Abstract

Space trusses are extensively used to construct large free spans in roofs. In many countries, connections in such space trusses are made with tubes linked by typical space-truss connections. Typical nodes are made with the superposition of flattened tube ends significantly reducing the strength of such space trusses. This paper presents the use of natural sisal fiber and the reuse of recyclable tires to produce spacers to correct such typical nodes. The choice of those new materials reflects the growing interest in recycling, reducing, and reusing usable waste. There is increasing global environmental awareness of and social concern with the high rate of petroleum resource depletion as in tire manufacture. Moreover, the new environmental and sustainability regulations in engineering arouse interest in new and natural materials like sisal fibers. Therefore, in this paper, two new spacers are presented as an appropriate choice to reduce the eccentricity of typical connections in space trusses. The results of experimental and numerical tests show their efficiency in reducing the eccentricities of typical nodes, increasing the resistance capacity of space trusses with low cost materials. Finite-element (FE) results are compared with experimental results validating the advantages of using these new spacers in typical connections in space-truss nodes.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors wish to thank CAPES (the Brazilian Coordination for the Improvement of Higher Education Personnel) and CNPq (the National Council for Scientific and Technological Development) for their financial support for this research. The authors are also thankful to the Structural Laboratory of the Federal University of Cariri for all tests done in the course of this research and to the Graduation Program in Structural Engineering of the University of Brasilia.

References

ABAQUS. 2014. Theory manual, version 6.14.1. Providence, RI: Dassault Systèmes Simulia.
ABNT (Associação Brasileira de Normas Técnicas) NBR. 2008. Design of steel and composite structures for buildings. ABNT NBR 8800. Rio de Janeiro, Brazil: ABNT NBR.
Ahn, I. S., and L. Cheng. 2014. “Tire derived aggregate for retaining wall backfill under earthquake loading.” Constr. Build. Mater. 57 (Apr): 105–116. https://doi.org/10.1016/j.conbuildmat.2014.01.091.
AISC. 2016. Specification for structural steel buildings. ANSI/AISC 360. Chicago: AISC.
Alegre, V., V. Ródenas, and S. Villalba. 2012. “Colapso de la cubierta metálica de un polideportivo; patologías singulares y recurrentes.” Alconpat 2 (1): 37–45. https://doi.org/10.21041/ra.v2i1.25.
Asi, I. M. 2007. “Evaluating skid strength of different asphalt concrete mixes.” Build. Environ. 42 (1): 325–329. https://doi.org/10.1016/j.buildenv.2005.08.020.
ASTM. 2018. Standard test method for rubber properties in compression. ASTM D575-91. West Conshohocken, PA: ASTM.
ASTM. 2019. Standard specification for carbon structural steel. ASTM A36/A36M. West Conshohocken, PA: ASTM.
Babu, G. L. S., S. Saride, and B. M. Basha. 2017. Sustainability issues in civil engineering. Singapore: Springer.
Baranowski, P., P. Bogusz, P. Gotowicki, and J. Małachowski. 2012. “Assessment of mechanical properties of offroad vehicle tire: Coupons testing and FE model development.” Acta Mech. Autom. 6 (2): 17–22.
Bezerra, L. M., W. C. S. Barbosa, J. Bonilla, and O. R. O. Cavalcante. 2018. “Truss-type shear connector for composite steel-concrete beams.” Constr. Build. Mater. 167 (Apr): 757–767. https://doi.org/10.1016/j.conbuildmat.2018.01.183.
Bezerra, L. M., C. A. S. de Freitas, W. T. Matias, and Y. Nagato. 2009. “Increasing load capacity of steel space trusses with end-flattened connections.” J. Constr. Steel Res. 65 (12): 2197–2206. https://doi.org/10.1016/j.jcsr.2009.06.011.
Biswas, W. K. 2014. “Carbon footprint and embodied energy consumption assessment of building construction works in Western Australia.” Int. J. Sustainable Built Environ. 3 (2): 179–186. https://doi.org/10.1016/j.ijsbe.2014.11.004.
Brazilian Steel Committee, Association Mercosur of Standardization. 2000. Carbon steel and alloy steel for general engineering purpose—Designation and chemical composition. Rio de Janeiro, Brazil: Brazilian Steel Committee, Association Mercosur of Standardization.
Carvalho, P. S. L., P. P. D. Mesquita, and E. D. G. Araújo. 2016. “Sustentabilidade da Siderurgia Brasileira: Eficiência Energética e Competitividade.” BNDES Setorial 41 (Mar): 181–236.
Cortes, F., C. M. Turchi Martelli, R. Arraes de Alencar Ximenes, U. R. Montarroyos, J. B. Siqueira Junior, O. Gonçalves Cruz, N. Alexander, and W. Vieira de Souza. 2018. “Time series analysis of dengue surveillance data in two Brazilian cities.” Acta Trop. 182 (Jun): 190–197. https://doi.org/10.1016/j.actatropica.2018.03.006.
Crocker, L. E., B. C. Duncan, R. G. Hughes, and J. M. Urquhart. 1999. Hyperelastic modelling of flexible adhesives. Teddington, UK: National Physical Laboratory.
Dammala, P. K., B. R. Sodom, and M. K. Adapa. 2015. “Experimental investigation of applicability of sand tire chip mixtures as retaining wall backfill.” In Proc., International Foundations Congress and Equipment Expo (IFCEE) 2015 Conf., edited by M. Iskander, M. T. Suleiman, J. B. Anderson, and D. F. Laefer, 1420–1429. Reston, VA: ASCE. https://doi.org/10.1061/9780784479087.128.
Derham, C. J. 1973. “Creep and stress relaxation of rubbers—The effects of stress history and temperature changes.” J. Mater. Sci. 8 (Dec): 1023–1029. https://doi.org/10.1007/BF00756634.
De Souza, A. S. C. 2003. “Theoretical and experimental analysis of space trusses.” Ph.D. thesis, Dept. of Civil Engineering. Univ. of Sao Paulo.
Edinçliler, A., G. Baykal, and A. Saygili. 2010. “Influence of different processing techniques on the mechanical properties of used tires in embankment construction.” Waste Manage. 30 (6): 1073–1080. https://doi.org/10.1016/j.wasman.2009.09.031.
Esin, T. 2007. “A study regarding the environmental impact analysis of the building materials production process.” Build. Environ. 42 (11): 3860–3871. https://doi.org/10.1016/j.buildenv.2006.11.011.
Freitas, C. A. S. 2008. “Theoretical-experimental analysis of the stamped steel spatial truss connection under static and cyclic loads.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of Brasilia.
Freitas, C. A. S., L. M. Bezerra, R. M. Araújo, E. C. Sousa, G. M. Araújo, and É. A. Bezerra. 2016. “New experimental results of the research on reinforced node in space truss.” Adv. Steel Constr. 13 (1): 30–44. https://doi.org/10.18057/IJASC.2017.13.1.
Giesekam, J., J. Barrett, P. Taylor, and A. Owen. 2014. “The greenhouse gas emissions and mitigation options for materials used in UK construction.” Energy Build. 78 (Aug): 202–214. https://doi.org/10.1016/j.enbuild.2014.04.035.
ISO. 2019. Rubber, vulcanized—Determination of creep in compression or shear. ISO 8013. Geneva: ISO.
Juárez, C., A. Durán, P. Valdez, and G. Fajardo. 2007. “Performance of agave lecheguilla natural fiber in portland cement composites exposed to severe environment conditions.” Build. Environ. 42 (3): 1151–1157. https://doi.org/10.1016/j.buildenv.2005.12.005.
Krogh, H., L. Myhre, T. Häkkinen, K. Tattari, and T. Jönsson Åand Björklund. 2001. “Environmental data for production of reinforcement bars from scrap iron and for production of steel products from iron ore in the Nordic countries.” Build. Environ. 36 (1): 109–119. https://doi.org/10.1016/S0360-1323(00)00031-7.
Leng, D., K. Xu, L. Qin, Y. Ma, and G. Liu. 2019. “A hyper-elastic creep approach and characterization analysis for rubber vibration systems.” Polymers 11 (6): 988. https://doi.org/10.3390/polym11060988.
Li, X., L. G. Tabil, and S. Panigrahi. 2007. “Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review.” J. Polym. Environ. 15 (1): 25–33. https://doi.org/10.1007/s10924-006-0042-3.
Li, Y. L., M. Y. Han, S. Y. Liu, and G. Q. Chen. 2019. “Energy consumption and greenhouse gas emissions by buildings: A multi-scale perspective.” Build. Environ. 151 (Mar): 240–250. https://doi.org/10.1016/j.buildenv.2018.11.003.
Lu, Y., P. Cui, and D. Li. 2016. “Carbon emissions and policies in China’s building and construction industry: Evidence from 1994 to 2012.” Build. Environ. 95 (Jan): 94–103. https://doi.org/10.1016/j.buildenv.2015.09.011.
Lu, Y., X. Zhu, and Q. Cui. 2012. “Effectiveness and equity implications of carbon policies in the United States construction industry.” Build. Environ. 49 (1): 259–269. https://doi.org/10.1016/j.buildenv.2011.10.002.
Makowski, Z. S. 1972. Estructuras espaciales de acero. 2nd ed. Barcelona: Editorial Gustavo Gili.
Makowski, Z. S. 1987. “A worldwide review of space structures in sports buildings.” In 3 of Proc., Int. Colloquium on Space Structures for Sports Buildings, 61–62. London: Elsevier Applied Publishers. https://doi.org/10.1177/026635118800300107.
Martelli, C. M. T., et al. 2015. “Economic impact of dengue: Multicenter study across four Brazilian regions.” PLoS Negl. Trop. Dis. 9 (Sep): 1–19. https://doi.org/10.1371/journal.pntd.0004042.
Martin, R., and N. J. Delatte. 2001. “Another look at hartford civic center coliseum collapse.” J. Perform. Constr. Facil. 15 (1): 31–36. https://doi.org/10.1061/(ASCE)0887-3828(2001)15:1(31).
Mazon, A. A., A. Sarmanho, G. Nunes, L. Roquete, L. H. Neiva, and F. Souza. 2018. “Numerical analysis of truss systems with stiffened flattened end-bars.” Lat. Am. J. Solids Struct. 15 (3): 1–24. https://doi.org/10.1590/1679-78254119.
Michelin. 2003. Technical characteristics 445-65 R-22.5 and 255/100 R 16 XZL TL 126/124 K. 150–169. Clermont-Ferrand, France: Société de Technologie Michelin.
Milanez, B., and M. F. Porto. 2008. “Iron and fire: Impacts of the steel industry on the environment and society after the restructuring of the 1990s.” In IV Encontro Nacional Da Anppas, 4–6. Brasília, Brazil: Israel Pinheiro Convention Center.
Mooney, M. 1940. “A theory of large elastic deformation.” J. Appl. Phys. 11 (9): 582–592. https://doi.org/10.1063/1.1712836.
Murtha-Smith, E. 1998. “Alternate path analysis of space trusses for progressive collapse.” J. Struct. Eng. 114 (9): 1978–1999. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:9(1978.
Neves, R. V., G. B. Micheli, and M. Alves. 2010. “An experimental and numerical investigation on tyre impact.” Int. J. Impact Eng. 37 (6): 685–693. https://doi.org/10.1016/j.ijimpeng.2009.10.001.
Oh, J., Y. K. Ju, K.-J. Hwang, S.-D. Kim, and S.-H. Lho. 2016. “FREE node for a single layer free-form envelope subjected to bending moment.” Eng. Struct. 106 (Jan): 25–35. https://doi.org/10.1016/j.engstruct.2015.09.030.
Özen, H., A. Aksoy, S. Tayfur, and F. Çelik. 2008. “Laboratory performance comparison of the elastomer-modified asphalt mixtures.” Build. Environ. 43 (7): 1270–1277. https://doi.org/10.1016/j.buildenv.2007.03.010.
Pappu, A., M. Saxena, and S. R. Asolekar. 2007. “Solid wastes generation in India and their recycling potential in building materials.” Build. Environ. 42 (6): 2311–2320. https://doi.org/10.1016/j.buildenv.2006.04.015.
Pérez, G., A. Vila, L. Rincón, C. Solé, and L. F. Cabeza. 2012. “Use of rubber crumbs as drainage layer in green roofs as potential energy improvement material.” Appl. Energy 97 (Sep): 347–354. https://doi.org/10.1016/j.apenergy.2011.11.051.
Reddy, S. B., A. M. Krishna, and K. R. Reddy. 2018. “Sustainable utilization of scrap tire derived geomaterials for geotechnical applications.” Indian Geotech. J. 48 (2): 251–266. https://doi.org/10.1007/s40098-017-0273-3.
Rincón, L., J. Coma, G. Pérez, A. Castell, D. Boer, and L. F. Cabeza. 2014. “Environmental performance of recycled rubber as drainage layer in extensive green roofs. A comparative life cycle assessment.” Build. Environ. 74 (Apr): 22–30. https://doi.org/10.1016/j.buildenv.2014.01.001.
Rivlin, R. S. 1948. “Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber.” Philos. Trans. R. Soc. London, Ser. A: Math. Phys. Sci. 241 (835): 379–397. https://doi.org/10.1016/j.buildenv.2014.01.001.
Senthilkumar, K., N. Saba, N. Rajini, M. Chandrasekar, M. Jawaid, S. Siengchin, and O. Y. Alotman. 2018. “Mechanical properties evaluation of sisal fibre reinforced polymer composites: A review.” Constr. Build. Mater. 174 (20): 713–729. https://doi.org/10.1016/j.conbuildmat.2018.04.143.
Shahzad, M., A. Kamran, M. Z. Siddiqui, and M. Farhan. 2015. “Mechanical characterization and FE modelling of a hyperelastic material.” Mater. Res. 18 (5): 918–924. https://doi.org/10.1590/1516-1439.320414.
Sharrard, A. L., H. S. Matthews, and M. Roth. 2007. “Environmental implications of construction site energy use and electricity generation.” J. Constr. Eng. Manage. 133 (11): 846–854. https://doi.org/10.1061/(ASCE)0733-9364(2007)133:11(846).
Shatokha, V. 2016. “Environmental sustainability of the iron and steel industry: Towards reaching the climate goals.” Eur. J. Sustainable Dev. 5 (4): 289–300. https://doi.org/10.14207/ejsd.2016.v5n4p289.
Shulman, V. L. 2019. “Tire recycling.” In Vol. 2 of Waste, 489–515. Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/B978-0-12-815060-3.00026-8.
Siddique, R., and T. R. Naik. 2004. “Properties of concrete containing scrap-tire rubber—An overview.” Waste Manage. 24 (6): 563–569. https://doi.org/10.1016/j.wasman.2004.01.006.
Silva, W. V., R. Silva, L. M. Bezerra, C. A. S. Freitas, and J. Bonilla. 2020. “Experimental analysis of space trusses using spacers of concrete with steel fiber and sisal fiber.” Materials 13 (10): 2305. https://doi.org/10.3390/ma13102305.
Sokolov, S. L. 2007. “Calculation of the stress-strain state of pneumatic tires by the finite element method.” J. Mach. Manuf. Reliab. 36 (1): 45–49. https://doi.org/10.3103/S1052618807010098.
Tam, V. W. Y., and C. M. Tam. 2006. “Evaluations of existing waste recycling methods: A Hong Kong study.” Build. Environ. 41 (12): 1649–1660. https://doi.org/10.1016/j.buildenv.2005.06.017.
Tolêdo-Filho, R. D., K. Joseph, K. Ghavami, and G. L. England. 1999. “The use of sisal fibre as reinforcement in cement based composite.” Rev. Bras. Eng. Agric. Ambiental 3 (2): 245–256. https://doi.org/10.1590/1807-1929/agriambi.v3n2p245-256.
Tortum, A., C. Çelik, and A. Cüneyt Aydin. 2005. “Determination of the optimum conditions for tire rubber in asphalt concrete.” Build. Environ. 40 (11): 1492–1504. https://doi.org/10.1016/j.buildenv.2004.11.013.
Tsai, W. T. 2015. “The utilization of scrap tires as an energy source and its environmental benefit analysis in Taiwan.” Energy Sources Part B 10 (4): 333–339. https://doi.org/10.1080/15567249.2010.551825.
Turatsinze, A., S. Bonnet, and J. L. Granju. 2005. “Mechanical characterisation of cement-based mortar incorporating rubber aggregates from recycled worn tyres.” Build. Environ. 40 (2): 221–226. https://doi.org/10.1016/j.buildenv.2004.05.012.
Vishnuvardhan, R., R. R. Kothari, and S. Sivakumar. 2019. “Experimental investigation on mechanical properties of sisal fiber reinforced epoxy composite.” In Vol. 18 of Proc., 9th Int. Conf. of Materials Processing and Characterization, ICMPC-2019, 4176–4181. Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/j.matpr.2019.07.362.
Wang, W., S. Yan, and S. Zhao. 2013. “Experimental verification and finite element modeling of radial truck tire under static loading.” J. Reinf. Plast. Compos. 32 (7): 490–498. https://doi.org/10.1177/0731684412474998.
Wong, G. K. L., and C. Y. Jim. 2017. “Urban-microclimate effect on vector mosquito abundance of tropical green roofs.” Build. Environ. 112 (Feb): 63–76. https://doi.org/10.1016/j.buildenv.2016.11.028.
Xu, J. H., T. Fleiter, W. Eichhammer, and Y. Fan. 2012. “Energy consumption and CO2 emissions in China’s cement industry: A perspective from LMDI decomposition analysis.” Energy Policy 50 (Nov): 821–832. https://doi.org/10.1016/j.enpol.2012.08.038.
Xu, X., Y. Liu, and J. He. 2014. “Study on mechanical behavior of rubber-sleeved studs for steel and concrete composite structures.” Constr. Build. Mater. 53 (Feb): 533–546. https://doi.org/10.1016/j.conbuildmat.2013.12.011.
Yan, S., X. Zhao, Y. Chen, Z. Xu, and Y. Lu. 2018. “A new type of truss joint for prevention of progressive collapse.” Eng. Struct. 167 (Jul): 203–213. https://doi.org/10.1016/j.engstruct.2018.04.031.
Zhao, X., S. Yan, Y. Chen, Z. Xu, and Y. Lu. 2017. “Experimental study on progressive collapse-resistant behavior of planar trusses.” Eng. Struct. 135 (Mar): 104–116. https://doi.org/10.1016/j.engstruct.2016.12.013.

Information & Authors

Information

Published In

Go to Journal of Structural Engineering
Journal of Structural Engineering
Volume 147Issue 8August 2021

History

Received: Jun 1, 2020
Accepted: Jan 21, 2021
Published online: May 22, 2021
Published in print: Aug 1, 2021
Discussion open until: Oct 22, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Welington V. Silva, D.Sc. [email protected]
Research Assistant, Dept. of Civil and Environmental Engineering, Univ. of Brasília, Brasilia 70910-900, Brazil. Email: [email protected]
Full Professor, Dept. of Civil and Environmental Engineering, Univ. of Brasília, Brasilia 70910-900, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-5789-9649. Email: [email protected]
Adjunct Professor, Dept. of Civil Engineering, Federal Univ. of Cariri, Juazeiro do Norte 63048-080, Brazil. ORCID: https://orcid.org/0000-0002-2714-6099. Email: [email protected]
Jorge Bonilla, Dr.Eng. [email protected]
Full Professor, Group for Numerical Methods in Engineering, Univ. of Ciego de Ávila, Ciego de Ávila 65100, Cuba. Email: [email protected]
Ramon Silva, D.Sc. [email protected]
Research Assistant, Dept. of Civil and Environmental Engineering, Univ. of Brasília, Brasilia 70910-900, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Terrestrial laser scanning assisted dimensional quality assessment for space frame components, Measurement, 10.1016/j.measurement.2022.112067, 204, (112067), (2022).
  • 3D model-based scan planning for space frame structures considering site conditions, Automation in Construction, 10.1016/j.autcon.2022.104363, 140, (104363), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share