Case Studies
Oct 31, 2022

An Improved Intersection Method for Positioning and Its Application to Dalk Glacier, East Antarctica

Publication: Journal of Surveying Engineering
Volume 149, Issue 1

Abstract

Stake measurement is a significant ground-observation method used to monitor glacier dynamics in the cryosphere and validate the reliability of remotely sensed investigations. However, some stake observation records obtained by total stations have not been efficiently utilized via the classic forward intersection method. The forward intersection method requires a pair of cognominal observation records and cannot function if stakes are only observed from one control point at a stake measurement, which commonly occurs in measurements. Therefore, we propose an improved intersection method that combines stake trajectories and sightlines, the trajectory-sightline intersection method, which requires only a single observation record. In the processing of stake identification, location and elevation from the trajectory-sightline intersection method are constrained by the velocity and surface altitude of the glacier. Then, the trajectory-sightline intersection method is applied to the stake measurement of Dalk Glacier in East Antarctica. The results show that the trajectory-sightline intersection method extracted an additional 44 intersections, thus increasing the data utilization ratio by 20.35%. Moreover, leave-p-out cross-validation indicated that the trajectory-sightline intersection method, with an average offset of 0.88±0.54  m in the horizontal position and 0.26±0.12  m at the elevation, has similar accuracy to the differential global positioning system (DGPS) applied to Livingston Island. The ice flow velocities of Dalk Glacier calculated from trajectory-sightline intersections agree with those from forward intersections (the mean velocity difference is 0.47  m·year1). Therefore, the trajectory-sightline intersection method is an effective method for improving data utilization and obtaining stake locations and glacier velocities.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request. The Landsat image data can be downloaded via the website https://earthexplorer.usgs.gov/.

Acknowledgments

This work was supported by the National Natural Science Foundation of China [Grant Nos. 41941010 and 41676179]. The authors would like to thank the CHINARE researchers for their hard work in Antarctica. The authors are also grateful to American Journal Experts (AJE) for its English language editing service.

References

Ai, S., S. Wang, Y. Li, and L. Liu. 2020. “Multi-parameter adjustment for high-precision azimuthal intersection positioning.” MethodsX 7 (Jan): 100968. https://doi.org/10.1016/j.mex.2020.100968.
Ai, S., S. Wang, Y. Li, G. Moholdt, C. Zhou, L. Liu, and Y. Yang. 2019. “High-precision ice-flow velocities from ground observations on Dalk Glacier, Antarctica.” Polar Sci. 19 (Mar): 13–23. https://doi.org/10.1016/j.polar.2018.09.003.
Ai, S., S. Wang, E. D. Liu, and Y. Li. 2018. “Error analysis of in situ positioning observations from Dalk Glacier on East Antarctica.” [In Chinese.] J. Glaciol. Geocryology 40 (5): 884–891. https://doi.org/10.7522/j.issn.1000-0240.2018.0095.
Baumhoer, C. A., A. J. Dietz, S. Dech, and C. Kuenzer. 2018. “Remote sensing of Antarctic Glacier and ice-shelf front dynamics—A review.” Remote Sens. 10 (9): 1445. https://doi.org/10.3390/rs10091445.
Bliakharskii, D. P., I. V. Florinsky, and T. N. Skrypitsyna. 2019. “Modelling glacier topography in Antarctica using unmanned aerial survey: Assessment of opportunities.” Int. J. Remote Sens. 40 (7): 2517–2541. https://doi.org/10.1080/01431161.2019.1584926.
Chen, J., and C. Ke. 2015. “Research progress on ice velocity of Antarctic ice sheet.” [In Chinese.] Chin. J. Polar Res. 27 (1): 115–124.
Chen, J.-N., Z. Xiong, L. Nei, D.-X. Zhao, L.-G. Zhang, Z.-P. Xia, and T. Chen. 2019. “Dynamic error modeling and analysis based on angle intersection measurement system.” In Vol. 11333 of Proc., Dynamic Error Modeling and Analysis Based on Angle Intersection Measurement System, 1133316. Bellingham, WA: International Society for Optical Engineering. https://doi.org/10.1117/12.2547696.
Chen, Y., C. Zhou, S. Ai, Q. Liang, L. Zheng, R. Liu, and H. Lei. 2020. “Dynamics of Dalk Glacier in East Antarctica derived from multisource satellite observations since 2000.” Remote Sens. 12 (11): 1809. https://doi.org/10.3390/rs12111809.
Cheng, H., D. J. Garrick, and R. L. Fernando. 2017. “Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction.” J. Anim. Sci. Biotechnol. 8 (1): 38. https://doi.org/10.1186/s40104-017-0164-6.
Dietterich, T. G. 1998. “Approximate statistical tests for comparing supervised classification learning algorithms.” Neural Comput. 10 (7): 1895–1923. https://doi.org/10.1162/089976698300017197.
Dirscherl, M., A. J. Dietz, S. Dech, and C. Kuenzer. 2020. “Remote sensing of ice motion in antarctica—A review.” Remote Sens. Environ. 237: 111595. https://doi.org/10.1016/j.rse.2019.111595.
Dorrer, E., W. Hofmann, and W. Seufert. 1969. “Geodetic results of the Ross ice shelf survey expeditions, 1962–63 and 1965–66.” J. Glaciol. 8 (52): 67–90. https://doi.org/10.1017/S0022143000020773.
Farías-Barahona, D., C. Sommer, T. Sauter, D. Bannister, T. C. Seehaus, P. Malz, G. Casassa, P. A. Mayewski, J. V. Turton, and M. H. Braun. 2020. “Detailed quantification of glacier elevation and mass changes in South Georgia.” Environ. Res. Lett. 15 (3): 034036. https://doi.org/10.1088/1748-9326/ab6b32.
Favier, V., C. Agosta, S. Parouty, G. Durand, G. Delaygue, H. Gallée, A. S. Drouet, A. Trouvilliez, and G. Krinner. 2013. “An updated and quality controlled surface mass balance dataset for Antarctica.” Cryosphere 7 (2): 583–597. https://doi.org/10.5194/tc-7-583-2013.
Gardner, A. S., G. Moholdt, T. Scambos, M. Fahnstock, S. Ligtenberg, M. Van den Broeke, and J. Nilsson. 2018. “Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years.” Cryosphere 12 (2): 521–547. https://doi.org/10.5194/tc-12-521-2018.
Geisser, S. 1974. “A predictive approach to the random effect model.” Biometrika 61 (1): 101–107. https://doi.org/10.1093/biomet/61.1.101.
Geisser, S. 1975. “The predictive sample reuse method with applications.” J. Am. Stat. Assoc. 70 (350): 320–328. https://doi.org/10.1080/01621459.1975.10479865.
Gillespie, M. K., W. Lawson, W. Rack, B. Anderson, D. D. Blankenship, D. A. Young, and J. W. Holt. 2017. “Geometry and ice dynamics of the Darwin–Hatherton glacial system, transantarctic mountains.” J. Glaciol. 63 (242): 959–972. https://doi.org/10.1017/jog.2017.60.
Glasser, N. F., and T. A. Scambos. 2008. “A structural glaciological analysis of the 2002 Larsen B ice-shelf collapse.” J. Glaciol. 54 (184): 3–16. https://doi.org/10.3189/002214308784409017.
Gomez, R., J. Arigony-Neto, A. De Santis, S. Vijay, R. Jaña, and A. Rivera. 2019. “Ice dynamics of union glacier from SAR offset tracking.” Global Planet. Change 174 (Mar): 1–15. https://doi.org/10.1016/j.gloplacha.2018.12.012.
Hou, C. Y., Y. X. Wang, and J. W. Chen. 2014. “Estimating target heights based on the earth curvature model and micromultipath effect in skywave OTH radar.” J. Appl. Math. 2014 (Jan): 424191. https://doi.org/10.1155/2014/424191.
Howat, I. M., C. Porter, B. E. Smith, M. J. Noh, and P. Morin. 2019. “The reference elevation model of Antarctica.” Cryosphere 13 (2): 665–674. https://doi.org/10.5194/tc-13-665-2019.
Kumar, V., G. Venkataraman, K. A. Høgda, and Y. Larsen. 2013. “Estimation and validation of glacier surface motion in the northwestern Himalayas using high-resolution SAR intensity tracking.” Int. J. Remote Sens. 34 (15): 5518–5529. https://doi.org/10.1080/01431161.2013.792965.
Le Meur, E., and C. Vincent. 2006. “Monitoring of the Taconnaz ice fall (French Alps) using measurements of mass balance, surface velocities and ice cliff position.” Cold Reg. Sci. Technol. 46 (1): 1–11. https://doi.org/10.1016/j.coldregions.2006.05.001.
Leo, B. 1996. “Heuristics of instability and stabilization in model selection.” Ann. Stat. 24 (6): 2350–2383.
Machío, F., R. Rodríguez-Cielos, F. Navarro, J. Lapazaran, and J. Otero. 2017. “A 14-year dataset of in situ glacier surface velocities for a tidewater and a land-terminating glacier in Livingston Island, Antarctica.” Earth Syst. Sci. Data 9 (2): 751–764. https://doi.org/10.5194/essd-9-751-2017.
Mellor, M. 1959. “Ice flow in Antarctica.” J. Glaciol. 3 (25): 377–385. https://doi.org/10.1017/S002214300001707X.
Mouginot, J., E. Rignot, and B. Scheuchl. 2019. “Continent-wide, interferometric SAR phase, mapping of Antarctic ice velocity.” Geophys. Res. Lett. 46 (16): 9710–9718. https://doi.org/10.1029/2019GL083826.
Osmanoglu, B., F. J. Navarro, R. Hock, M. Braun, and M. I. Corcuera. 2014. “Surface velocity and mass balance of Livingston Island ice cap, Antarctica.” Cryosphere 8 (5): 1807–1823. https://doi.org/10.5194/tc-8-1807-2014.
Popov, S. V., S. S. Pryakhin, D. P. Bliakharskii, G. V. Pryakhina, and S. V. Tyurin. 2017. “Vast ice depression in Dålk Glacier, East Antarctica.” Ice Snow 57 (3): 427–432. https://doi.org/10.15356/2076-6734-2017-3-427-432.
Pritchard, H. D., S. R. M. Ligtenberg, H. A. Fricker, D. G. Vaughan, M. R. Van Den Broeke, and L. Padman. 2012. “Antarctic ice-sheet loss driven by basal melting of ice shelves.” Nature 484 (Apr): 502–505. https://doi.org/10.1038/nature10968.
Rignot, E., J. Mouginot, B. Scheuchl, M. Van Den Broeke, M. J. Van Wessem, and M. Morlighem. 2019. “Four decades of Antarctic ice sheet mass balance from 1979–2017.” Proc. Natl. Acad. Sci. 116 (Dec): 1095. https://doi.org/10.1073/pnas.1812883116.
Rivera, A., R. Zamora, C. Rada, J. Walton, and S. Proctor. 2010. “Glaciological investigations on Union Glacier, Ellsworth Mountains, West Antarctica.” Ann. Glaciol. 51 (55): 91–96. https://doi.org/10.3189/172756410791392772.
Scherler, D., S. Leprince, and M. R. Strecker. 2008. “Glacier-surface velocities in alpine terrain from optical satellite imagery—Accuracy improvement and quality assessment.” Remote Sens. Environ. 112 (10): 3806–3819. https://doi.org/10.1016/j.rse.2008.05.018.
Shao, J. 1993. “Linear model selection by cross-validation.” J. Am. Stat. Assoc. 88 (422): 486–494. https://doi.org/10.1080/01621459.1993.10476299.
Shen, Q., H. Wang, C. K. Shum, L. Jiang, H. T. Hsu, and J. Dong. 2018. “Recent high-resolution Antarctic ice velocity maps reveal increased mass loss in Wilkes Land, East Antarctica.” Sci. Rep. 8 (1): 1–8. https://doi.org/10.1038/s41598-018-22765-0.
Shen, Y., T. Huang, X. Guo, Q. Zang, and M. Herrero-Huerta. 2017. “Inversion method of atmospheric refraction coefficient based on trigonometric leveling network.” J. Surv. Eng. 143 (1): 06016002. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000199.
Shepherd, A., L. Gilbert, A. S. Muir, H. Konrad, M. Mcmillan, T. Slater, K. H. Briggs, A. V. Sundal, A. E. Hogg, and M. E. Engdahl. 2019. “Trends in Antarctic ice sheet elevation and mass.” Geophys. Res. Lett. 46 (14): 8174–8183. https://doi.org/10.1029/2019GL082182.
Singh, G., B. R. Nela, D. Bandyopadhyay, S. Mohanty, and A. V. Kulkarni. 2020. “Discovering anomalous dynamics and disintegrating behaviour in glaciers of Chandra-Bhaga sub-basins, part of Western Himalaya using DInSAR.” Remote Sens. Environ. 246 (Sep): 111885. https://doi.org/10.1016/j.rse.2020.111885.
Stocker-Waldhuber, M., A. Fischer, K. Helfricht, and M. Kuhn. 2019. “Long-term records of glacier surface velocities in the Ötztal Alps (Austria).” Earth Syst. Sci. Data 11 (2): 705–715. https://doi.org/10.5194/essd-11-705-2019.
Stone, M. 1974. “Cross-validatory choice and assessment of statistical predictions.” J. R. Stat. Soc. Ser. B 36 (2): 111–147.
Stuart, A. W., and C. Bull. 1963. “Glaciological observations on the Ross ice shelf near Scott base, Antarctica.” J. Glaciol. 4 (34): 399–414. https://doi.org/10.1017/S0022143000027829.
Sun, J., D. Huo, and C. Sun. 2001. “The study of remote sensing on monitoring ice velocities of the polar record glacier and the Dalk Glacier.” [In Chinese.] Chin. J. Polar Res. 13 (2): 117–128.
Surveying Writing Group of Wuhan Technical University of Surveying and Mapping. 2000. Surveying. [In Chinese.] Beijing: Surveying and Mapping Press.
Thomas, R. H. 1970. “Survey on moving ice.” Surv. Rev. 20 (157): 322–338. https://doi.org/10.1179/sre.1970.20.157.322.
Türk, T. 2018. “Determination of mass movements in slow-motion landslides by the Cosi-Corr method.” Geomatics Nat. Hazards Risk 9 (1): 325–336. https://doi.org/10.1080/19475705.2018.1435564.
Wager, A. C., C. S. M. Doake, J. G. Paren, and J. L. W. Walton. 1980. “Survey reduction for glacier movement studies.” Surv. Rev. 25 (196): 251–263. https://doi.org/10.1179/sre.1980.25.196.251.
Wang, P., Z. Li, P. Zhou, H. Li, G. Yu, C. Xu, and L. Wang. 2018. “Long-term change in ice velocity of Urumqi Glacier No. 1, Tian Shan, China.” Cold Reg. Sci. Technol. 145 (Jan): 177–184. https://doi.org/10.1016/j.coldregions.2017.10.008.
Wang, Y., Y. Zhu, M. Wang, S. Jin, and Q. Rao. 2020. “Atmospheric refraction calibration of geometric positioning for optical remote sensing satellite.” IEEE Geosci. Remote Sens. Lett. 17 (12): 2130–2134. https://doi.org/10.1109/LGRS.2019.2963626.
Wang, Z., S. Ai, S. Zhang, and Y. Du. 2011. “Elevation determination of nunataks in the Grove Mountains.” Adv. Polar Sci. 22 (3): 199–204. https://doi.org/10.3724/SP.J.1085.2011.00199.
Wong, T., and P. Yeh. 2020. “Reliable accuracy estimates from k-fold cross validation.” IEEE Trans. Knowl. Data Eng. 32 (8): 1586–1594. https://doi.org/10.1109/TKDE.2019.2912815.
Ximenis, L., J. C. I. Porta, J. Enrique, J. Corbera, C. F. de Gamboa, and G. Furdada. 1999. “The measurement of ice velocity, mass balance and thinning-rate on Johnsons Glacier, Livingston Island, South Shetland Islands, Antarctica.” Geol. Acta 34 (4): 403–410.
Yang, Y., B. Sun, Z. Wang, M. Ding, C. Hwang, S. Ai, L. Wang, Y. Du, and E. Dongchen. 2014. “GPS-derived velocity and strain fields around Dome Argus, Antarctica.” J. Glaciol. 60 (222): 735–742. https://doi.org/10.3189/2014JoG14J078.
Zhao, C., R. M. Gladstone, R. C. Warner, M. A. King, T. Zwinger, and M. Morlighem. 2018. “Basal friction of Fleming Glacier, Antarctica—Part 2: Evolution from 2008 to 2015.” Cryosphere 12 (8): 2653–2666. https://doi.org/10.5194/tc-12-2653-2018.
Zhou, C., F. Deng, S. Ai, Z. Wang, and E. Dongchen. 2014. “Determination of ice-flow velocity at the Polar Record glaicer and Dalk Glacier using DinSAR.” [In Chinese.] Geomatics Inf. Sci. Wuhan Univ. 39 (8): 940–944. https://doi.rog/10.13203/j.whugis20130116.

Information & Authors

Information

Published In

Go to Journal of Surveying Engineering
Journal of Surveying Engineering
Volume 149Issue 1February 2023

History

Received: Dec 28, 2021
Accepted: Jun 30, 2022
Published online: Oct 31, 2022
Published in print: Feb 1, 2023
Discussion open until: Mar 31, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Tingting Liu [email protected]
Professor, Chinese Antarctic Center of Surveying and Mapping, Wuhan Univ., 129 Luoyu Rd., Wuhan, Hubei 430079, China; Key Laboratory of Polar Surveying and Mapping, Ministry of Natural Resources, Wuhan, Hubei 430079, China; Hubei Luojia Laboratory, Wuhan Univ., Wuhan, Hubei 430079, China. Email: [email protected]
Master’s Candidate, Chinese Antarctic Center of Surveying and Mapping, Wuhan Univ., 129 Luoyu Rd., Wuhan, Hubei 430079, China. Email: [email protected]
Professor, Chinese Antarctic Center of Surveying and Mapping, Wuhan Univ., 129 Luoyu Rd., Wuhan, Hubei 430079, China; Key Laboratory of Polar Surveying and Mapping, Ministry of Natural Resources, Wuhan, Hubei 430079, China; Hubei Luojia Laboratory, Wuhan Univ., Wuhan, Hubei 430079, China (corresponding author). ORCID: https://orcid.org/0000-0001-6677-3899. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share