Technical Papers
Sep 12, 2024

Buckling Analysis of Thin-Walled Structures Based on Trace Theory: A Simple and Efficient Approach for Mechanical Characterization of GFRP Members

Publication: Journal of Composites for Construction
Volume 28, Issue 6

Abstract

For unidirectional laminates, four properties are required for mechanical characterization regarding the laminae elastic response: the longitudinal elastic modulus, the transverse elastic modulus, the in-plane shear modulus, and the in-plane Poisson's ratio. Two approaches are usually followed to obtain these properties: an experimental program, which is costly and time-consuming, or micromechanical modeling, which is associated with many uncertainties. The trace theory has been widely explored for carbon fiber-reinforced polymers as an alternative option, where only one independent property is necessary and the others are obtained using a normalized relation with the trace of the stiffness matrix. Considering the wide application of glass fiber-reinforced polymers (GFRPs) in civil structures, an extension of the trace theory was developed by combining micromechanics and machine learning. First, a data set was generated using the asymptotic homogenization for the usual properties ranges of glass fibers and polymeric matrices. Next, the decision trees algorithm was implemented to evaluate the normalized properties variation according to the trace. Based on the results of the training procedure, linear equations were obtained for the normalized properties. The proposed equations were validated by comparing the estimations of the normalized properties with a set of 17 experimental data compiled from the literature, indicating that the average errors range between 3% and 13%. Once the proposed equations were validated, the novel theory was applied to analyze the buckling load of thin-walled structures, where square and channel profiles with different stacking sequences were evaluated. Only the longitudinal elastic modulus was used as input, while the other properties were computed using the trace relations. The properties computed analytically were applied in a finite-element model to calculate the buckling loads, resulting in average errors of this hybrid approach smaller than 10% for both profiles.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors acknowledge the support from the Brazilian Research Agency FAPERJ.

Notation

The following symbols are used in this paper:
C
lamina plane stress stiffness matrix;
Cij
components of the lamina plane stress stiffness matrix;
E1
lamina longitudinal elastic modulus;
E1
lamina normalized longitudinal elastic modulus;
E2
lamina transverse elastic modulus;
E2
lamina normalized transverse elastic modulus;
Ef
fiber elastic modulus;
Em
matrix elastic modulus;
G12
lamina in-plane shear modulus;
G12
lamina normalized in-plane shear modulus;
Gleft
measure the impurity of the left subset;
Gright
measure the impurity of the right subset;
J
cost function;
mleft
number of instances in the left subset;
mright
number of instances in the right subset;
tr(C)
trace of the lamina plane stress stiffness matrix;
Vf
fiber volume fraction;
ν12
lamina in-plane Poisson's ratio;
ν12
lamina normalized in-plane Poisson's ratio;
νm
matrix Poisson's ratio; and
νf
fiber Poisson's ratio.

References

Ansys. 2024. “Ansys help—Documentation, tutorials, and videos for Ansys products.” Reservation. Accessed July 8, 2024. https://ansyshelp.ansys.com/
Arteiro, A., et al. 2020. “A case for Tsai’s Modulus, an invariant-based approach to stiffness.” Compos. Struct. 252: 112683. https://doi.org/10.1016/j.compstruct.2020.112683.
Barbero, E. J. 2018. Introduction to composite materials design. 3rd ed. Boca Raton, FL: CRC Press.
Bledzki, A. K., A. Kessler, R. Rikards, and A. Chate. 1999. “Determination of elastic constants of glass/epoxy unidirectional laminates by the vibration testing of plates.” Compos. Sci. Technol. 59 (13): 2015–2024. https://doi.org/10.1016/S0266-3538(99)00059-7.
Bravo-Castillero, J., R. Guinovart-Díaz, R. Rodríguez-Ramos, F. J. Sabina, and R. Brenner. 2012. “Unified analytical formulae for the effective properties of periodic fibrous composites.” Mater. Lett. 73: 68–71. https://doi.org/10.1016/j.matlet.2011.12.106.
Cardoso, D. C. T., and K. A. Harries. 2019. “A viscoelastic model for time-dependent behavior of pultruded GFRP.” Constr. Build. Mater. 208: 63–74. https://doi.org/10.1016/j.conbuildmat.2019.02.155.
Carreras, L., B. L. V. Bak, S. M. Jensen, C. Lequesne, H. Xiong, and E. Lindgaard. 2023. “Benchmark test for mode I fatigue-driven delamination in GFRP composite laminates: Experimental results and simulation with the inter-laminar damage model implemented in SAMCEF.” Composites, Part B 253: 110529. https://doi.org/10.1016/j.compositesb.2023.110529.
Chen, J., L. Wan, Y. Ismail, J. Ye, and D. Yang. 2021. “A micromechanics and machine learning coupled approach for failure prediction of unidirectional CFRP composites under triaxial loading: A preliminary study.” Compos. Struct. 267: 113876. https://doi.org/10.1016/j.compstruct.2021.113876.
Chen, Y., J. Yang, F. Wang, and J. Peng. 2022. “Short beam shear damage analysis of GLARE laminates based on digital image correlation and finite element analysis.” Int. J. Damage Mech. 31 (4): 623–642. https://doi.org/10.1177/10567895211056679.
Cintra, G. G., D. C. T. Cardoso, and J. D. Vieira. 2019. “Parameters affecting local buckling response of pultruded GFRP I-columns: Experimental and numerical investigation.” Compos. Struct. 222: 110897. https://doi.org/10.1016/j.compstruct.2019.110897.
Cintra, G. G., J. D. Vieira, D. C. T. Cardoso, and T. Keller. 2023. “Mode I and Mode II fracture behavior in pultruded glass fiber-polymer—Experimental and numerical investigation.” Composites, Part B 266: 110988. https://doi.org/10.1016/j.compositesb.2023.110988.
Cintra, G. G., J. D. Vieira, D. C. T. Cardoso, and T. Keller. 2024. “Novel multi-crack damage approach for pultruded fiber-polymer web-flange junctions.” Composites, Part B 269: 111102. https://doi.org/10.1016/j.compositesb.2023.111102.
Chamis, C. C., F. Abdi, M. Garg, L. Minnetyan, H. Baid, D. Huang, J. Housner, and F. Talagani. 2013. “Micromechanics-based progressive failure analysis prediction for WWFE-III composite coupon test cases.” J. Compos. Mater. 47 (20–21): 2695–2712. https://doi.org/10.1177/002199831349947.
Christoff, B. G., H. Brito-Santana, R. Talreja, and V. Tita. 2022. “Multiscale embedded models to determine effective mechanical properties of composite materials: Asymptotic homogenization method combined to finite element method.” Composites, Part C: Open Access 9: 100303. https://doi.org/10.1016/j.jcomc.2022.100303.
Debossan, A. J. D., and L. L. Vignoli. 2022. “Improving composite low velocity impact performance using SMA: A multiscale analysis.” Mech. Res. Commun. 125: 103996. https://doi.org/10.1016/j.mechrescom.2022.103996.
de Salles, G. C., E. M. Batista, and D. C. T. Cardoso. 2022. “A modal decomposition approach for experimental buckling analysis of thin-walled lipped channel columns.” Eng. Struct. 256: 113979. https://doi.org/10.1016/j.engstruct.2022.113979.
Diniz, A. C. M., M. Malite, and D. C. T. Cardoso. 2023. “Direct strength method–based approach for strength prediction of pultruded GFRP angle columns.” J. Compos. Constr. 27 (3): 04023019. https://doi.org/10.1061/JCCOF2.CCENG-4084.
Effing, M. 2018. “Expert insights in Europe’s booming composites market.” Reinf. Plast. 62 (4): 219–223. https://doi.org/10.1016/j.repl.2017.06.086.
Elmasry, A., W. Azoti, S. A. El-Safty, and A. Elmarakbi. 2023. “A comparative review of multiscale models for effective properties of nano- and micro-composites.” Prog. Mater Sci. 132: 101022. https://doi.org/10.1016/j.pmatsci.2022.101022.
Elnekhaily, S. A., and R. Talreja. 2018. “Damage initiation in unidirectional fiber composites with different degrees of nonuniform fiber distribution.” Compos. Sci. Technol. 155: 22–32. https://doi.org/10.1016/j.compscitech.2017.11.017.
Elnekhaily, S. A., and R. Talreja. 2023. “Effects of micro voids on the early stage of transverse crack formation in unidirectional composites.” Composites, Part A 167: 107457. https://doi.org/10.1016/j.compositesa.2023.107457.
Fisher, R. A. 1988. Iris. UCI Machine Learning Repository. https://doi.org/10.24432/C56C76.
Fogaça, M. J., E. L. Cardoso, and R. de Medeiros. 2023. “A systematic approach to find the hyperparameters of artificial neural networks applied to damage detection in composite materials.” J Braz. Soc. Mech. Sci. Eng. 45 (9): 496. https://doi.org/10.1007/s40430-023-04371-y.
Furtado, C., L. F. Pereira, R. P. Tavares, M. Salgado, F. Otero, G. Catalanotti, A. Arteiro, M. A. Bessa, and P. P. Camanho. 2021. “A methodology to generate design allowables of composite laminates using machine learning.” Int. J. Solids Struct. 233: 111095. https://doi.org/10.1016/j.ijsolstr.2021.111095.
Gaspar, C. M. R., J. H. N. Beserra, and D. C. T. Cardoso. 2021. “Non-destructive mechanical characterisation of thin-walled GFRP beams through dynamic testing and model updating.” Composites, Part B 224: 109212. https://doi.org/10.1016/j.compositesb.2021.109212.
Geron, A. 2019. Hands-on machine learning with Scikit-Learn, Keras and TensorFlow: Concepts, tools, and techniques to build intelligent systems. 2nd ed. Sebastopol, CA: O’Reilly.
Gibson, A. G. 1994. Principles of composite material mechanics. New York: McGraw-Hill.
Gibson, A. G. 2013. “Through-thickness elastic constants of composite laminates.” J. Compos. Mater. 47 (28): 3487–3499. https://doi.org/10.1177/0021998312466907.
Girão Coelho, A. M., and J. T. Mottram. 2017. “Numerical evaluation of pin-bearing strength for the design of bolted connections of pultruded FRP material.” J. Compos. Constr. 21 (5): 04017027. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000809.
Gliszczynski, A., T. Kubiak, and L. Borkowski. 2018. “Experimental investigation of pre-damaged thin-walled channel section column subjected to compression.” Composites, Part B 147: 56–68. https://doi.org/10.1016/j.compositesb.2018.04.022.
Gliszczynski, A., and N. Wiącek. 2021. “Experimental and numerical benchmark study of mode II interlaminar fracture toughness of unidirectional GFRP laminates under shear loading using the end-notched flexure (ENF) test.” Compos. Struct. 258: 113190. https://doi.org/10.1016/j.compstruct.2020.113190.
Gudmundson, P., and W. Zang. 1993. “An analytic model for thermoelastic properties of composite laminates containing transverse matrix cracks.” Int. J. Solids Struct. 30 (23): 3211–3231. https://doi.org/10.1016/0020-7683(93)90110-S.
Guedes, R. M. 2021. “Validation of trace-based approach to elastic properties of multidirectional glass fibre reinforced composites.” Compos. Struct. 257: 113170. https://doi.org/10.1016/j.compstruct.2020.113170.
Gusev, A. A., P. J. Hine, and I. M. Ward. 2000. “Fiber packing and elastic properties of a transversely random unidirectional glass/epoxy composite.” Compos. Sci. Technol. 60 (4): 535–541. https://doi.org/10.1016/S0266-3538(99)00152-9.
Ha, S. K., and C. A. Cimini Jr. 2018. “Theory and validation of the master ply concept for invariant-based stiffness of composites.” J. Compos. Mater. 52 (12): 1699–1708. https://doi.org/10.1177/0021998317728782.
Huang, Y., C. A. Cimini Jr., and S. K. Ha. 2020. “A micromechanical unit cell model with an octagonal fiber for continuous fiber reinforced composites.” J. Compos. Mater. 54 (28): 4495–4513. https://doi.org/10.1177/0021998320913939.
Jia, L., C. Zhang, J. Li, L. Yao, and C. Tang. 2022. “Validation and development of trace-based approach for composite laminates.” Compos. Sci. Technol. 221: 109348. https://doi.org/10.1016/j.compscitech.2022.109348.
Junqueira, B. J., R. Leiderman, and D. A. Castello. 2023. “A deep learning approach to inverse scattering analyses: Recovering interfacial defects in laminated structures.” Compos. Struct. 314: 116985. https://doi.org/10.1016/j.compstruct.2023.116985.
Kaddour, A. S., and M. J. Hinton. 2012. “Input data for test cases used in benchmarking triaxial failure theories of composites.” J. Compos. Mater. 46 (19–20): 2295–2312. https://doi.org/10.1177/0021998312449886.
Kalamkarov, A. L. 1992. Composite and reinforced elements of construction. Hoboken, NJ: Wiley.
Kalamkarov, A. L., and A. G. Kolpakov. 1997. Analysis, design and optimization of composite structures. 2nd ed. Hoboken, NJ: Wiley.
Kenedi, P. P., L. L. Vignoli, B. T. Duarte, J. de Souza e Silva Neto, and C. F. Cardoso Bandeira. 2022. “Damage tracking of notched composite plates by thermography—Experimental observations and analytical model for damage onset.” J. Compos. Mater. 56 (8): 1211–1220. https://doi.org/10.1177/00219983211072297.
Knops, M. 2008. Analysis of failure in fiber polymer laminates—The theory of alfred puck. Dordrecht, Netherlands: Springer.
Kubiak, T., Z. Kolakowski, J. Swiniarski, M. Urbaniak, and A. Gliszczynski. 2016. “Local buckling and post-buckling of composite channel-section beams—Numerical and experimental investigations.” Composites, Part B 91: 176–188. https://doi.org/10.1016/j.compositesb.2016.01.053.
Ladhwe, R. N., P. Kumar, K. K. Singh, and P. K. Sarkar. 2015. “Characterization of GFRP butt-joint under tensile and flexural loading.” J. Compos. Mater. 49 (21): 2567–2578. https://doi.org/10.1177/0021998314550220.
Magnier, A., T. Wu, S. R. Tinkloh, T. Tröster, B. Scholtes, and T. Niendorf. 2021. “On the reliability of residual stress measurements in unidirectional carbon fibre reinforced epoxy composites.” Polym. Test. 97: 107146. https://doi.org/10.1016/j.polymertesting.2021.107146.
Mash, J. A., K. A. Harries, and C. Rogers. 2023. “Repair of corroded steel bridge girder end regions using steel, concrete, UHPC and GFRP repair systems.” J. Constr. Steel Res. 207: 107975. https://doi.org/10.1016/j.jcsr.2023.107975.
Melo, J. D. D., J. Bi, and S. W. Tsai. 2017. “A novel invariant-based design approach to carbon fiber reinforced laminates.” Compos. Struct. 159: 44–52. https://doi.org/10.1016/j.compstruct.2016.09.055.
Mirkhalaf, M., and I. Rocha. 2024. “Micromechanics-based deep-learning for composites: Challenges and future perspectives.” Eur. J. Mech. A. Solids 105: 105242. https://doi.org/10.1016/j.euromechsol.2024.105242.
Pedregosa, F., et al. 2011. “Scikit-learn: Machine learning in python.” J. Mach. Learn. Res. 12: 2825–2830.
Reddy, J. N. 2004. Mechanics of laminated composite plates and shells: Theory and analysis. 2nd ed. Boca Raton, FL: CRC Press.
Rodrı´guez-Ramos, R., F. J. Sabina, R. Guinovart-Díaz, and J. Bravo-Castillero. 2001. “Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents—I. Elastic and square symmetry.” Mech. Mater. 33 (4): 223–235. https://doi.org/10.1016/S0167-6636(00)00059-4.
Rohem, N. R. F., L. J. Pacheco, S. Budhe, M. D. Banea, E. M. Sampaio, and S. de Barros. 2016. “Development and qualification of a new polymeric matrix laminated composite for pipe repair.” Compos. Struct. 152: 737–745. https://doi.org/10.1016/j.compstruct.2016.05.091.
Sá, M. F., J. Pacheco, J. R. Correia, N. Silvestre, and J. D. Sørensen. 2021. “Structural safety of pultruded FRP profiles for global buckling. Part 1: Approach to material uncertainty, resistance models, and model uncertainties.” Compos. Struct. 257: 113304. https://doi.org/10.1016/j.compstruct.2020.113304.
Savvas, D., G. Stefanou, and M. Papadrakakis. 2016. “Determination of RVE size for random composites with local volume fraction variation.” Comput. Methods Appl. Mech. Eng. 305: 340–358. https://doi.org/10.1016/j.cma.2016.03.002.
Shah, S. P., and M. Maiarù. 2023. “Analytical model for composite transverse strength based on computational micromechanics.” Int. J. Multiscale Comput. Eng. 21 (6): 77–97. https://doi.org/ 10.1615/IntJMultCompEng.2023048428.
Shah, S. P., S. U. Patil, C. J. Hansen, G. M. Odegard, and M. Maiarù. 2023. “Process modeling and characterization of thermoset composites for residual stress prediction.” Mech. Adv. Mater. Struct. 30 (3): 486–497. https://doi.org/ 10.1080/15376494.2021.2017527.
Smojver, I., D. Brezetić, and D. Ivančević. 2022. “Explicit multi-scale modelling of intrinsic self-healing after low-velocity impact in GFRP composites.” Compos. Struct. 302: 116213. https://doi.org/10.1016/j.compstruct.2022.116213.
Soden, P. D., M. J. Hinton, and A. S. Kaddour. 1998. “Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates.” Compos. Sci. Technol. 58 (7): 1011–1022. https://doi.org/10.1016/S0266-3538(98)00078-5.
Souza, G. S. C., M. L. Ribeiro, and V. Tita. 2023. “A damage index proposal for shear-after-impact of laminated composite plates.” J Braz. Soc. Mech. Sci. Eng. 45 (11): 561. https://doi.org/10.1007/s40430-023-04475-5.
Tsai, S. W., A. Arteiro, and J. D. D. Melo. 2016. “A trace-based approach to design for manufacturing of composite laminates.” J. Reinf. Plast. Compos. 35 (7): 589–600. https://doi.org/10.1177/0731684415624770.
Tsai, S. W., and J. D. D. Melo. 2014. “An invariant-based theory of composites.” Compos. Sci. Technol. 100: 237–243. https://doi.org/10.1016/j.compscitech.2014.06.017.
Tsai, S. W., and J. D. D. Melo. 2015. Composite materials design and testing—unlocking mystery with invariants. 1st ed. Stanford: Stanford Composites Design Group.
Tsai, S. W., S. Sihn, and J. D. D. Melo. 2015. “Trace-based stiffness for a universal design of carbon-fiber reinforced composite structures.” Compos. Sci. Technol. 118: 23–30. https://doi.org/10.1016/j.compscitech.2015.08.003.
Urbaniak, M., J. Świniarski, P. Czapski, and P. Kubiak. 2016. “Experimental investigations of thin-walled GFRP beams subjected to pure bending.” Thin-Walled Struct. 107: 397–404. https://doi.org/10.1016/j.tws.2016.06.022.
Van Bavel, B., Y. Zhao, M. G. R. Faes, D. Vandepitte, and D. Moens. 2023. “Efficient quantification of composite spatial variability: A multiscale framework that captures intercorrelation.” Compos. Struct. 323: 117462. https://doi.org/10.1016/j.compstruct.2023.117462.
Vaughan, T. J., and C. T. McCarthy. 2010. “A combined experimental–numerical approach for generating statistically equivalent fibre distributions for high strength laminated composite materials.” Compos. Sci. Technol. 70 (2): 291–297. https://doi.org/10.1016/j.compscitech.2009.10.020.
Vedernikov, A., A. Safonov, F. Tucci, P. Carlone, and I. Akhatov. 2020. “Pultruded materials and structures: A review.” J. Compos. Mater. 54 (26): 4081–4117. https://doi.org/10.1177/0021998320922894.
Vermes, B., S. W. Tsai, A. Riccio, F. Di Caprio, and S. Roy. 2021. “Application of the Tsai’s modulus and double-double concepts to the definition of a new affordable design approach for composite laminates.” Compos. Struct. 259: 113246. https://doi.org/10.1016/j.compstruct.2020.113246.
Vignoli, L. L. 2023. “Is the out-of-plane shear strength an independent property? A micromechanical perspective about a macromechanical question.” J. Compos. Mater. 57 (28): 4379–4388. https://doi.org/10.1177/00219983231209488.
Vignoli, L. L., R. M. Carneiro Neto, M. A. Savi, P. M. C. L. Pacheco, and A. L. Kalamkarov. 2024. “Analytical modeling of fiber–matrix interface failure in unidirectional laminae subjected to in-plane shear loads.” Proc. Inst. Mech. Eng., Part L: J. Mater. Des. Appl. 1–13. https://doi.org/10.1177/14644207241226857.
Vignoli, L. L., and P. P. Kenedi. 2022. “Hybrid multiscale procedure for damage in notched unidirectional composite monitored by thermography.” Polym. Compos. 43 (7): 4288–4296. https://doi.org/10.1002/pc.26689.
Vignoli, L. L., P. P. Kenedi, and M. J. B. Mariano. 2022a. “Exploring thermography technique to validate multiscale procedure for notched CFRP plates.” Composites, Part C: Open Access 7: 100241. https://doi.org/10.1016/j.jcomc.2022.100241.
Vignoli, L. L., R. M. C. Neto, M. A. Savi, P. M. C. L. Pacheco, and A. L. Kalamkarov. 2021. “Trace theory applied to composite analysis: A comparison with micromechanical models.” Compos. Commun. 25: 100715. https://doi.org/10.1016/j.coco.2021.100715.
Vignoli, L. L., and M. A. Savi. 2018. “Multiscale failure analysis of cylindrical composite pressure vessel: A parametric study.” Lat. Am. J. Solids Struct. 15 (11): e63, https://doi.org/10.1590/1679-78254323.
Vignoli, L. L., M. A. Savi, and S. El-Borgi. 2020a. “Nonlinear dynamics of earthquake-resistant structures using shape memory alloy composites.” J. Intell. Mater. Syst. Struct. 31 (5): 771–787. https://doi.org/10.1177/1045389X19898269.
Vignoli, L. L., M. A. Savi, P. M. C. L. Pacheco, and A. L. Kalamkarov. 2019. “Comparative analysis of micromechanical models for the elastic composite laminae.” Composites, Part B 174: 106961. https://doi.org/10.1016/j.compositesb.2019.106961.
Vignoli, L. L., M. A. Savi, P. M. C. L. Pacheco, and A. L. Kalamkarov. 2020b. “Multiscale approach to predict strength of notched composite plates.” Compos. Struct. 253: 112827. https://doi.org/10.1016/j.compstruct.2020.112827.
Vignoli, L. L., M. A. Savi, P. M. C. L. Pacheco, and A. L. Kalamkarov. 2020c. “Micromechanical analysis of longitudinal and shear strength of composite laminae.” J. Compos. Mater. 54 (30): 4853–4873. https://doi.org/10.1177/0021998320936343.
Vignoli, L. L., M. A. Savi, P. M. C. L. Pacheco, and A. L. Kalamkarov. 2022b. “A novel micromechanical model based on the rule of mixtures to estimate effective elastic properties of circular fiber composites.” Appl. Compos. Mater. 29 (4): 1715–1731. https://doi.org/10.1007/s10443-022-10038-z.
Vignoli, L. L., M. A. Savi, P. M. C. L. Pacheco, and A. L. Kalamkarov. 2023. “Theoretical justification of Tsai’s modulus based on micromechanical analysis.” Compos. Sci. Technol. 238: 110041. https://doi.org/10.1016/j.compscitech.2023.110041.
Xie, T., M. S. Mohamed Ali, P. Visintin, D. J. Oehlers, and A. H. Sheikh. 2018. “Partial interaction model of flexural behavior of PVA fiber–reinforced concrete beams with GFRP bars.” J. Compos. Constr. 22 (5): 04018043. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000878.
Xin, H., A. Mosallam, J. A. F. O. Correia, Y. Liu, J. He, and Y. Sun. 2020. “Material-structure integrated design optimization of GFRP bridge deck on steel girder.” Structures 27: 1222–1230. https://doi.org/10.1016/j.istruc.2020.07.008.
Zhang, G., L. Tang, Z. Liu, L. Zhou, Y. Liu, and Z. Jiang. 2020. “Machine-learning-based damage identification methods with features derived from moving principal component analysis.” Mech. Adv. Mater. Struct. 27 (21): 1789–1802. https://doi.org/ 10.1080/15376494.2019.1710308.
Zhang, T., and Y. Yan. 2017. “A comparison between random model and periodic model for fiber-reinforced composites based on a new method for generating fiber distributions.” Polym. Compos. 38 (1): 77–86. https://doi.org/10.1002/pc.23562.
Zhang, Z., Z. Zhang, F. Di Caprio, and G. X. Gu. 2022. “Machine learning for accelerating the design process of double-double composite structures.” Compos. Struct. 285: 115233. https://doi.org/10.1016/j.compstruct.2022.115233.
Zhou, X.-Y., S.-Y. Qian, N.-W. Wang, W. Xiong, and W.-Q. Wu. 2022. “A review on stochastic multiscale analysis for FRP composite structures.” Compos. Struct. 284: 115132. https://doi.org/10.1016/j.compstruct.2021.115132.

Information & Authors

Information

Published In

Go to Journal of Composites for Construction
Journal of Composites for Construction
Volume 28Issue 6December 2024

History

Received: Mar 5, 2024
Accepted: Jul 18, 2024
Published online: Sep 12, 2024
Published in print: Dec 1, 2024
Discussion open until: Feb 12, 2025

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, Center of Technology and Applications of Composite Materials, Polytechnic Institute, Federal Univ. of Rio de Janeiro, Macaé 27930-560, RJ, Brazil (corresponding author). ORCID: https://orcid.org/0000-0003-3288-3568. Email: [email protected]
Janaina Gomide [email protected]
Professor, Polytechnic Institute, Federal Univ. of Rio de Janeiro, Macaé 27930-560, RJ, Brazil. Email: [email protected]
Laura E. A. S. Santana [email protected]
Professor, Polytechnic Institute, Federal Univ. of Rio de Janeiro, Macaé 27930-560, RJ, Brazil. Email: [email protected]
Professor, Dept. of Mechanical Engineering, Polytechnic Institute, Rio de Janeiro State Univ., Nova Friburgo 28625-570, RJ, Brazil. ORCID: https://orcid.org/0000-0002-0812-6594. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share