Case Studies
Aug 26, 2021

Assessing the Propagation from Meteorological to Hydrological Drought in the São Francisco River Catchment with Standardized Indexes: Exploratory Analysis, Influential Factors, and Forecasting Strategies

Publication: Journal of Water Resources Planning and Management
Volume 147, Issue 11

Abstract

Droughts are recurrent natural hazards that can strongly affect human activities and the natural dynamics of ecosystems. Strategies for drought risk management and mitigation depend on how rainfall shortages translate into water deficits in soil, streams, and aquifers. From this perspective, this paper investigates, with the use of standardized drought indexes, the propagation mechanisms from meteorological to hydrological droughts in the São Francisco River catchment, providing an assessment of the times of propagation and of influential physical and climatological factors. In addition, we explore a potential framework for predicting the times of propagation in locations with no streamflow information. The study results demonstrated that, while no marked distinctions in the meteorological drought statistics are verified across the study region, spatial patterns are observed in those of hydrological droughts, implying different mechanisms for drought propagation. Moreover, the prediction models demonstrated acceptable capacity, despite the complexity of the propagation physical processes. Hence, notwithstanding some modeling limitations, the proposed approach may constitute a useful auxiliary tool for hydrological drought forecasting and early warning at regional scale.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors acknowledge support for this research from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG). The authors also acknowledge the anonymous reviewers and the editors for their valuable comments and suggestions, which greatly helped improve the paper.

References

Aghakouchak, A. 2015. “A multivariate approach for persistence-based drought prediction: Application to the 2010-2011 East Africa drought.” J. Hydrol. 526 (Jul): 127–135. https://doi.org/10.1016/j.jhydrol.2014.09.063.
Ahangar-Asr, A., A. Faramarzi, N. Mottaghifard, and A. A. Javadi. 2011. “Modeling of permeability and compaction characteristics of soils using evolutionary polynomial regression.” Comput. Geosci. 37 (11): 1860–1869. https://doi.org/10.1016/j.cageo.2011.04.015.
Akaike, H. 1974. “A new look at the statistical model identification.” IEEE Trans. Autom. Control 19 (6): 716–723. https://doi.org/10.1109/TAC.1974.1100705.
ANA (Agência Nacional de Águas). 2018. Hidrogeologia dos ambientes cársticos da bacia do rio São Francisco para a gestão de recursos hídricos–Resumo executivo. Brasília: ANA.
Bakalowicz, M. 2005. “Karst groundwater: A challenge for new resources.” Hydrogeol. J. 13 (1): 148–160. https://doi.org/10.1007/s10040-004-0402-9.
Barker, L. J., J. Hannaford, A. Chiverton, and C. Svensson. 2016. “From meteorological to hydrological drought using standardised indicators.” Hydrol. Earth Syst. Sci. 20 (6): 2483–2505. https://doi.org/10.5194/hess-20-2483-2016.
Belayneh, A., J. Adamowski, B. Khalil, and B. Ozga-Zielinski. 2014. “Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models.” J. Hydrol. 508 (Jan): 418–429. https://doi.org/10.1016/j.jhydrol.2013.10.052.
Belayneh, A., J. Adamowski, B. Khalil, and J. Quilty. 2016. “Coupling machine learning methods with wavelet transforms and the bootstrapping and boosting ensemble approaches for drought predictions.” Atmos. Res. 172–173 (May): 37–47. https://doi.org/10.1016/j.atmosres.2015.12.017.
Bloomfield, J. P., and B. P. Marchant. 2013. “Analysis of groundwater drought building on the standardized precipitation index approach.” Hydrol. Earth Syst. Sci. 17 (12): 4769–4787. https://doi.org/10.5194/hess-17-4769-2013.
Booras, K., A. R. McIntyre, W. J. Weiss, C. Howells, and R. N. Palmer. 2018. “Incorporating streamflow forecasts with aggregate drought indices for the management of water supply.” J. Water Resour. Plann. Manage. 144 (1): 04017078. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000849.
Brunner, M. I., D. L. Swain, E. Gilleland, and A. W. Wood. 2021. “Increasing importance of temperature as a contributor to the spatial extent of streamflow drought.” Environ. Res. Lett. 16 (2): 024038. https://doi.org/10.1088/1748-9326/abd2f0.
Bruno, D. E., E. Barca, R. M. Gonçalvez, H. A. A. Queiroz, L. Berardi, and G. Passarella. 2018. “Linear and evolutionary polynomial regression models to forecast coastal dynamics: Comparison and reliability assessment.” Geomorphology 300 (Jan): 128–140. https://doi.org/10.1016/j.geomorph.2017.10.012.
Cai, X., R. Zeng, W. H. Kang, and J. Song. 2015. “Strategic planning for drought mitigation under climate change.” J. Water Resour. Plann. Manage. 141 (9): 04015004. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000510.
Chen, X., F. Li, Y. Wang, P. Feng, and R. Yang. 2019. “Evolution properties between meteorological, agricultural and hydrological droughts and their related driving factors in the Luanhe River basin, China.” Hydrol. Res. 50 (4): 1096–1119. https://doi.org/10.2166/nh.2019.141.
Chiverton, A., J. Hannaford, I. Holma, R. Corstanje, C. Prodhomme, J. Bloomfield, and T. M. Hess. 2015. “Which catchment characteristics control the temporal dependence structure of daily river flows?” Hydrol. Process. 29 (6): 1353–1369. https://doi.org/10.1002/hyp.10252.
Costa, V., W. Fernandes, and A. Starick. 2020. “Identifying regional models for flow duration curves with evolutionary polynomial regression: Application for intermittent streams.” J. Hydrol. Eng. 25 (1): 04019059. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001873.
CPRM (Serviço Geológico do Brasil). 2001. Regionalização de Vazões das Sub-bacias 40 e 41–Alto São Francisco. Belo Horizonte, Brazil: CPRM.
Deo, R. C., O. Kisi, and V. P. Singh. 2017. “Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree model.” Atmos. Res. 184 (Feb): 149–175. https://doi.org/10.1016/j.atmosres.2016.10.004.
Elshorbagy, A., G. Corzo, S. Srinivasulu, and D. P. Solomatine. 2010. “Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology—Part 1: Concepts and methodology.” Hydrol. Earth Syst. Sci. 14 (1): 1931–1941. https://doi.org/10.5194/hess-14-1931-2010.
Elshorbagy, A., and I. El-Baroudy. 2009. “Investigating the capabilities of evolutionary data-driven techniques using the challenging estimation of soil moisture content.” J. Hydroinf. 11 (3–4): 237–251. https://doi.org/10.2166/hydro.2009.032.
EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária). 2006. Sistema brasileiro de classificação de solos. 2nd ed. Rio de Janeiro, Brazil: EMBRAPA-SPI.
Ghani, N. A. A., M. A. Shahin, and H. R. Nikraz. 2012. “Use of evolutionary polynomial regression (EPR) for prediction of total sediment load of Malaysian rivers.” Int. J. Eng. 6 (5): 262–277.
Giustolisi, O., and D. A. Savic. 2006. “A symbolic data-driven technique based on evolutionary polynomial regression.” J. Hydroinf. 8 (3): 207–222. https://doi.org/10.2166/hydro.2006.020b.
Goodarzi, M., J. Abedi-Koupai, M. Heidarpour, and H. R. Safavi. 2016. “Development of a new drought index for groundwater and its application in sustainable groundwater extraction.” J. Water Resour. Plann. Manage. 142 (9): 04016032. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000673.
Gudmundsson, L., and J. H. Stagge. 2016. “SCI: Standardized climate indices such as SPI, SRI or SPEIR, package version 1.0-2.” Accessed November 10, 2019. https://cran.r-project.org/web/packages/SCI.html.
Hannaford, J., B. Lloyd-Hughes, C. Keef, S. Parry, and C. Prudhomme. 2011. “Examining the large-scale spatial coherence of European drought using regional indicators of precipitation and streamflow deficit.” Hydrol. Process. 25 (7): 1146–1162. https://doi.org/10.1002/hyp.7725.
Hao, Z., F. Hao, and V. P. Singh. 2016. “A general framework for multivariate multi-index drought prediction based on multivariate ensemble streamflow prediction (MESP).” J. Hydrol. 539 (Aug): 1–10. https://doi.org/10.1016/j.jhydrol.2016.04.074.
Hao, Z., F. Hao, V. P. Singh, W. Ouyang, and H. Cheng. 2017. “An integrated package for drought monitoring, prediction and analysis to aid drought modeling and assessment.” Environ. Modell. Software 91 (May): 199–209. https://doi.org/10.1016/j.envsoft.2017.02.008.
Hosking, J. R. M., and J. R. Wallis. 1997. Regional frequency analysis: An approach based on L-Moments. Cambridge, UK: Cambridge University Press.
Huang, S., P. Li, Q. Huang, J. Chang, G. Leng, and L. Xing. 2015. “The response of agricultural drought to meteorological drought and the influencing factors: A case study in the Wei River Basin, China.” Agric. Water Manage. 159 (Sep): 45–54. https://doi.org/10.1016/j.agwat.2015.05.023.
Huang, S., P. Li, Q. Huang, G. Leng, B. Hou, and L. Ma. 2017. “The propagation from meteorological to hydrological drought and its potential influential factors.” J. Hydrol. 547 (Apr): 184–195. https://doi.org/10.1016/j.jhydrol.2017.01.041.
Kim, S., P. Parhi, H. Jun, and J. Lee. 2018. “Evaluation of drought severity with a Bayesian network analysis of multiple drought indices.” J. Water Resour. Plann. Manage. 144 (1): 05017016. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000804.
Kisi, O., A. D. Gorgij, M. Zounemat-Kermani, A. Mahdavi-Meymand, and S. Kim. 2019. “Drought forecasting using novel heuristic methods in a semi-arid environment.” J. Hydrol. 578 (Nov): 124053. https://doi.org/10.1016/j.jhydrol.2019.124053.
Ladson, A. R., R. Brown, B. Neal, and R. Nathan. 2013. “A standard approach to baseflow separation using the Lyne and Hollick filter.” Aust. J. Water Resour. 17 (1): 25–34. https://doi.org/10.7158/13241583.2013.11465417.
Li, Q., P. Li, H. Li, and M. Yu. 2015. “Drought assessment using a multivariate drought index in the Luanhe River Basin of Northern China.” Stochastic Environ. Res. Risk Assess. 29 (6): 1509–1520. https://doi.org/10.1007/s00477-014-0982-4.
Ma, F., L. Luon, A. Ye, and Q. Duan. 2019. “Drought characteristics and propagation in the semiarid Heihe river basin in northwestern China.” J. Hydrometeorol. 20 (1): 59–77. https://doi.org/10.1175/JHM-D-18-0129.1.
Mckee, T. B., N. J. Doesken, and J. Kleist. 1993. “The relationship of drought frequency and duration to time scales.” In Proc., Conf. on Applied Climatology, 8. Anaheim, CA: American Meteorological Society.
Mehr, A. D., E. Kahya, and M. Özger. 2014. “A gene-wavelet model for long lead time drought forecasting.” J. Hydrol. 517 (Sep): 691–699. https://doi.org/10.1016/j.jhydrol.2014.06.012.
Mishra, A. K., and V. P. Singh. 2010. “A review of drought concepts.” J. Hydrol. 391 (1–2): 202–216. https://doi.org/10.1016/j.jhydrol.2010.07.012.
Mishra, A. K., and V. P. Singh. 2011. “Drought modeling: A review.” J. Hydrol. 403 (1–2): 157–175. https://doi.org/10.1016/j.jhydrol.2011.03.049.
Napolitano, G., F. Serinaldi, and L. See. 2011. “Impact of EMD decomposition and random initialization of weights in ANN hindcasting of daily stream flow series: An empirical examination.” J. Hydrol. 406 (3–4): 199–214. https://doi.org/10.1016/j.jhydrol.2011.06.015.
Nobre, C. A., J. A. Marengo, M. E. Seluchi, L. A. Cuartas, and L. M. Alves. 2016. “Some characteristics and impacts of the drought and water crisis in Southeastern Brazil during 2014 and 2015.” J. Water Resour. Prot. 8 (2): 252–262. https://doi.org/10.4236/jwarp.2016.82022.
Oertel, M., F. J. Meza, J. Gironás, C. A. Scott, F. Rojas, and N. Pineda-Pablos. 2018. “Drought propagation in semi-arid river basins in Latin America: Lessons from Mexico to the Southern cone.” Water 10 (11): 1564. https://doi.org/10.3390/w10111564.
Peters, E., G. Bier, H. A. J. Van Lannen, and P. J. J. F. Torfs. 2006. “Propagation and spatial distribution of drought in a groundwater catchment.” J. Hydrol. 321 (1–4): 257–275. https://doi.org/10.1016/j.jhydrol.2005.08.004.
Reboita, M. S., M. Rodrigues, R. P. Armando, C. Freitas, D. Martins, and G. Miller. 2016. “Causas da semi-aridez do sertão nordestino.” Rev. Bras. Cliamtologia 12 (19): 254–277. https://doi.org/10.5380/abclima.v19i0.42091.
Requena, A. I., F. Chebana, and T. B. M. J. Ouarda. 2018. “A functional framework for flow-duration-curve and daily streamflow estimation at ungauged sites.” Adv. Water Resour. 113 (Mar): 328–340. https://doi.org/10.1016/j.advwatres.2018.01.019.
Rodrigues, R. R., A. S. Taschetto, A. S. Gupta, and G. R. Foltz. 2019. “Common cause for severe droughts in South America and marine heatwaves in the South Atlantic.” Nat. Geosci. 12 (8): 620–626. https://doi.org/10.1038/s41561-019-0393-8.
Santos, M. S., V. A. F. Costa, W. S. Fernandes, and R. P. de Paes. 2019. “Time-space characterization of droughts in the São Francisco river catchment using the Standard Precipitation Index and continuous wavelet transform.” Rev. Bras. Recursos Hídricos 24 (Jun): e28. https://doi.org/10.1590/2318-0331.241920180092.
Shukla, S., and A. W. Wood. 2008. “Use of a standardized runoff index for characterizing hydrologic drought.” Geophys. Res. Lett. 35 (2): 1–7. https://doi.org/10.1029/2007GL032487.
Stagge, J. H., L. M. Tallaksen, L. Gudmundsson, A. F. Van Loon, and K. Stahl. 2015. “Candidate distributions for climatological drought indices (SPI and SPEI).” Int. J. Climatol. 35 (13): 4027–4040. https://doi.org/10.1002/joc.4267.
Staudinger, M., K. Stahl, and J. Seibert. 2014. “A drought index accounting for snow.” Water Resour. Res. 50 (10): 7861–7872. https://doi.org/10.1002/2013WR015143.
Svensson, C., J. Hannaford, and I. Prosdocimi. 2017. “Statistical distributions for monthly aggregations of precipitation and streamflow in drought indicator applications.” Water Resour. Res. 53 (2): 999–1018. https://doi.org/10.1002/2016WR019276.
Tallaksen, L. M., and H. A. J. Van Lannen. 2004. “Hydrological drought: Processes and estimation methods for streamflow and groundwater.” In Vol. 48 of Developments in water science. Amsterdam, Netherlands: Elsevier Science, B. V.
Teuling, A. J., A. F. Van Loon, S. I. Seneviratne, I. Lehner, M. Aubinet, B. Heinesh, C. Bernhofer, T. Grüwald, H. Prasse, and U. Spank. 2013. “Evaporation amplifies European summer drought.” Geophys. Res. Lett. 40 (10): 2071–2075. https://doi.org/10.1002/grl.50495.
Van Loon, A. F. 2015. “Hydrological drought explained.” WIREs Water 2 (4): 359–392. https://doi.org/10.1002/wat2.1085.
Van Loon, A. F., and G. Laaha. 2015. “Hydrological drought severity explained by climate and catchment characteristics.” J. Hydrol. 526 (Jul): 3–14. https://doi.org/10.1016/j.jhydrol.2014.10.059.
Vera, C., W. Higgins, J. Amador, T. Ambrizzi, R. Garreaud, D. Gochis, and J. Nogues-Paegle. 2006. “Toward a unified view of the American monsoon systems.” J. Clim. 19 (20): 4977–5000. https://doi.org/10.1175/JCLI3896.1.
Vicente-Serrano, S., J. López-Moreno, S. Beguería, J. Lorenzo-LaCruz, C. Azorin-Molina, and E. Morán-Tejeda. 2012. “Accurate computation of a streamflow drought index.” J. Hydrol. Eng. 17 (2): 318–332. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000433.
Vicente-Serrano, S. M., S. Beguería, and J. I. López-Moreno. 2009. “A multiscalar drought index sensitive to global warming: The standardized precipitation evaporation index.” J. Clim. 23 (7): 1696–1718. https://doi.org/10.1175/2009JCLI2909.1.
Wang, D., M. Hejazi, X. Cai, and A. J. Valocchi. 2011. “Climate change impact on meteorological, agricultural, and hydrological drought in central Illinois.” Water Resour. Res. 47 (9): W09527. https://doi.org/10.1029/2010WR009845.
Wang, W., M. W. Ertsen, M. D. Svoboda, and M. Hafeez. 2016. “Propagation of drought: From meteorological drought to agricultural and hydrological drought.” Adv. Meteorol. 2016: 1–5. https://doi.org/10.1155/2016/6547209.
WMO (World Meteorological Organization). 2012. “Standardized precipitation index user guide.” Accessed March 29, 2021. https://library.wmo.int/doc_num.php?explnum_id=7768.
Wu, J., C. Miao, H. Zheng, Q. Duan, X. Lei, and H. Li. 2018. “Meteorological and hydrological drought on the Loess plateau, China: Evolutionary characteristics, impact, and propagation.” J. Geophys. Res. Atmos. 123 (20): 11,569–11,584. https://doi.org/10.1029/2018JD029145.
Xavier, A. C., C. W. King, and B. R. Scanlon. 2016. “Daily gridded meteorological variables in Brazil (1980–2013).” Int. J. Climatol. 36 (6): 2644–2659. https://doi.org/10.1002/joc.4518.

Information & Authors

Information

Published In

Go to Journal of Water Resources Planning and Management
Journal of Water Resources Planning and Management
Volume 147Issue 11November 2021

History

Received: Oct 2, 2020
Accepted: Jun 23, 2021
Published online: Aug 26, 2021
Published in print: Nov 1, 2021
Discussion open until: Jan 26, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Professor, Dept. of Hydraulics and Water Resources Engineering, Federal Univ. of Minas Gerais, Belo Horizonte 31270 901, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-3848-2098. Email: [email protected]
Master’s Student, Dept. of Hydraulics and Water Resources Engineering, Federal Univ. of Minas Gerais, Belo Horizonte 31270 901, Brazil. ORCID: https://orcid.org/0000-0002-3182-2029
Luiz Rafael Palmier, Ph.D.
Associate Professor, Dept. of Hydraulics and Water Resources Engineering, Federal Univ. of Minas Gerais, Belo Horizonte 31270 901, Brazil.
Júlio Sampaio
Master’s Student, Dept. of Hydraulics and Water Resources Engineering, Federal Univ. of Minas Gerais, Belo Horizonte 31270 901, Brazil.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Comparison of Methods for Filling Daily and Monthly Rainfall Missing Data: Statistical Models or Imputation of Satellite Retrievals?, Water, 10.3390/w14193144, 14, 19, (3144), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share