evans, H. Zhou, H. Liu, and A. W. Stuedlein. 2019. “Effect of particle shape on stress-dilatancy responses of medium-dense sands.” J. Geotech. Geoenviron. Eng. 145 (2): 04018105. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001994.
Xiao, Y., M. Meng, A. Daouadji, Q. S. Chen, and Z. J. Wu. 2020. “Effects of particle size on crushing and deformation behaviors of rockfill materials.” Geosci. Front. 11 (5): 375–388. https://doi.org/10.1016/j.gsf.2018.10.010.
Xu, D., M. Huang, and Y. Zhou. 2020. “One-dimensional compression behavior of calcareous sand and marine clay mixtures.” Int. J. Geomech. 20 (9): 04020137. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001763.
Yamamuro, J. A., P. A. Bopp, and P. V. Lade. 1996. “One-dimensional compression of sands at high pressures.” J. Geotech. Eng. Div. 122 (2): 147–154. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:2(147).
Yamamuro, J. A., and P. V. Lade. 1993. “Effects of strain rate on instability of granular soils.” Geotech. Test. J. 16 (3): 304–313. https://doi.org/10.1520/GTJ10051J.
Yu, F. W. 2017. “Particle breakage and the drained shear behavior of sands.” Int. J. Geomech. 17 (8): 04017041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000919.
Zhang, B., Y. F. Gao, W. Liu, and A. Y. Mei. 2009. “Research on compressibility of rockfill materials for dams and analysis of influencing factors.” [In Chinese.] Rock Soil Mech. 30 (3): 741–745. https://doi.org/10.16285/j.rsm.2009.03.016.
Zheng, T. L., and E. X. Song. 2021. “A micro-macromechanical compression model of crushing in granular materials based on a probabilistic approach and energy aspects.” Int. J. Numer. Anal. Methods Geomech. 45 (5): 753–775. https://doi.org/10.1002/nag.3177.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 149Issue 5May 2023

History

Received: Jan 23, 2022
Accepted: Nov 29, 2022
Published online: Mar 2, 2023
Published in print: May 1, 2023
Discussion open until: Aug 2, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, School of Civil and Hydraulic Engineering, Huazhong Univ. of Science and Technology, Wuhan 430074, China. ORCID: https://orcid.org/0000-0002-3395-6944. Email: [email protected]
Huabei Liu, M.ASCE [email protected]
Professor, School of Civil and Hydraulic Engineering, Huazhong Univ. of Science and Technology, Wuhan 430074, China (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • One-Dimensional Compression Behavior of River Silty Sand: Emphasizing the Equivalent Void Ratio Concept, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-9784, 24, 9, (2024).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share