State-of-the-Art Reviews
Aug 1, 2022

Strengthening Reinforced Concrete Beams by Using Different Types and Methods of Fiber-Reinforced Polymers: A Critical Review

Publication: Practice Periodical on Structural Design and Construction
Volume 27, Issue 4

Abstract

Fiber-reinforced polymer (FRP) composites are widely used in concrete technology due to their high mechanical and durability properties. FRP has become a mainstream material not only to strengthen damaged elements but also to sustain more service loads and solve long-term ever-growing issues of new infrastructures. Therefore, this review aims to establish a database of research works that focus on the assessment of flexural, shear, and torsional strengthening of reinforced concrete (RC) beams using various types and application methods of FRP composites. The efficiencies of these strengthening techniques were compared in terms of structural behaviors of RC beams, types of FRPs, wrapping configurations, etc. This state-of-the-art review reveals that FRP composites can be used successfully to recover the strength of damaged beams or to improve the structural behaviors of new elements. Furthermore, a statistical analysis was conducted to determine the increment factors for various parameters affecting the structural behaviors of RC beams. It was found that FRP composites were more beneficial for torsional strengthening compared to flexural and shear retrofitting in terms of load capacity and ductility. In addition, the change of FRP layers was more significant than varying FRP wrapping methods, sizes, and types. Finally, based on the compiled database and statistical data, the article proposes some methods for using FRP composites to strengthen RC beams under various load conditions.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models, or code were generated or used during the study.

References

ACI (American Concrete Institute). 2008. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. ACI 440.2R-08. Farmington Hills, MI: ACI.
Adel, A., A. Hamed, and K. F. O. El-Kashif. 2018. “Flexural strengthening of preloaded reinforced concrete continuous beams: An experimental investigation.” Alexandria Eng. J. 58 (1): 207–216. https://doi.org/10.1016/j.aej.2018.11.011.
Adhikari, S. 2009. “Mechanical properties and flexural applications of basalt.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of Akron.
Akroush, N., T. Almahallawi, M. Seif, and E. Y. Sayed-Ahmed. 2016. “CFRP shear strengthening of reinforced concrete beams in zones of combined shear and normal stresses.” Compos. Struct. 162 (Feb): 47–53. https://doi.org/10.1016/j.compstruct.2016.11.075.
Al-Bayati, G., R. Al-Mahaidi, M. J. Hashemi, and R. Kalfat. 2018. “Torsional strengthening of RC beams using NSM CFRP rope and innovative adhesives.” Compos. Struct. 187 (Mar): 190–202. https://doi.org/10.1016/j.compstruct.2017.12.016.
Al-Bayati, G., R. Al-Mahaidi, and R. Kalfat. 2016. “Experimental investigation into the use of NSM FRP to increase the torsional resistance of RC beams using epoxy resins and cement-based adhesives.” Constr. Build. Mater. 124 (Oct): 1153–1164. https://doi.org/10.1016/j.conbuildmat.2016.08.095.
Al-Bayati, G., R. Al-Mahaidi, and R. Kalfat. 2017. “Torsional strengthening of reinforced concrete beams using different configurations of NSM FRP with epoxy resins and cement-based adhesives.” Compos. Struct. 168 (May): 569–581. https://doi.org/10.1016/j.compstruct.2016.12.045.
Al-Saidy, A. H., A. S. Al-Harthy, K. S. Al-Jabri, M. Abdul-Halim, and N. M. Al-Shidi. 2010. “Structural performance of corroded RC beams repaired with CFRP sheets.” Compos. Struct. 92 (8): 1931–1938. https://doi.org/10.1016/j.compstruct.2010.01.001.
Ameli, M., H. R. Ronagh, and P. F. Dux. 2007. “Behavior of FRP strengthened reinforced concrete beams under torsion.” J. Compos. Constr. 11 (2): 192–200. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:2(192).
AS (Australian Standards). 2009. Australian standards for concrete structures. AS3600-2009. Sydney, Australia: Standards Australia.
Ashby, M., and D. Cebon. 1993. “Materials selection in mechanical design.” J. Phys. IV 3 (C7): C7-1. https://doi.org/https://doi.org/10.1051/jp4:1993701.
Attari, N., S. Amziane, and M. Chemrouk. 2012. “Flexural strengthening of concrete beams using CFRP, GFRP and hybrid FRP sheets.” Constr. Build. Mater. 37 (Dec): 746–757. https://doi.org/10.1016/j.conbuildmat.2012.07.052.
Bae, B., H.-K. Choi, and C.-S. Choi. 2016. “Flexural strength evaluation of reinforced concrete members with ultra high performance concrete.” Adv. Mater. Sci. Eng. 2016 (Feb): 1–10. https://doi.org/10.1155/2016/2815247.
Baggio, D., K. Soudki, and M. Noël. 2014. “Strengthening of shear critical RC beams with various FRP systems.” Constr. Build. Mater. 66 (Sep): 634–644. https://doi.org/10.1016/j.conbuildmat.2014.05.097.
Baghi, H., J. A. O. Barros, and F. Menkulasi. 2016. “Shear strengthening of reinforced concrete beams with hybrid composite plates (HCP) technique: Experimental research and analytical model.” Eng. Struct. 125 (Oct): 504–520. https://doi.org/10.1016/j.engstruct.2016.07.023.
Bahij, S., S. Omary, F. Feugeas, and A. Faqiri. 2020. “Structural strengthening/repair of reinforced concrete (RC) beams by different fiber-reinforced cementitious materials—A state-of-the-art review.” J. Civ. Environ. Eng. 10 (4): 1–15. https://doi.org/10.37421/jcde.2020.10.354.
Bahij, S., S. Omary, F. Feugeas, and A. Faqiri. 2021a. “Use of non-woven polyethylene terephthalate (PET) tissue to improve certain properties of concrete.” In Proc., 6th Int. Conf. on Civil, Structural and Transportation Engineering (ICCSTE’21), 1–10. Orléans, ON, Canada: Avestia. https://doi.org/10.11159/iccste21.157.
Bahij, S., S. Omary, V. Steiner, F. Feugeas, and A. Faqiri. 2021b. “Experimental study on concrete specimens strengthened with non-woven plastic sheets.” Int. J. Civ. Infrastruct. 4: 128–137. https://doi.org/10.11159/ijci.2021.016.
Bahij, S., S. Omary, V. Steiner, F. Feugeas, and A. Faqiri. 2021c. “Strengthening of mortar specimens using non-woven plastic sheets.” In Proc., Fib Symp., 228–236. Lausanne, Switzerland: International Federation for Structural Concrete.
Banjara, N. K., and K. Ramanjaneyulu. 2017. “Experimental and numerical investigations on the performance evaluation of shear deficient and GFRP strengthened reinforced concrete beams.” Constr. Build. Mater. 137 (Apr): 520–534. https://doi.org/10.1016/j.conbuildmat.2017.01.089.
Bodzak, P. 2019. “Flexural behaviour of concrete beams reinforced with different grade steel and strengthened by CFRP strips.” Composites, Part B 167 (Jul): 411–421. https://doi.org/10.1016/j.compositesb.2019.02.056.
Breña, S. F., et al. 2001. Use of carbon fiber reinforced polymer composites to increase the flexural capacity of reinforced concrete beams. Austin, TX: Univ. of Texas.
Busel, J. P. 2008. Specification for carbon and glass fiber-reinforced polymer bar materials for concrete reinforcement. ACI Committee-440. Farmington Hills, MI: American Concrete Institute.
Camata, G., E. Spacone, and R. Zarnic. 2007. “Experimental and nonlinear finite element studies of RC beams strengthened with FRP plates.” Composites, Part B 38 (2): 277–288. https://doi.org/10.1016/j.compositesb.2005.12.003.
CAS (Cement Association of Canada). 2008. Concrete design handbook. 3rd ed. CAS A23.3-04. Ottawa: CAS.
Chalioris, C. E. 2008. “Torsional strengthening of rectangular and flanged beams using carbon fibre-reinforced-polymers—Experimental study.” Constr. Build. Mater. 22 (1): 21–29. https://doi.org/10.1016/j.conbuildmat.2006.09.003.
Chellapandian, M., S. S. Prakash, and A. Sharma. 2018. “Experimental and finite element studies on the flexural behavior of reinforced concrete elements strengthened with hybrid FRP technique.” Compos. Struct. 208 (Jan): 466–478. https://doi.org/10.1016/j.compstruct.2018.10.028.
Chen, G. M., Z. Zhang, Y. L. Li, X. Q. Li, and C. Y. Zhou. 2016. “T-section RC beams shear-strengthened with anchored CFRP U-strips.” Compos. Struct. 144 (Jun): 57–79. https://doi.org/10.1016/j.compstruct.2016.02.033.
Chen, W., T. M. Pham, H. Sichembe, L. Chen, and H. Hao. 2018. “Experimental study of flexural behaviour of RC beams strengthened by longitudinal and U-shaped basalt FRP sheet.” Composites, Part B 134 (Feb): 114–126. https://doi.org/10.1016/j.compositesb.2017.09.053.
Correia, J., and S. Cabral-Fonseca. 2005. “Durability of glass fibre reinforced polyester (GFRP) pultruded profiles used in civil engineering applications.” In Proc., 3rd Int. Conf. on Composites in Construction, 1–9. Lyon, France: Université Lyon I, Laboratoire Mécanique Matériaux et Structures.
De Lorenzis, L., and A. De Nanni. 2001. “Shear strengthening of reinforced concrete beams with near-surface mounted fiber-reinforced polymer rods.” ACI Struct. J. 98 (1): 60–68. https://doi.org/10.14359/10147.
Dias, S. J. E., and J. A. O. Barros. 2017. “NSM shear strengthening technique with CFRP laminates applied in high T cross section RC beams.” Composites, Part B 114 (Apr): 256–267. https://doi.org/10.1016/j.compositesb.2017.01.028.
Dias, S. J. E., J. A. O. Barros, and W. Janwaen. 2018. “Behavior of RC beams flexurally strengthened with NSM CFRP laminates.” Compos. Struct. 201 (Oct): 363–376. https://doi.org/10.1016/j.compstruct.2018.05.126.
Dong, J., D. He, S. Yuan, and Q. Wang. 2012. “Shear behaviour of RC beams strengthened with FRP.” Materials 464 (Aug): 249–253. https://doi.org/10.4028/www.scientific.net/AMR.463-464.249.
El-Enein, H. A., H. Azimi, K. Sennah, and F. Ghrib. 2014. “Flexural strengthening of reinforced concrete slab–column connection using CFRP sheets.” Constr. Build. Mater. 57 (Apr): 126–137. https://doi.org/10.1016/j.conbuildmat.2014.01.077.
El-Hacha, R., and S. H. Rizkalla. 2004. “Near-surface-mounted fiber-reinforced polymer reinforcements for flexural strengthening of concrete structures.” ACI Struct. J. 101 (5): 717–726.
FIB (International Federation for Structural Concrete). 2007. FRP reinforcement in RC structures. Lausanne: FIB.
FIB (International Federation for Structural Concrete) [CEB (European Committee for Concrete)-FIP (International Federation for Prestressing)]. 2001. Externally bonded FRP reinforcement for RC structures. Lausanne: FIB.
Funari, M., F. Greco, P. Lonetti, R. Luciano, and R. Penna. 2018. “An interface approach based on moving mesh and cohesive modeling in Z-pinned composite laminates.” Composites, Part B 135 (Feb): 207–217. https://doi.org/10.1016/j.compositesb.2017.10.018.
Funari, M. F., F. Greco, P. Lonetti, and S. Spadea. 2019. “A numerical model based on ALE formulation to predict crack propagation in sandwich structures.” Frattura Integrità Strutturale 13 (47): 277–293. https://doi.org/10.3221/IGF-ESIS.47.21.
Galal, K., and A. Mofidi. 2010. “Shear strengthening of RCT-beams using mechanically anchored unbonded dry carbon fiber sheets.” J. Perform. Constr. Facil. 24 (1): 31–39. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000067.
Ghobarah, A., M. N. Ghorbel, and S. E. Chidiac. 2002. “Upgrading torsional resistance of reinforced concrete beams using fiber-reinforced polymer.” J. Compos. Constr. 6 (4): 257–263. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:4(257).
Hawileh, R. A., J. A. Abdalla, S. S. Hasan, M. B. Ziyada, and A. Abu-Obeidah. 2016. “Models for predicting elastic modulus and tensile strength of carbon, basalt and hybrid carbon-basalt FRP laminates at elevated temperatures.” Constr. Build. Mater. 114 (Jul): 364–373. https://doi.org/10.1016/j.conbuildmat.2016.03.175.
Hollaway, L. C. 2010. “Key issues in the use of fibre reinforced polymer (FRP) composites in the rehabilitation and retrofitting of concrete structures.” Serv. Life Estimation Extension Civ. Eng. Struct. 3–74. https://doi.org/10.1533/9780857090928.1.3.
Hosen, A., M. Zamin, U. J. Alengaram, and N. H. R. Sulong. 2018. “CFRP strips for enhancing flexural performance of RC beams by SNSM strengthening technique.” Constr. Build. Mater. 165 (Mar): 28–44. https://doi.org/10.1016/j.conbuildmat.2017.12.052.
ISIS (Intelligent Sensing for Innovative Structures)-M04. 2009. FRP rehabilitation of reinforced concrete structures design manual 4. Winnipeg, Canada: ISIS.
Jack, C. M., and K. N. James. 2006. Design of reinforced concrete ACI 318-05 code edition. Hoboken, NJ: Wiley.
James, K. W., and G. M. James. 2012. Reinforced concrete mechanics & design 6E, 07458. Upper Saddle River, NJ: Pearson.
Jariwala, V. H., P. V. Patel, and S. P. Purohit. 2013. “Strengthening of RC beams subjected to combined torsion and bending with GFRP composites.” Procedia Eng. 51 (Jan): 282–289. https://doi.org/10.1016/j.proeng.2013.01.038.
Jawdhari, A., A. Peiris, and I. Harik. 2018. “Experimental study on RC beams strengthened with CFRP rod panels.” Eng. Struct. 173 (Oct): 693–705. https://doi.org/10.1016/j.engstruct.2018.06.105.
Jing, M., W. Raongjant, and Z. Li. 2007. “Torsional strengthening of reinforced concrete box beams using carbon fiber reinforced polymer.” Compos. Struct. 78 (2): 264–270. https://doi.org/10.1016/j.compstruct.2005.10.017.
Jumaat, M. Z., and M. A. Alam. 2011. “Optimization of intermediate anchors to eliminate premature shear failure of CFRP laminate flexurally strengthened RC beams.” Int. J. Phys. Sci. 6 (2): 182–192. https://doi.org/10.5897/IJPS10.158.
Kang, T. H. K., J. Howell, S. Kim, and D. J. Lee. 2012. “A state-of-the-art review on debonding failures of FRP laminates externally adhered to concrete.” Int. J. Concr. Struct. Mater. 6 (2): 123–134. https://doi.org/10.1007/s40069-012-0012-1.
Kankeri, P., and S. S. Prakash. 2016. “Experimental evaluation of bonded overlay and NSM GFRP bar strengthening on flexural behavior of precast prestressed hollow core slabs.” Eng. Struct. 120 (Aug): 49–57. https://doi.org/10.1016/j.engstruct.2016.04.033.
Khalifa, A. M. 2016. “Flexural performance of RC beams strengthened with near surface mounted CFRP strips.” Alexandria Eng. J. 55 (2): 1497–1505. https://doi.org/10.1016/j.aej.2016.01.033.
Kim, H. S., and Y. S. Shin. 2011. “Flexural behavior of reinforced concrete (RC) beams retrofitted with hybrid fiber reinforced polymers (FRPs) under sustaining loads.” Compos. Struct. 93 (2): 802–811. https://doi.org/10.1016/j.compstruct.2010.07.013.
Lamanna, A. J., L. C. Bank, and D. W. Scott. 2004. “Flexural strengthening of reinforced concrete beams by mechanically attaching fiber-reinforced polymer strips.” J. Compos. Constr. 8 (3): 203–210. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:3(203).
Landesmann, A., C. A. Seruti, and E. D. M. Batista. 2015. “Mechanical properties of glass fiber reinforced polymers members for structural applications.” Mater. Res. 18 (Nov): 1372–1383. https://doi.org/10.1590/1516-1439.044615.
Lavorato, D., A. V. Bergami, G. Fiorentino, A. Fiore, S. Santini, and C. Nuti. 2018. “Experimental tests on existing RC beams strengthened in flexure and retrofitted for shear by C-FRP in presence of negative moments.” Int. J. Adv. Struct. Eng. 10 (3): 211–232. https://doi.org/10.1007/s40091-018-0193-1.
Li, A., C. Diagana, and Y. Delmas. 2001. “CRFP contribution to shear capacity of strengthened RC beams.” Eng. Struct. 23 (10): 1212–1220. https://doi.org/10.1016/S0141-0296(01)00035-9.
Mahmood, M. N., and A. S. Mahmood. 2011. “Torsional behavior of prestressed concrete beams strengthened with CFRP sheets.” In Proc., 16th Int. Conf. on Composite Structures (ICCS 16), 1–12. Berkeley, CA: Bepress.
Marcinczak, D., T. Trapko, and M. Musiał. 2019. “Shear strengthening of reinforced concrete beams with PBO-FRCM composites with anchorage.” Composites, Part B 158 (Feb): 149–161. https://doi.org/10.1016/j.compositesb.2018.09.061.
Meier, U. 2012. “Carbon fiber reinforced polymer cables: Why? Why not? What if?” Arabian J. Sci. Eng. 37 (2): 399–411. https://doi.org/10.1007/s13369-012-0185-6.
Meikandaan, T. P., and A. Ramachandra Murthy. 2017. “Flexural behaviour of RC beam wrapped with GFRP sheets.” Int. J. Civ. Eng. Technol. 8 (2): 452–469.
Mohammed, T. J., B. H. Abu Bakar, and N. Muhamad Bunnori. 2016. “Torsional improvement of reinforced concrete beams using ultra high-performance fiber reinforced concrete (UHPFC) jackets—Experimental study.” Constr. Build. Mater. 106 (Mar): 533–542. https://doi.org/10.1016/j.conbuildmat.2015.12.160.
Morsy, A. M., E. M. El-Tony, and M. El-Naggar. 2015. “Flexural repair/strengthening of pre-damaged RC beams using embedded CFRP rods.” Alexandria Eng. J. 54 (4): 1175–1179. https://doi.org/10.1016/j.aej.2015.07.012.
Mosallam, A. S., and S. Banerjee. 2007. “Shear enhancement of reinforced concrete beams strengthened with FRP composite laminates.” Composites, Part B 38 (5–6): 781–793. https://doi.org/10.1016/j.compositesb.2006.10.002.
Mostofinejad, D., and A. Tabatabaei Kashani. 2013. “Experimental study on effect of EBR and EBROG methods on debonding of FRP sheets used for shear strengthening of RC beams.” Composites, Part B 45 (1): 1704–1713. https://doi.org/10.1016/j.compositesb.2012.09.081.
Mugahed Amran, Y. H., R. Alyousef, R. S. M. Rashid, H. Alabduljabbar, and C. C. Hung. 2018. “Properties and applications of FRP in strengthening RC structures: A review.” Structures 16 (Nov): 208–238. https://doi.org/10.1016/j.istruc.2018.09.008.
Nutan, P. 2008. “Shear strengthening of RC beams using GFRP wrapping.” In Forensic engineering: From failure to understanding. Springfield, IL: Charles C. Thomas Publisher.
Ombres, L., N. Mancuso, S. Mazzuca, and S. Verre. 2018. “Bond between carbon fabric-reinforced cementitious matrix and masonry substrate.” J. Mater. Civ. Eng. 31 (1): 04018356. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002561.
Önal, M. M. 2014. “Strengthening reinforced concrete beams with CFRP and GFRP.” Adv. Mater. Sci. Eng. 2014: 1–8. https://doi.org/10.1155/2014/967964.
Panchacharam, S., and A. Belarbi. 2002. “Torsional behavior of reinforced concrete beams strengthened with FRP composites.” In Proc., First FIB Congress, 1–11. Lausanne, Switzerland: International Federation for Structural Concrete.
Panigrahi, A. K., K. C. Biswal, and M. R. Barik. 2014. “Strengthening of shear deficient RCT-beams with externally bonded GFRP sheets.” Constr. Build. Mater. 57 (Apr): 81–91. https://doi.org/10.1016/j.conbuildmat.2014.01.076.
Peter, H. E., A. M. Vaysburd, and J. Thomas. 1998. “Strengthening concrete structures, part 1.” Concr. Int. 20 (3): 53–58.
Potyrała, P. B., J. Ramón, and C. Rius. 2011. Use of fibre reinforced polymer composites in bridge construction. State of the art in hybrid and all-composite. Barcelona, Spain: State of the Art in Hybrid and All-Composite.
Prashanth, S., K. Subbaya, K. Nithin, and S. Sachhidananda. 2017. “Fiber reinforced composites—A review.” J. Mater. Sci. Eng. 6 (3): 2–6. https://doi.org/10.4172/2169-0022.1000341.
Reda, R. M., I. A. Sharaky, M. Ghanem, M. H. Seleem, and H. E. M. Sallam. 2016. “Flexural behavior of RC beams strengthened by NSM GFRP bars having different end conditions.” Compos. Struct. 147 (Jul): 131–142. https://doi.org/10.1016/j.compstruct.2016.03.018.
Rezazadeh, M., J. A. O. Barros, and H. Ramezansefat. 2016. “End concrete cover separation in RC structures strengthened in flexure with NSM FRP: Analytical design approach.” Eng. Struct. 128 (Dec): 415–427. https://doi.org/10.1016/j.engstruct.2016.09.062.
Salama, A. S. D., R. A. Hawileh, and J. A. Abdalla. 2019. “Performance of externally strengthened RC beams with side-bonded CFRP sheets.” Compos. Struct. 212 (Mar): 281–290. https://doi.org/10.1016/j.compstruct.2019.01.045.
Sarasini, F., J. Tirillò, L. Ferrante, M. Valente, T. Valente, L. Lampani, P. Gaudenzi, S. Cioffi, S. Iannace, and L. Sorrentino. 2014. “Drop-weight impact behaviour of woven hybrid basalt-carbon/epoxy composites.” Composites, Part B 59 (Mar): 204–220. https://doi.org/10.1016/j.compositesb.2013.12.006.
Sarker, P., M. Begum, and S. Nasrin. 2011. “Fiber reinforced polymers for structural retrofitting: A review.” J. Civ. Eng. 39 (1): 49–57.
Shomali, A., D. Mostofinejad, and M. R. Esfahani. 2019. “Shear strengthening of RC beams using EBRIG CFRP strips: A comparative study.” Eur. J. Environ. Civ. Eng. 25 (14): 1–17. https://doi.org/10.1080/19648189.2019.1633413.
Siddiqui, N. A. 2009. “Experimental investigation of RC beams strengthened with externally bonded FRP composites.” Lat. Am. J. Solids Struct. 6 (4): 343–362.
Sivasankar, S., T. Bharathy, and R. Vinodh Kumar. 2018. “Flexural behaviour of RC beams using GFRP composites.” Int. J. Eng. Technol. 7 (3): 744. https://doi.org/10.14419/ijet.v7i3.12.16493.
Soluit, A. K., M. A. Motawea, K. M. El-sayed, and S. H. Shalaby. 2007. “Torsional behavior of RC beams strengthened with fiber reinforced polymer sheets.” Eng. Res. J. 114 (Dec): C102–C119.
Sonnenschein, R., K. Gajdosova, and I. Holly. 2016. “FRP composites and their use in the construction of bridges.” Procedia Eng. 161 (Jan): 477–482. https://doi.org/10.1016/j.proeng.2016.08.665.
Supian, A. B. M., S. M. Sapuan, M. Y. M. Zuhri, E. S. Zainudin, and H. H. Ya. 2018. “Hybrid reinforced thermoset polymer composite in energy absorption tube application: A review.” Defence Technol. 14 (4): 291–305. https://doi.org/10.1016/j.dt.2018.04.004.
Tahsiri, H., O. Sedehi, A. Khaloo, and E. Molaei. 2015. “Experimental study of RC jacketed and CFRP strengthened RC beams.” Constr. Build. Mater. 95 (Oct): 476–485. https://doi.org/10.1016/j.conbuildmat.2015.07.161.
Täljsten, B. 2003. “Strengthening concrete beams for shear with CFRP sheets.” Constr. Build. Mater. 17 (1): 15–26. https://doi.org/10.1016/S0950-0618(02)00088-0.
Tetta, Z. C., L. N. Koutas, and D. A. Bournas. 2015. “Textile-reinforced mortar (TRM) versus fiber-reinforced polymers (FRP) in shear strengthening of concrete beams.” Composites, Part B 77 (Aug): 338–348. https://doi.org/10.1016/j.compositesb.2015.03.055.
Tibhe, S. B., and V. R. Rathi. 2016. “Comparative experimental study on torsional behavior of RC beam using CFRP and GFRP fabric wrapping.” Procedia Technol. 24 (Jan): 140–147. https://doi.org/10.1016/j.protcy.2016.05.020.
Triantafyllou, G. G., T. C. Rousakis, and A. I. Karabinis. 2018. “Effect of patch repair and strengthening with EBR and NSM CFRP laminates for RC beams with low, medium and heavy corrosion.” Composites, Part B 133 (Jan): 101–111. https://doi.org/10.1016/j.compositesb.2017.09.029.
Tuakta, C. 2005. Use of fiber reinforced polymer composite in bridge structures. Cambridge, MA: Massachusetts Institute of Technology.
Vasudeva, R., and M. Kaur. 2016. “Retrofitting of RC beams using glass fiber reinforced polymer sheets: An experimental study.” Indian J. Sci. Technol. 9 (44): 1–11. https://doi.org/10.17485/ijst/2016/v9i44/105287.
Yang, X., W. Y. Gao, J. G. Dai, Z. D. Lu, and K. Q. Yu. 2018. “Flexural strengthening of RC beams with CFRP grid-reinforced ECC matrix.” Compos. Struct. 189 (Apr): 9–26. https://doi.org/10.1016/j.compstruct.2018.01.048.
Younis, A., U. Ebead, and K. C. Shrestha. 2017. “Different FRCM systems for shear-strengthening of reinforced concrete beams.” Constr. Build. Mater. 153 (Oct): 514–526. https://doi.org/10.1016/j.conbuildmat.2017.07.132.
Zheng, Y., W. Wang, and J. C. Brigham. 2016. “Flexural behaviour of reinforced concrete beams strengthened with a composite reinforcement layer: BFRP grid and ECC.” Constr. Build. Mater. 115 (Jul): 424–437. https://doi.org/10.1016/j.conbuildmat.2016.04.038.
Zhou, Y., M. Guo, L. Sui, F. Xing, B. Hu, Z. Huang, and Y. Yun. 2018. “Shear strength components of adjustable hybrid bonded CFRP shear-strengthened RC beams.” Composites, Part B 163 (Apr): 36–51. https://doi.org/10.1016/j.compositesb.2018.11.020.
Zhu, Z., and E. Zhu. 2018. “Flexural behavior of large-size RC beams strengthened with side near surface mounted (SNSM) CFRP strips.” Compos. Struct. 201 (Oct): 178–192. https://doi.org/10.1016/j.compstruct.2018.06.031.

Information & Authors

Information

Published In

Go to Practice Periodical on Structural Design and Construction
Practice Periodical on Structural Design and Construction
Volume 27Issue 4November 2022

History

Published online: Aug 1, 2022
Published in print: Nov 1, 2022
Discussion open until: Jan 1, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Sifatullah Bahij [email protected]
Ph.D. Candidate and Researcher, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7357, Institut National des Sciences Appliquées Strasbourg, Univ. of Strasbourg, 24 Bld. de la Victoire, Strasbourg 67084, France; Lecturer, Dept. of Civil and Industrial Construction, Kabul Polytechnic Univ., Kart-e-Mamorin, 5th District, Kabul 1010, Afghanistan. Email: [email protected]
Associate Professor, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 7357, Institut National des Sciences Appliquées Strasbourg, Univ. of Strasbourg, 24 Bld. de la Victoire, Strasbourg 67084, France (corresponding author). ORCID: https://orcid.org/0000-0003-1392-9268. Email: [email protected]
Vincent Steiner [email protected]
Associate Professor, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 7357, Institut National des Sciences Appliquées Strasbourg, Univ. of Strasbourg, 24 Bld. de la Victoire, Strasbourg 67084, France. Email: [email protected]
Francoise Feugeas [email protected]
Professor, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 7357, Institut National des Sciences Appliquées Strasbourg, Univ. of Strasbourg, 24 Bld. de la Victoire, Strasbourg 67084, France. Email: [email protected]
Amanullah Faqiri [email protected]
Professor, Dept. of Civil and Industrial Construction, Kabul Polytechnic Univ., Kart-e-Mamorin, 5th District, Kabul 1010, Afghanistan. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Effect of Roughness on the Bond Behavior between Ultrahigh-Performance Engineered Cementitious Composites and Old Concrete, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-15735, 35, 8, (2023).
  • Strength of Compressed Reinforced Concrete Elements Reinforced with CFRP at Different Load Application Eccentricity, Polymers, 10.3390/polym15010026, 15, 1, (26), (2022).
  • Effect of Non-Woven Polyethylene Terephthalate (PET) Tissue on Fresh and Hardened Properties of Concrete, Materials, 10.3390/ma15248766, 15, 24, (8766), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share