State-of-the-Art Reviews
Aug 9, 2024

Smart Building Skins for Urban Heat Island Mitigation: A Review

Publication: Journal of Architectural Engineering
Volume 30, Issue 4

Abstract

The urban heat island (UHI) effect has detrimental impacts on building cooling demand, public and ecological health, and climate change. Because UHIs are caused by the concentration of construction materials that absorb and retain heat, buildings in urban areas present challenges and opportunities to mitigate them. Specifically, innovative building skin solutions, such as those covered with smart materials (SMs) that respond to environmental stimuli with their dynamic time and temperature-dependent behaviors, have significant potential to reduce the UHI effect. This research provides a review of the state-of-the-art applications of SMs in building skins for urban heat island mitigation (UHIM). It highlights the knowledge gaps and opportunities for future research with an extensive literature review and in-depth analysis. This research classifies the application of skin-integrated smart materials (SISMs) for UHIM into five main groups that included thermal, light, air pollution, humidity and ventilation control, and energy generation, and highlights their challenges and prospects.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request.

References

Abadie, L. M., and J. M. Polanco-Martínez. 2022. “Sensitivities of heat-wave mortality projections: Moving towards stochastic model assumptions.” Environ. Res. 204: 111895. https://doi.org/10.1016/j.envres.2021.111895.
AbouElhamd, A. R., K. A. Al-Sallal, and A. Hassan. 2019. “Review of core/shell quantum dots technology integrated into building’s glazing.” Energies 12 (6): 1058. https://doi.org/10.3390/en12061058.
Adamowski, J., and A. Prokoph. 2013. “Assessing the impacts of the urban heat island effect on streamflow patterns in Ottawa, Canada.” J. Hydrol. 496: 225–237. https://doi.org/10.1016/J.JHYDROL.2013.05.032.
Addington, D. M., and D. Schodek. 2004. Smart materials and technologies: For the architecture and design prof. London, UK: Routledge.
Akbari, H., C. Cartalis, D. Kolokotsa, A. Muscio, A. L. Pisello, F. Rossi, M. Santamouris, A. Synnefa, N. H. Wong, and M. Zinzi. 2015. “Local climate change and urban heat island mitigation techniques—The state of the art.” J. Civ. Eng. Manage. 22 (1): 1–16. https://doi.org/10.3846/13923730.2015.1111934.
Akbari, H., and H. D. Matthews. 2012. “Global cooling updates: Reflective roofs and pavements.” Energy Build. 55: 2–6. https://doi.org/10.1016/J.ENBUILD.2012.02.055.
Aksamija, A., Z. Aksamija, C. Counihan, D. Brown, and M. Upadhyaya. 2019. “Experimental study of operating conditions and integration of thermoelectric materials in facade systems.” Front. Energy Res. 7: 1–10. https://doi.org/10.3389/fenrg.2019.00006.
Al-Qahtani, S. D., A. M. Binyaseen, E. Aljuhani, M. Aljohani, H. K. Alzahrani, R. Shah, and N. M. El-Metwaly. 2022. “Production of smart nanocomposite for glass coating toward photochromic and long-persistent photoluminescent smart windows.” Ceram. Int. 48 (1): 903–912. https://doi.org/10.1016/j.ceramint.2021.09.174.
Alsharif, R., M. Arashpour, V. Chang, and J. Zhou. 2021. “A review of building parameters” roles in conserving energy versus maintaining comfort.” J. Build. Eng. 35: 102087. https://doi.org/10.1016/J.JOBE.2020.102087.
Al-Yasiri, Q., and M. Szabó. 2021a. “Selection of phase change material suitable for building heating applications based on qualitative decision matrix.” Energy Convers. Manage.: X 12: 100150. https://doi.org/10.1016/J.ECMX.2021.100150.
Al-Yasiri, Q. M. Q., and M. Szabó. 2021b. “Performance assessment of phase change materials integrated with building envelope for heating application in cold locations.” Eur. J. Energy Res. 1 (1): 7–14. https://doi.org/10.24018/ejenergy.2021.1.1.5.
Andrade Santos, R., I. Flores-Colen, N. Simões, and J. D. Silvestre. 2020. “Auto-responsive technologies for thermal renovation of opaque facades.” Energy Build. 217: 109968. https://doi.org/10.1016/j.enbuild.2020.109968.
Aridi, R., and A. Yehya. 2022. “Review on the sustainability of phase-change materials used in buildings.” Energy Convers. Manage.: X 15: 100237. https://doi.org/10.1016/j.ecmx.2022.100237.
Azami, A., and H. Sevinç. 2021. “The energy performance of building integrated photovoltaics (BIPV) by determination of optimal building envelope.” Build. Environ. 199: 107856. https://doi.org/10.1016/j.buildenv.2021.107856.
Bahl, S., H. Nagar, I. Singh, and S. Sehgal. 2020. “Smart materials types, properties and applications: A review.” Mater. Today:. Proc. 28: 1302–1306. https://doi.org/10.1016/j.matpr.2020.04.505.
Bandyopadhyay, J., and S. Sinha Ray. 2012. “Clay-containing poly(ethylene terephthalate) (PET)-based polymer nanocomposites.” In Advances in polymer nanocomposites types and applications, edited by F. Gao, 277–320. Amsterdam, Netherlands: Elsevier Science.
Barone, G., A. Zacharopoulos, A. Buonomano, C. Forzano, G. F. Giuzio, J. Mondol, A. Palombo, A. Pugsley, and M. Smyth. 2022. “Concentrating PhotoVoltaic glazing (CoPVG) system: Modelling and simulation of smart building facade.” Energy 238: 121597. https://doi.org/10.1016/J.ENERGY.2021.121597.
Bartholy, J., and R. Pongrácz. 2018. “A brief review of health-related issues occurring in urban areas related to global warming of 1.5°C.” Curr. Opin. Environ. Sustainability 30: 123–132. https://doi.org/10.1016/J.COSUST.2018.05.014.
Berardi, U., M. Garai, and T. Morselli. 2020. “Preparation and assessment of the potential energy savings of thermochromic and cool coatings considering inter-building effects.” Sol. Energy 209: 493–504. https://doi.org/10.1016/j.solener.2020.09.015.
Bernard, J., E. Bocher, G. Petit, and S. Palominos. 2018. “Sky view factor calculation in urban context: Computational performance and accuracy analysis of two open and free GIS tools.” Climate 6 (3): 60. https://doi.org/10.3390/cli6030060.
Bhagabati, P., and M. Rahaman. 2022. “Structure-property relationship in polymer-graphene composites.” In Polymer nanocomposites containing graphene preparation, properties, and applications, edited by M. Rahaman, L. Nayak, I. A. Hussein, and N. C. Das, 299–315. Amsterdam, Netherlands: Elsevier Science.
Boccalatte, A., M. Fossa, and C. Ménézo. 2020. “Best arrangement of BIPV surfaces for future NZEB districts while considering urban heat island effects and the reduction of reflected radiation from solar facade.” Renewable Energy 160: 686–697. https://doi.org/10.1016/j.renene.2020.07.057.
Bohnenstengel, S. I., S. Evans, P. A. Clark, and S. E. Belcher. 2011. “Simulations of the London urban heat island.” Q. J. R. Meteorolog. Soc. 137 (659): 1625–1640. https://doi.org/10.1002/QJ.855.
Bui, D.-K., T. N. Nguyen, A. Ghazlan, and T. D. Ngo. 2021. “Biomimetic adaptive electrochromic windows for enhancing building energy efficiency.” Appl. Energy 300: 117341. https://doi.org/10.1016/j.apenergy.2021.117341.
Butt, A. A., S. B. de Vries, R. C. G. M. Loonen, J. L. M. Hensen, A. Stuiver, J. E. J. van den Ham, and B. S. J. F. Erich. 2021. “Investigating the energy saving potential of thermochromic coatings on building envelopes.” Appl. Energy 291: 116788. https://doi.org/10.1016/j.apenergy.2021.116788.
Cannavale, A., G. Zampini, F. Carlucci, M. Pugliese, F. Martellotta, U. Ayr, V. Maiorano, F. Ortica, F. Fiorito, and L. Latterini. 2022. “Energy and daylighting performance of building integrated spirooxazine photochromic films.” Sol. Energy 242: 424–434. https://doi.org/10.1016/j.solener.2021.10.058.
Cao, W., H. H. Cudney, and R. Waser. 1999. “Smart materials and structures.” PNAS 96: 8330–8331. https://doi.org/10.1073/pnas.96.15.8330.
Casini, M. 2016a. “Advanced building skin.” In Smart buildings advanced materials and nanotechnology to improve energy-efficiency and environmental performance, edited by M. Casini, 219–245. Cambridge, UK: Woodhead Publishing.
Casini, M. 2016b. “Energy-generating glazing.” In Smart buildings advanced materials and nanotechnology to improve energy-efficiency and environmental performance, edited by M. Casini, 327–353. Cambridge, UK: Woodhead Publishing.
Castellón, E., and D. Levy. 2018. “Smart windows based on liquid crystal dispersions.” In Transparent conductive materials: Materials, synthesis, characterization, applications, edited by D. Levy, and E. CastellÓn, 337–365. Weinheim, Germany: Wiley.
Chen, J., L. Lei, and G. Fang. 2021. “Elastocaloric cooling of shape memory alloys: A review.” Mater. Today Commun. 28: 102706. https://doi.org/10.1016/J.MTCOMM.2021.102706.
Chiatti, C., C. Fabiani, F. Cotana, and A. L. Pisello. 2021a. “Exploring the potential of photoluminescence for urban passive cooling and lighting applications: A new approach towards materials” optimization.” Energy 231: 120815. https://doi.org/10.1016/j.energy.2021.120815.
Chiatti, C., I. Kousis, C. Fabiani, and A. L. Pisello. 2022a. “Luminescence for the built environment: From lighting to urban heat island mitigation purposes.” In Global urban heat island mitigation, edited by A. Khan, F. Fiorito, D. N. H. Akbari, and S. Mithun, 47–69. Amsterdam, Netherlands: Elsevier.
Chiatti, C., I. Kousis, C. Fabiani, and A. L. Pisello. 2022b. “Effect of optimized photoluminescence on luminous and passive cooling potential: A new combined experimental and numerical approach applied to yellow-emitting glass tiles.” Renewable Energy 196: 28–39. https://doi.org/10.1016/j.renene.2022.06.027.
Chiatti, C., F. Rosso, C. Fabiani, and A. L. Pisello. 2021b. “Integrated energy performance of an innovative translucent photoluminescent building envelope for lighting energy storage.” Sustainable Cities Soc. 75: 103234. https://doi.org/10.1016/J.SCS.2021.103234.
Chidubem Iluyemi, D., S. Nundy, S. Shaik, A. Tahir, and A. Ghosh. 2022. “Building energy analysis using EC and PDLC based smart switchable window in Oman.” Sol. Energy 237: 301–312. https://doi.org/10.1016/j.solener.2022.04.009.
Cots, A., S. Dicorato, L. Giovannini, F. Favoino, and M. Manca. 2021. “Energy efficient smart plasmochromic windows: Properties, manufacturing and integration in insulating glazing.” Nano Energy 84: 105894. https://doi.org/10.1016/J.NANOEN.2021.105894.
Cui, S., C. Ahn, M. C. Wingert, D. Leung, S. Cai, and R. Chen. 2016. “Bio-inspired effective and regenerable building cooling using tough hydrogels.” Appl. Energy 168: 332–339. https://doi.org/10.1016/j.apenergy.2016.01.058.
Dahman, Y. 2017. “Electronic and electro-optic nanotechnology.” In Nanotechnology and functional materials for engineers, edited by Y. Dahman, 191–206. Amsterdam, Netherlands: Elsevier.
da Silva Espinoza, N., C. A. C. dos Santos, M. B. L. de Oliveira, M. T. Silva, C. A. G. Santos, R. M. da Silva, M. Mishra, and R. R. Ferreira. 2023. “Assessment of urban heat islands and thermal discomfort in the Amazonia biome in Brazil: A case study of Manaus city.” Build. Environ. 227: 109772. https://doi.org/10.1016/j.buildenv.2022.109772.
Delzendeh, E., S. Wu, A. Lee, and Y. Zhou. 2017. “The impact of occupants” behaviours on building energy analysis: A research review.” Renewable Sustainable Energy Rev. 80: 1061–1071. https://doi.org/10.1016/J.RSER.2017.05.264.
de Moraes, S. L., R. Almendra, and L. V. Barrozo. 2022. “Impact of heat waves and cold spells on cause-specific mortality in the city of São Paulo, Brazil.” Int. J. Hyg. Environ. Health 239: 113861.
Dirksen, M., R. J. Ronda, N. E. Theeuwes, and G. A. Pagani. 2019. “Sky view factor calculations and its application in urban heat island studies.” Urban Clim. 30: 100498. https://doi.org/10.1016/j.uclim.2019.100498.
Dudorova, N. V., and B. D. Belan. 2022. “The energy model of urban heat island.” Atmosphere 13 (3): 457. https://doi.org/10.3390/atmos13030457.
Elarga, H., F. Goia, A. Zarrella, A. Dal Monte, and E. Benini. 2016. “Thermal and electrical performance of an integrated PV-PCM system in double skin facade: A numerical study.” Sol. Energy 136: 112–124. https://doi.org/10.1016/j.solener.2016.06.074.
Elia, H. 2018. “Using nano- and micro-titanium dioxide (TiO2) in concrete to reduce air pollution.” J. Nanomed. Nanotechnol. 09 (03): 3–7. https://doi.org/10.4172/2157-7439.1000505.
Elrayies, G. M. 2018. “Microalgae: Prospects for greener future buildings.” Renewable Sustainable Energy Rev. 81: 1175–1191. https://doi.org/10.1016/j.rser.2017.08.032.
Erb, R. M., J. S. Sander, R. Grisch, and A. R. Studart. 2013. “Self-shaping composites with programmable bioinspired microstructures.” Nat. Commun. 4: 1712. https://doi.org/10.1038/ncomms2666.
Fabiani, C., A. L. Pisello, E. Bou-Zeid, J. Yang, and F. Cotana. 2019. “Adaptive measures for mitigating urban heat islands: The potential of thermochromic materials to control roofing energy balance.” Appl. Energy 247: 155–170. https://doi.org/10.1016/j.apenergy.2019.04.020.
Fallmann, J., R. Forkel, and S. Emeis. 2016. “Secondary effects of urban heat island mitigation measures on air quality.” Atmos. Environ. 125: 199–211. https://doi.org/10.1016/j.atmosenv.2015.10.094.
Feng, J., K. Gao, S. Garshasbi, T. Karlessi, A. Pyrgou, G. Ranzi, M. Santamouris, A. Synnefa, and G. Ulpiani. 2022. “Urban heat island and advanced mitigation technologies.” In Comprehensive renewable energy, edited by T. M. Letcher, 742–767. Amsterdam, Netherlands: Elsevier.
Feng, W., L. Zou, G. Gao, G. Wu, J. Shen, and W. Li. 2016. “Gasochromic smart window: Optical and thermal properties, energy simulation and feasibility analysis.” Sol. Energy Mater. Sol. Cells 144: 316–323. https://doi.org/10.1016/j.solmat.2015.09.029.
Fernández-Mira, M., E. Jimenez-Relinque, I. Martínez, and M. Castellote. 2021. “Evaluation of changes in surface temperature of TiO2 functionalized pavements at outdoor conditions.” Energy Build. 237: 110817. https://doi.org/10.1016/J.ENBUILD.2021.110817.
Formentini, M., and S. Lenci. 2018. “An innovative building envelope (kinetic facade) with Shape Memory Alloys used as actuators and sensors.” Autom. Constr. 85: 220–231. https://doi.org/10.1016/J.AUTCON.2017.10.006.
Ganji Kheybari, A., M. Alwalidi, C. Hepf, T. Auer, and S. Hoffmann. 2022. “A multi-objective evaluation for envelope refurbishments with electrochromic glazing.” Results Eng. 14: 100417. https://doi.org/10.1016/j.rineng.2022.100417.
Gao, G., S. Xue, H. Wang, Z. Zhang, J. Shen, and G. Wu. 2023. “Medium-scale production of gasochromic windows by sol-gel.” J. Sol-Gel Sci. Technol. 106: 331–340. https://doi.org/10.1007/s10971-021-05721-9.
Garshasbi, S., S. Huang, and M. Santamouris. 2019. “Quantum dots: A new generation of fluorescent materials for UHI mitigation.” In Proc., 5th Int. Conf. Countermeas to Urban Heat Islands. Hyderabad, India: International Institute of Information Technology.
Garshasbi, S., S. Huang, J. Valenta, and M. Santamouris. 2020. “Can quantum dots help to mitigate urban overheating? An experimental and modelling study.” Sol. Energy 206: 308–316. https://doi.org/10.1016/j.solener.2020.06.010.
Garshasbi, S., S. Huang, J. Valenta, and M. Santamouris. 2022. “Adjusting optical and fluorescent properties of quantum dots: Moving towards best optical heat-rejecting materials.” Sol. Energy 238: 272–279. https://doi.org/10.1016/J.SOLENER.2022.04.026.
Garshasbi, S., and M. Santamouris. 2019. “Using advanced thermochromic technologies in the built environment: Recent development and potential to decrease the energy consumption and fight urban overheating.” Sol. Energy Mater. Sol. Cells 191: 21–32. https://doi.org/10.1016/j.solmat.2018.10.023.
Gedzelman, S. D., S. Austin, R. Cermak, N. Stefano, S. Partridge, S. Quesenberry, and D. A. Robinson. 2003. “Mesoscale aspects of the Urban Heat Island around New York City.” Theor. Appl. Climatol. 75 (1): 29–42. https://doi.org/10.1007/S00704-002-0724-2.
Giovannini, L., F. Favoino, A. Pellegrino, V. R. M. Lo Verso, V. Serra, and M. Zinzi. 2019. “Thermochromic glazing performance: From component experimental characterisation to whole building performance evaluation.” Appl. Energy 251: 113335. https://doi.org/10.1016/j.apenergy.2019.113335.
Giridharan, R., S. Ganesan, and S. S. Y. Lau. 2004. “Daytime urban heat island effect in high-rise and high-density residential developments in Hong Kong.” Energy Build. 36 (6): 525–534. https://doi.org/10.1016/j.enbuild.2003.12.016.
Gkoumas, K., F. Petrini, S. Arangio, and C. Crosti. 2013. “Energy harvesting for the sustainability of structures and infrastructures.” In Proc., 5th Int. Conf. Research and Applications in Structural Engineering, Mechanics and Computation, 2457–2462. London, UK: Taylor & Francis Group.
Goswami, S. K., T. S. Kim, E. Oh, K. K. Challa, and E.-T. Kim. 2012. “Optical properties and effect of carrier tunnelling in CdSe colloidal quantum dots: A comparative study with different ligands.” AIP Adv. 2 (3): 032132. https://doi.org/10.1063/1.4745080.
Han, J., C. Sung, J. Song, C. sung Ah, J. Y. Kim, H. Ryu, C.-s. Hwang, and T. Y. Kim. 2020. “Bistable mirror/transparent reversibly electrodeposited devices with TiO2 as the mediator.” Sol. Energy Mater. Sol. Cells 206: 110343. https://doi.org/10.1016/J.SOLMAT.2019.110343.
Hasan, A., H. Alnoman, and Y. Rashid. 2016. “Impact of integrated photovoltaic-phase change material system on building energy efficiency in hot climate.” Energy Build. 130: 495–505. https://doi.org/10.1016/J.ENBUILD.2016.08.059.
Hashimoto, K., H. Irie, and A. Fujishima. 2005. “Tio2 photocatalysis: A historical overview and future prospects.” Jpn. J. Appl. Phys. 44 (12): 8269–8285. https://doi.org/10.1143/JJAP.44.8269.
Heaviside, C., H. Macintyre, and S. Vardoulakis. 2017. “The urban heat island: Implications for health in a changing environment.” Curr. Environ. Health Rep. 4 (3): 296–305. https://doi.org/10.1007/S40572-017-0150-3/METRICS.
Hemati, A., M. A. Behbahani, M. Ranjbar, P. Kameli, and H. Salamati. 2013. “Gasochromic tungsten oxide films with PdCl2 solution as an aqueous Hydrogen catalyst.” Sol. Energy Mater. Sol. Cells 108: 105–112. https://doi.org/10.1016/J.SOLMAT.2012.08.018.
Hernández-Pérez, I., G. Álvarez, J. Xamán, I. Zavala-Guillén, J. Arce, and E. Simá. 2014. “Thermal performance of reflective materials applied to exterior building components—A review.” Energy Build. 80: 81–105. https://doi.org/10.1016/j.enbuild.2014.05.008.
Hoegh, O., et al. 2018. “Impacts of 1.5°C global warming on natural and human systems.” In Global warming of 1.5°C: An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, edited by V. Masson-Delmotte, 175–311. Cambridge, UK: Cambridge University Press.
Hosseini, S. M., M. Mohammadi, T. Schröder, and O. Guerra-Santin. 2021. “Bio-inspired interactive kinetic facade: Using dynamic transitory-sensitive area to improve multiple occupants” visual comfort.” Front. Archit. Res. 10 (4): 821–837. https://doi.org/10.1016/J.FOAR.2021.07.004.
Howard, L. 1833. The climate of London. London: Harvey Dart.
IAAC (Institute for Advanced Architecture of Catalonia). n.d.-a. “Hydroceramic.” Accessed August 1, 2022. https://iaac.net/project/hydroceramic/.
IAAC (Institute for Advanced Architecture of Catalonia). n.d.-b. “IAAC develops five advanced cooling alternatives for buildings based on smart materials and soft robotics.” Accessed August 6, 2022. https://iaac.net/iaac-develops-five-advanced-cooling-alternatives-for-buildings-based-on-smart-materials-and-soft-robotics/.
IBA_Hamburg. 2013. Smart material house BIQ. Hamburg, Germany: IBA_Hamburg.
Iken, O., S.-D. Fertahi, M. Dlimi, R. Agounoun, I. Kadiri, and K. Sbai. 2019. “Thermal and energy performance investigation of a smart double skin facade integrating vanadium dioxide through CFD simulations.” Energy Convers. Manage. 195: 650–671. https://doi.org/10.1016/j.enconman.2019.04.070.
Isaia, F., M. Fiorentini, V. Serra, and A. Capozzoli. 2021. “Enhancing energy efficiency and comfort in buildings through model predictive control for dynamic façades with electrochromic glazing.” J. Build. Eng. 43: 102535. https://doi.org/10.1016/j.jobe.2021.102535.
Jiang, S., X. Lee, J. Wang, and K. Wang. 2019. “Amplified urban heat islands during heat wave periods.” J. Geophys. Res.: Atmos. 124: 7797–7812. https://doi.org/10.1029/2018JD030230.
Jin, Q., X. Long, and R. Liang. 2022. “Numerical analysis on the thermal performance of PCM-integrated thermochromic glazing systems.” Energy Build. 257: 111734. https://doi.org/10.1016/J.ENBUILD.2021.111734.
Juaristi, M., A. Monge-Barrio, U. Knaack, and T. Gómez-Acebo. 2018. “Smart and multifunctional materials and their possible application in facade systems.” J. Facade Des. Eng. 6 (3): 019–033. https://doi.org/10.7480/jfde.2018.3.2475.
Kamal, A., A. Mahfouz, N. Sezer, I. G. Hassan, L. L. Wang, and M. A. Rahman. 2023. “Investigation of urban heat island and climate change and their combined impact on building cooling demand in the hot and humid climate of Qatar.” Urban Clim. 52: 101704. https://doi.org/10.1016/j.uclim.2023.101704.
Kandya, A., and M. Mohan. 2018. “Mitigating the Urban Heat Island effect through building envelope modifications.” Energy Build. 164: 266–277. https://doi.org/10.1016/j.enbuild.2018.01.014.
Karlessi, T., M. Santamouris, K. Apostolakis, A. Synnefa, and I. Livada. 2009. “Development and testing of thermochromic coatings for buildings and urban structures.” Sol. Energy 83 (4): 538–551. https://doi.org/10.1016/J.SOLENER.2008.10.005.
Karlessi, T., M. Santamouris, A. Synnefa, D. Assimakopoulos, P. Didaskalopoulos, and K. Apostolakis. 2011. “Development and testing of PCM doped cool colored coatings to mitigate urban heat island and cool buildings.” Build. Environ. 46 (3): 570–576. https://doi.org/10.1016/J.BUILDENV.2010.09.003.
Kerner, M., T. Gebken, I. Sundarrao, S. Hindersin, and D. Sauss. 2019. “Development of a control system to cover the demand for heat in a building with algae production in a bioenergy facade.” Energy Build. 184: 65–71. https://doi.org/10.1016/j.enbuild.2018.11.030.
Khaled, K., U. Berardi, and Z. Liao. 2022. “Energy modelling and saving potential of polymeric solar-responsive thermochromic window films.” Sol. Energy 244: 84–103. https://doi.org/10.1016/j.solener.2022.08.008.
Khan, O. 2010. “Open columns: A carbon dioxide (CO2) responsive architecture.” In Proc., Conf. on Human Factors in Computing Systems, 4789–4792. Atlanta, GA: ACM Special Interest Group on Computer Human Interaction (SIGCHI).
Khannyra, S., M. Luna, M. L. A. Gil, M. Addou, and M. J. Mosquera. 2022. “Self-cleaning durability assessment of TiO2/SiO2 photocatalysts coated concrete: Effect of indoor and outdoor conditions on the photocatalytic activity.” Build. Environ. 211: 108743. https://doi.org/10.1016/j.buildenv.2021.108743.
Khezri, M., and K. J. R. Rasmussen. 2022. “Functionalising buckling for structural morphing in kinetic facade: Concepts, strategies and applications.” Thin-Walled Struct. 180: 109749. https://doi.org/10.1016/j.tws.2022.109749.
Kim, C., and K. Kim. 2021. “Enhancement of solar thermoelectric power generation by optical and thermal management with highly transparent aerogel window.” Sol. Energy Mater. Sol. Cells 230: 111224. https://doi.org/10.1016/j.solmat.2021.111224.
Kim, D.-Y., and S.-A. Kim. 2017. “An exploratory model on the usability of a prototyping-process for designing of Smart Building Envelopes.” Autom. Constr. 81: 389–400. https://doi.org/10.1016/J.AUTCON.2017.03.012.
Köhler, M. 2008. “Green facades—A view back and some visions.” Urban Ecosyst. 11 (4): 423–436. https://doi.org/10.1007/s11252-008-0063-x.
Kotharkar, R., A. Bagade, and A. Ramesh. 2019. “Assessing urban drivers of canopy layer urban heat island: A numerical modeling approach.” Landscape Urban Plann. 190: 103586. https://doi.org/10.1016/J.LANDURBPLAN.2019.05.017.
Koukelli, C., A. Prieto, and S. Asut. 2022. “Kinetic solar envelope: Performance assessment of a shape memory alloy-based autoreactive facade system for urban heat island mitigation in Athens, Greece.” Appl. Sci. 12 (1): 82. https://doi.org/10.3390/app12010082.
Lassandro, P., and S. Di Turi. 2017. “Facade retrofitting: From energy efficiency to climate change mitigation.” Energy Procedia 140: 182–193. https://doi.org/10.1016/j.egypro.2017.11.134.
Laws, J., and R. Parachuru. 2021. “New and emerging smart materials and their applications: A review.” J. Mater. Sci. Eng. 10: 5–10.
Leal Filho, W., L. Echevarria Icaza, A. Neht, M. Klavins, and E. A. Morgan. 2018. “Coping with the impacts of urban heat islands. A literature based study on understanding urban heat vulnerability and the need for resilience in cities in a global climate change context.” J. Cleaner Prod. 171: 1140–1149. https://doi.org/10.1016/j.jclepro.2017.10.086.
Lee, O., J. Seo, J. Won, J. Choi, and S. Kim. 2021. “Future extreme heat wave events using Bayesian heat wave intensity-persistence day-frequency model and their uncertainty.” Atmos. Res. 255: 105541. https://doi.org/10.1016/j.atmosres.2021.105541.
Levinson, R., H. Akbari, and J. C. Reilly. 2007. “Cooler tile-roofed buildings with near-infrared-reflective non-white coatings.” Build. Environ. 42 (7): 2591–2605. https://doi.org/10.1016/J.BUILDENV.2006.06.005.
Li, H., K. Zhong, and Z. J. Zhai. 2020. “A new double-skin facade system integrated with TiO2 plates for decomposing BTEX.” Build. Environ. 180: 107037. https://doi.org/10.1016/j.buildenv.2020.107037.
Li, J., B. Zheng, X. Chen, Z. Qi, K. B. Bedra, J. Zheng, Z. Li, and L. Liu. 2021. “Study on a full-year improvement of indoor thermal comfort by different vertical greening patterns.” J. Build. Eng. 35: 101969. https://doi.org/10.1016/J.JOBE.2020.101969.
Liao, Y., X. Shen, J. Zhou, J. Ma, X. Zhang, W. Tang, Y. Chen, L. Ding, and Z. Wang. 2022. “Surface urban heat island detected by all-weather satellite land surface temperature.” Sci. Total Environ. 811: 151405. https://doi.org/10.1016/J.SCITOTENV.2021.151405.
Lin, S., and P. Theato. 2013. “CO2-Responsive polymers.” Macromol. Rapid Commun. 34 (14): 1118–1133. https://doi.org/10.1002/marc.201300288.
Liu, K., M. Tebyetekerwa, D. Ji, and S. Ramakrishna. 2020. “Intelligent materials.” Matter 3 (3): 590–593. https://doi.org/10.1016/j.matt.2020.07.003.
Loonen, R. C. G. M., M. Trčka, D. Cóstola, and J. L. M. Hensen. 2013. “Climate adaptive building shells: State-of-the-art and future challenges.” Renewable Sustainable Energy Rev. 25: 483–493. https://doi.org/10.1016/j.rser.2013.04.016.
López, M., R. Rubio, S. Martín, B. Croxford, and R. H. F. Jackson. 2015. “Adaptive architectural envelopes for temperature, humidity, carbon dioxide and light control.” In Proc., 10th Conf. Advanced Building Skins. Munich, Germany: Economic Forum.
López-Bueno, J. A., M. A. Navas-Martín, C. Linares, I. J. Mirón, M. Y. Luna, G. Sánchez-Martínez, D. Culqui, and J. Díaz. 2021. “Analysis of the impact of heat waves on daily mortality in urban and rural areas in Madrid.” Environ. Res. 195: 11089. https://doi.org/10.1016/j.envres.2021.110892.
Luna, M., J. J. Delgado, I. Romero, T. Montini, M. L. A. Gil, J. Martínez-López, P. Fornasiero, and M. J. Mosquera. 2022. “Photocatalytic TiO2 nanosheets-SiO2 coatings on concrete and limestone: An enhancement of de-polluting and self-cleaning properties by nanoparticle design.” Constr. Build. Mater. 338: 127349. https://doi.org/10.1016/j.conbuildmat.2022.127349.
Maiorov, V. A. 2020. “Metal hydride switchable mirrors (review).” Opt. Spectrosc. 128 (1): 148–165. https://doi.org/10.1134/S0030400X20010154.
Mangkuto, R. A., M. Rohmah, and A. D. Asri. 2016. “Design optimisation for window size, orientation, and wall reflectance with regard to various daylight metrics and lighting energy demand: A case study of buildings in the tropics.” Appl. Energy 164: 211–219. https://doi.org/10.1016/j.apenergy.2015.11.046.
Manley, G. 1958. “On the frequency of snowfall in metropolitan England.” Q. J. R. Meteorolog. Soc. 84 (359): 70–72. https://doi.org/10.1002/QJ.49708435910.
Manni, M., I. Kousis, G. Lobaccaro, F. Fiorito, A. Cannavale, and M. Santamouris. 2022. “Urban overheating mitigation through facades: The role of new and innovative cool coatings.” In Rethinking building skins: Transformative technologies and research trajectories, edited by E. Gasparri, A. Brambilla, G. Lobaccaro, F. Goia, A. Andaloro, and A. Sangiorgio, 61–87. Amsterdam, Netherlands: Elsevier Science.
Mansourizadeh, K., A. Golahmadi, I. M. Paoletti, and M. Anishchenko. 2021. “Design of a passive mechanical system actuated by the nitinol helical springs for shading and sustainable development purposes of the buildings?.” Build. Environ. 187: 107385. https://doi.org/10.1016/j.buildenv.2020.107385.
Martín-Gómez, C., A. Zuazua-Ros, K. Del Valle de Lersundi, B. Sánchez Saiz-Ezquerra, and M. Ibáñez-Puy. 2021. “Integration development of a ventilated active thermoelectric envelope (VATE): Constructive optimization and thermal performance.” Energy Build. 231: 110593. https://doi.org/10.1016/J.ENBUILD.2020.110593.
Maxwell, K. B., S. H. Julius, A. E. Grambsch, A. R. Kosmal, E. Larson, and N. Sonti. 2018. “Built environment, urban systems, and cities.” In Fourth national climate assessment, volume II: Impacts, risks, and adaptation in the United States, edited by D. R. Reidmiller, C. W. Avery, D. R. Easterling, K. E. Kunkel, K. L. M. Lewis, T. K. Maycock, and B. C. Stewart, 429–469. Washington, DC: U.S. Global Change Research Program.
Mazzeo, D., N. Matera, G. Peri, and G. Scaccianoce. 2023. “Forecasting green roofs” potential in improving building thermal performance and mitigating urban heat island in the Mediterranean area: An artificial intelligence-based approach.” Appl. Therm. Eng. 222: 119879. https://doi.org/10.1016/J.APPLTHERMALENG.2022.119879.
Menges, A., and S. Reichert. 2012. “Material capacity: Embedded responsiveness.” Archit. Des. 82 (2): 52–59. https://doi.org/10.1002/AD.1379.
Mert, Y., and N. Saygin. 2016. “Energy efficient building block design: An exergy perspective.” Energy 102: 465–472. https://doi.org/10.1016/j.energy.2016.02.121.
Mochán, W. L. 2016. “Plasmons.” In Reference module in materials science and materials engineering. Amsterdam, Netherlands: Elsevier.
Mori, K., K. Misawa, S. Ihida, T. Takahashi, H. Fujita, and H. Toshiyoshi. 2016. “A MEMS electrostatic roll-up window shade array for house energy management system.” IEEE Photonics Technol. Lett. 28 (5): 593–596. https://doi.org/10.1109/LPT.2016.2514299.
Nandakumar, D. K., S. K. Ravi, Y. Zhang, N. Guo, C. Zhang, and S. C. Tan. 2018. “A super hygroscopic hydrogel for harnessing ambient humidity for energy conservation and harvesting.” Energy Environ. Sci. 11 (8): 2179–2187. https://doi.org/10.1039/c8ee00902c.
Nawade, A., K. Ramya, and S. Mukhopadhyay. 2020. “Design of thermochromic materials and coatings for cool building applications.” In Energy saving coating materials design, process, implementation and recent developments, edited by G. K. Dalapati, and M. Sharma, 197–226. Amsterdam, Netherlands: Elsevier.
Newnham, R. E. 1993. “Smart, very smart, and intelligent materials.” MRS Bull. 18: 24–26. https://doi.org/10.1557/S0883769400037313.
Newnham, R. E. 1997. “Molecular mechanisms in smart materials.” MRS Bull. 22 (5): 20–34. https://doi.org/10.1557/S0883769400033170.
Özbey, F. 2019. The effect of microalgae on indoor CO2 level an experiment in an office of YAŞAR. Izmir, Turkey: Yaşar Univ.
Pagliolico, S. L., V. R. M. Lo Verso, M. Zublena, and L. Giovannini. 2019. “Preliminary results on a novel photo-bio-screen as a shading system in a kindergarten: Visible transmittance, visual comfort and energy demand for lighting.” Sol. Energy 185: 41–58. https://doi.org/10.1016/j.solener.2019.03.095.
Panagiotidou, M., M. C. Brito, K. Hamza, J. J. Jasieniak, and J. Zhou. 2021. “Prospects of photovoltaic rooftops, walls and windows at a city to building scale.” Sol. Energy 230: 675–687. https://doi.org/10.1016/J.SOLENER.2021.10.060.
Peres Suzano e Silva, A. C., and R. Flora Calili. 2021. “New building simulation method to measure the impact of window-integrated organic photovoltaic cells on energy demand.” Energy Build. 252: 111490. https://doi.org/10.1016/J.ENBUILD.2021.111490.
Pérez, G., J. Coma, and L. F. Cabeza. 2018. “Vertical greening systems to enhance the thermal performance of buildings and outdoor comfort.” In Nature based strategies for urban and building sustainability, edited by G. Pérez, and K. Perini, 99–108. Amsterdam, Netherlands: Elsevier.
Pérez, G., P. Sirvent, J. A. Sánchez-Garcia, and A. Guerrero. 2021. “Improved methodology for the characterization of thermochromic coatings for adaptive facade.” Sol. Energy 230: 409–420. https://doi.org/10.1016/J.SOLENER.2021.10.062.
Pruvost, J., F. Le Borgne, A. Artu, J.-F. Cornet, and J. Legrand. 2016. “Industrial photobioreactors and scale-up concepts.” Adv. Chem. Eng. 48: 257–310. https://doi.org/10.1016/bs.ache.2015.11.002.
Raeisossadati, M., N. R. Moheimani, and D. Parlevliet. 2019. “Luminescent solar concentrator panels for increasing the efficiency of mass microalgal production.” Renewable Sustainable Energy Rev. 101: 47–59. https://doi.org/10.1016/J.RSER.2018.10.029.
Rahman, A. Z. M. S. 2016. “Solid state luminescent materials: Applications.” In Reference module in materials science and materials engineering, edited by S. Hashmi, 1–13. Amsterdam, Netherlands: Elsevier.
Rajagopalan, P., K. C. Lim, and E. Jamei. 2014. “Urban heat island and wind flow characteristics of a tropical city.” Sol. Energy 107: 159–170. https://doi.org/10.1016/J.SOLENER.2014.05.042.
Rastkar Mirzaei, M., A. Rostami, S. Matloub, and M. Nazari. 2023. “Design and optimization of graphene quantum dot-based luminescent solar concentrator using Monte-Carlo simulation.” Energy Built Environ. 4: 140–147. https://doi.org/10.1016/J.ENBENV.2021.10.002.
Rauh, R. D., F. Wang, J. R. Reynolds, and D. L. Meeker. 2001. “High coloration efficiency electrochromics and their application to multi-color devices.” Electrochim. Acta 46 (13–14): 2023–2029. https://doi.org/10.1016/S0013-4686(01)00419-4.
Reichert, S., A. Menges, and D. Correa. 2015. “Meteorosensitive architecture: Biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness.” Comput.-Aided Des. 60: 50–69. https://doi.org/10.1016/j.cad.2014.02.010.
Revel, G. M., M. Martarelli, M. Emiliani, L. Celotti, R. Nadalini, A. De Ferrari, S. Hermanns, and E. Beckers. 2014a. “Cool products for building envelope—Part II: Experimental and numerical evaluation of thermal performances.” Sol. Energy 105: 780–791. https://doi.org/10.1016/j.solener.2014.02.035.
Revel, G. M., et al. 2014b. “Cool products for building envelope—Part I: Development and lab scale testing.” Sol. Energy 105: 770–779. https://doi.org/10.1016/j.solener.2014.03.029.
Ritter, A. 2013. “Architectural applications of smart textiles.” In Multidisciplinary know-how for smart-textiles developers, edited by T. Kirstein, 468–488. Amsterdam, Netherlands: Elsevier Science.
Rizwan, A. M., L. Y. C. Dennis, and C. Liu. 2008. “A review on the generation, determination and mitigation of Urban Heat Island.” J. Environ. Sci. 20 (1): 120–128. https://doi.org/10.1016/S1001-0742(08)60019-4.
Roman, K. K., T. O’Brien, J. B. Alvey, and O. J. Woo. 2016. “Simulating the effects of cool roof and PCM (phase change materials) based roof to mitigate UHI (urban heat island) in prominent US cities.” Energy 96: 103–117. https://doi.org/10.1016/J.ENERGY.2015.11.082.
Rosso, F., C. Fabiani, C. Chiatti, and A. L. Pisello. 2019. “Cool, photoluminescent paints towards energy consumption reductions in the built environment.” J. Phys. Conf. Ser. 1343 (1): 012198. https://doi.org/10.1088/1742-6596/1343/1/012198.
Rosso, F., A. L. Pisello, V. L. Castaldo, F. Cotana, and M. Ferrero. 2017. “Smart cool mortar for passive cooling of historical and existing buildings: Experimental analysis and dynamic simulation.” Energy Procedia 134: 536–544. https://doi.org/10.1016/j.egypro.2017.09.560.
Rotzetter, A. C. C., C. M. Schumacher, S. B. Bubenhofer, R. N. Grass, L. C. Gerber, M. Zeltner, and W. J. Stark. 2012. “Thermoresponsive polymer induced sweating surfaces as an efficient way to passively cool buildings.” Adv. Mater. 24 (39): 5352–5356. https://doi.org/10.1002/adma.201202574.
Sadik-Zada, E. R., and A. Gatto. 2022. “Vulnerability to the urban heat islands effect in the Global North and the Global South: Assessment of the drivers and mitigation strategies.” In Global urban heat island mitigation, edited by A. Khan, H. Akbari, F. Fiorito, S. Mithun, and D. Niyogi 29–45. Amsterdam, Netherlands: Elsevier.
Saeli, M., D. M. Tobaldi, N. Rozman, A. Sever Škapin, J. A. Labrincha, and R. C. Pullar. 2017. “Photocatalytic nano-composite architectural lime mortar for degradation of urban pollutants under solar and visible (interior) light.” Constr. Build. Mater. 152: 206–213. https://doi.org/10.1016/J.CONBUILDMAT.2017.06.167.
Saffari, M., C. Piselli, A. de Gracia, A. L. Pisello, F. Cotana, and L. F. Cabeza. 2018. “Thermal stress reduction in cool roof membranes using phase change materials (PCM).” Energy Build. 158: 1097–1105. https://doi.org/10.1016/J.ENBUILD.2017.10.068.
Sakaida, K., A. Egoshi, and M. Kuramochi. 2011. “Effects of sea breezes on mitigating urban heat island phenomenon: Vertical observation results in the urban center of sendai.” J. Geogr. 120 (2): 382–391. https://doi.org/10.5026/jgeography.120.382.
Santamouris, M. 2013. “Heat island research in Europe: The state of the art.” Adv. Build. Energy Res. 1: 123–150. https://doi.org/10.4324/9781849770378-12.
Santamouris, M. 2015. “Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions.” Sci. Total Environ. 512–513: 582–598. https://doi.org/10.1016/j.scitotenv.2015.01.060.
Santamouris, M., L. Ding, F. Fiorito, P. Oldfield, P. Osmond, R. Paolini, D. Prasad, and A. Synnefa. 2017. “Passive and active cooling for the outdoor built environment—Analysis and assessment of the cooling potential of mitigation technologies using performance data from 220 large scale projects.” Sol. Energy 154: 14–33. https://doi.org/10.1016/j.solener.2016.12.006.
Santamouris, M., S. Haddad, M. Saliari, K. Vasilakopoulou, A. Synnefa, G. Ulpiani, S. Garshasbi, and F. Fiorito. 2018. “On the energy impact of urban heat island in Sydney: Climate and energy potential of mitigation technologies.” Energy Build. 166: 154–164. https://doi.org/10.1016/J.ENBUILD.2018.02.007.
Santamouris, M., and P. Osmond. 2020. “Increasing green infrastructure in cities: Impact on ambient temperature, air quality and heat-related mortality and morbidity.” Buildings 10 (12): 233. https://doi.org/10.3390/buildings10120233.
Santamouris, M., N. Papanikolaou, I. Livada, I. Koronakis, C. Georgakis, A. Argiriou, and D. N. Assimakopoulos. 2001. “On the impact of urban climate on the energy consumption of buildings.” Sol. Energy 70 (3): 201–216. https://doi.org/10.1016/S0038-092X(00)00095-5.
Santamouris, M., A. Synnefa, and T. Karlessi. 2011. “Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions.” Sol. Energy 85 (12): 3085–3102. https://doi.org/10.1016/J.SOLENER.2010.12.023.
Santamouris, M., and G. Y. Yun. 2020. “Recent development and research priorities on cool and super cool materials to mitigate urban heat island.” Renewable Energy 161: 792–807. https://doi.org/10.1016/j.renene.2020.07.109.
Shastri, S. S., and S. K. Pandey. 2021. “Theory of energy conversion between heat and electricity.” In Thermoelectricity and advanced thermoelectric materials, edited by R. Kumar, and R. Singh, 21–53. Amsterdam, Netherlands: Elsevier science.
Shchegolkov, A. V., S.-H. Jang, A. V. Shchegolkov, Y. V. Rodionov, A. O. Sukhova, and M. S. Lipkin. 2021. “A brief overview of electrochromic materials and related devices: A nanostructured materials perspective.” Nanomaterials 11 (9): 2376. https://doi.org/10.3390/nano11092376.
Sobczyk, M., S. Wiesenhütter, J. R. Noennig, and T. Wallmersperger. 2022. “Smart materials in architecture for actuator and sensor applications: A review.” J. Intell. Mater. Syst. Struct. 33 (3): 379–399. https://doi.org/10.1177/1045389X211027954.
Soudian, S., U. Berardi, and N. Laschuk. 2020. “Development and thermal-optical characterization of a cementitious plaster with phase change materials and thermochromic paint.” Sol. Energy 205: 282–291. https://doi.org/10.1016/J.SOLENER.2020.05.015.
Stache, E., B. Schilperoort, M. Ottelé, and H. M. Jonkers. 2022. “Comparative analysis in thermal behaviour of common urban building materials and vegetation and consequences for urban heat island effect.” Build. Environ. 213: 108489. https://doi.org/10.1016/j.buildenv.2021.108489.
Steenbergen, R. D. J. M., T. Koster, and C. P. W. Geurts. 2012. “The effect of climate change and natural variability on wind loading values for buildings.” Build. Environ. 55: 178–186. https://doi.org/10.1016/J.BUILDENV.2012.03.010.
Steurer, W. 2014. “Crystal structures of metallic elements and compounds.” In Physical metallurgy, 5th ed., edited by D. E. Laughlin, and K. Hono, 1–101. Amsterdam, Netherlands: Elsevier.
Sun, R., Y. Wang, and L. Chen. 2018. “A distributed model for quantifying temporal-spatial patterns of anthropogenic heat based on energy consumption.” J. Cleaner Prod. 170: 601–609. https://doi.org/10.1016/J.JCLEPRO.2017.09.153.
Sung, D. 2011. Prototyping a self-ventilating building skin with smart thermobimetals. Los Angeles, CA: Univ. of Southern California.
Susca, T., F. Zanghirella, L. Colasuonno, and V. Del Fatto. 2022. “Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review.” Renewable Sustainable Energy Rev. 159: 112100. https://doi.org/10.1016/J.RSER.2022.112100.
Synnefa, A., M. Santamouris, and K. Apostolakis. 2007. “On the development, optical properties and thermal performance of cool colored coatings for the urban environment.” Sol. Energy 81 (4): 488–497. https://doi.org/10.1016/J.SOLENER.2006.08.005.
Tabadkani, A., A. Roetzel, H. X. Li, and A. Tsangrassoulis. 2021. “A review of occupant-centric control strategies for adaptive facades.” Autom. Constr. 122: 103464. https://doi.org/10.1016/j.autcon.2020.103464.
Tabatabaei, S. S., and R. Fayaz. 2023. “The effect of facade materials and coatings on urban heat island mitigation and outdoor thermal comfort in hot semi-arid climate.” Build. Environ. 243: 110701. https://doi.org/10.1016/j.buildenv.2023.110701.
Talaei, M., M. Mahdavinejad, and R. Azari. 2020. “Thermal and energy performance of algae bioreactive facade: A review.” J. Build. Eng. 28: 101011. https://doi.org/10.1016/j.jobe.2019.101011.
Talaei, M., M. Mahdavinejad, R. Azari, H. M. Haghighi, and A. Atashdast. 2022. “Thermal and energy performance of a user-responsive microalgae bioreactive facade for climate adaptability.” Sustainable Energy Technol. Assess. 52: 101894. https://doi.org/10.1016/J.SETA.2021.101894.
Tan, G., and D. Zhao. 2015. “Study of a thermoelectric space cooling system integrated with phase change material.” Appl. Therm. Eng. 86: 187–198. https://doi.org/10.1016/j.applthermaleng.2015.04.054.
Teixeira, H., M. Glória Gomes, A. Moret Rodrigues, and D. Aelenei. 2022. “Assessment of the visual, thermal and energy performance of static vs thermochromic double-glazing under different European climates.” Build. Environ. 217: 109115. https://doi.org/10.1016/J.BUILDENV.2022.109115.
Tommasino, D., F. Moro, E. de Pablo Corona, L. Vandi, A. Baietta, A. Pracucci, and A. Doria. 2022. “Optimization of a piezoelectric wind-excited cantilever for energy harvesting from facades.” In Proc., 4th Int. Conf. of IFToMM. Advances in Italian Mechanism Science, edited by G. Niola, V. Gasparetto, A. Quaglia, and G. Carbone, 848–856. Cham, Switzerland: Springer.
Tong, S. W., W. P. Goh, X. Huang, and C. Jiang. 2021. “A review of transparent-reflective switchable glass technologies for building facades.” Renewable Sustainable Energy Rev. 152: 111615. https://doi.org/10.1016/j.rser.2021.111615.
Uemoto, K. L., N. M. N. Sato, and V. M. John. 2010. “Estimating thermal performance of cool colored paints.” Energy Build. 42 (1): 17–22. https://doi.org/10.1016/J.ENBUILD.2009.07.026.
Ulpiani, G., G. Ranzi, K. W. Shah, J. Feng, and M. Santamouris. 2020. “On the energy modulation of daytime radiative coolers: A review on infrared emissivity dynamic switch against overcooling.” Sol. Energy 209: 278–301. https://doi.org/10.1016/j.solener.2020.08.077.
Vardoulakis, S., K. Dear, S. Hajat, C. Heaviside, B. Eggen, and A. J. McMichael. 2014. “Comparative assessment of the effects of climate change on heat- and cold-related mortality in the United Kingdom and Australia.” Environ. Health Perspect. 122 (12): 1285. https://doi.org/10.1289/EHP.1307524.
Wang, K., Y. D. Aktas, L. Malki-Epshtein, D. Wu, and M. F. Ammar Bin Abdullah. 2022. “Mapping the city scale anthropogenic heat emissions from buildings in Kuala Lumpur through a top-down and a bottom-up approach.” Sustainable Cities Soc. 76: 103443. https://doi.org/10.1016/j.scs.2021.103443.
Wang, Y., Z. Guo, and J. Han. 2021. “The relationship between urban heat island and air pollutants and them with influencing factors in the Yangtze River Delta, China.” Ecol. Indic. 129: 107976. https://doi.org/10.1016/j.ecolind.2021.107976.
Wittwer, V., M. Datz, J. Ell, A. Georg, W. Graf, and G. Walze. 2004. “Gasochromic windows.” Sol. Energy Mater. Sol. Cells 84 (1–4): 305–314. https://doi.org/10.1016/J.SOLMAT.2004.01.040.
WMO (World Meteorological Organization). 2023. Guidance on measuring, modelling and monitoring the canopy layer urban heat island. Geneva: WMO.
Wong, R. Y. M., C. Y. Tso, C. Y. H. Chao, B. Huang, and M. P. Wan. 2018. “Ultra-broadband asymmetric transmission metallic gratings for subtropical passive daytime radiative cooling.” Sol. Energy Mater. Sol. Cells 186: 330–339. https://doi.org/10.1016/J.SOLMAT.2018.07.002.
Wu, L. Y. L., Q. Zhao, H. Huang, and R. J. Lim. 2017. “Sol-gel based photochromic coating for solar responsive smart window.” Surf. Coat. Technol. 320: 601–607. https://doi.org/10.1016/j.surfcoat.2016.10.074.
Wurm, J. 2013. “Photobioreactors on facade for energy generation alternative technologies in the building envelope.” In Int. Rosenheim Window & Facade Conf., 83–87. Rosenheim, Germany: ift Rosenheim GmBH.
Xie, P., and H. Wang. 2021. “Potential benefit of photovoltaic pavement for mitigation of urban heat island effect.” Appl. Therm. Eng. 191: 116883. https://doi.org/10.1016/J.APPLTHERMALENG.2021.116883.
Xie, X. D., N. Wu, K. V. Yuen, and Q. Wang. 2013. “Energy harvesting from high-rise buildings by a piezoelectric coupled cantilever with a proof mass.” Int. J. Eng. Sci. 72: 98–106. https://doi.org/10.1016/j.ijengsci.2013.07.004.
Yang, B., T. Xu, and L. Shi. 2017a. “Analysis on sustainable urban development levels and trends in China’s cities.” J. Cleaner Prod. 141: 868–880.
Yang, Y. K., I. S. Kang, M. H. Chung, S. M. Kim, and J. C. Park. 2017b. “Effect of PCM cool roof system on the reduction in urban heat island phenomenon.” Build. Environ. 122: 411–421. https://doi.org/10.1016/J.BUILDENV.2017.06.015.
Yang, Y. K., M. Y. Kim, M. H. Chung, and J. C. Park. 2019. “PCM cool roof systems for mitigating urban heat island—An experimental and numerical analysis.” Energy Build. 205: 109537. https://doi.org/10.1016/J.ENBUILD.2019.109537.
Yi, H., and Y. Kim. 2021. “Self-shaping building skin: Comparative environmental performance investigation of shape-memory-alloy (SMA) response and artificial-intelligence (AI) kinetic control.” J. Build. Eng. 35: 102113. https://doi.org/10.1016/J.JOBE.2020.102113.
Yoro, K. O., and M. O. Daramola. 2020. “CO2 emission sources, greenhouse gases, and the global warming effect.” In Advances in carbon capture methods, technologies and applications, edited by M. R. Rahimpour, M. Farsi, and M. A. Makarem, 3–28. Amsterdam, Netherlands: Elsevier.
Zarrabi, A., and M. Tavakoli. 2018. Generative design tool: Integrated approach toward development of piezoelectric facade system, 115–123. Long Beach, CA: Facade Tectonics Institute.
Zhang, D., et al. 2019. “Effect of monomer composition on the performance of polymer-stabilized liquid crystals with Two-step photopolymerization.” J. Polym. Sci., Part B: Polym. Phys. 57 (17): 1126–1132. https://doi.org/10.1002/POLB.24867.
Zhang, L., and C. Yuan. 2023. “Multi-scale climate-sensitive planning framework to mitigate urban heat island effect: A case study in Singapore.” Urban Clim. 49: 101451. https://doi.org/10.1016/j.uclim.2023.101451.
Zhang, T., and H. Yang. 2019. “Flow and heat transfer characteristics of natural convection in vertical air channels of double-skin solar facade.” Appl. Energy 242: 107–120. https://doi.org/10.1016/j.apenergy.2019.03.072.
Zhang, X., H. Li, N. Xie, M. Jia, B. Yang, and S. Li. 2022. “Laboratorial investigation on optical and thermal properties of thermochromic pavement coatings for dynamic thermoregulation and urban heat island mitigation.” Sustainable Cities Soc. 83: 103950. https://doi.org/10.1016/j.scs.2022.103950.
Zhang, Y., and X. Zhai. 2019. “Preparation and testing of thermochromic coatings for buildings.” Sol. Energy 191: 540–548. https://doi.org/10.1016/J.SOLENER.2019.09.042.
Zhou, D., J. Xiao, S. Bonafoni, C. Berger, K. Deilami, Y. Zhou, S. Frolking, R. Yao, Z. Qiao, and J. A. Sobrino. 2019. “Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives.” Remote Sensing 11: 48. https://doi.org/10.3390/rs11010048.
Zuazua-Ros, A., C. Martín-Gómez, E. Ibáñez-Puy, M. Vidaurre-Arbizu, and M. Ibáñez-Puy. 2018. “Design, assembly and energy performance of a ventilated active thermoelectric envelope module for heating.” Energy Build. 176: 371–379. https://doi.org/10.1016/j.enbuild.2018.07.062.
Zuo, J., S. Pullen, J. Palmer, H. Bennetts, N. Chileshe, and T. Ma. 2015. “Impacts of heat waves and corresponding measures: A review.” J. Cleaner Prod. 92: 1–12. https://doi.org/10.1016/j.jclepro.2014.12.078.

Information & Authors

Information

Published In

Go to Journal of Architectural Engineering
Journal of Architectural Engineering
Volume 30Issue 4December 2024

History

Received: Nov 23, 2023
Accepted: Apr 3, 2024
Published online: Aug 9, 2024
Published in print: Dec 1, 2024
Discussion open until: Jan 9, 2025

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Maryam Talaei [email protected]
Faculty of Architecture and Urban Planning, Ferdowsi Univ. of Mashhad, Mashhad 9177948974, Iran (corresponding author). Email: [email protected]
College of Arts and Architecture, Pennsylvania State Univ., State College, PA 16801. ORCID: https://orcid.org/0000-0002-4844-639X. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share