State-of-the-Art Reviews
Sep 6, 2022

Masonry-Infilled RC Frames Exposed to Blast Loads: A Review on Numerical Modeling and Response

Publication: Practice Periodical on Structural Design and Construction
Volume 27, Issue 4

Abstract

The spurt in terrorist activities worldwide has drawn the attention of engineers and researchers to the vulnerability of building structures to blast loads. Response of masonry-infilled reinforced concrete (RC) frames subjected to blast loads is a widely researched area that still poses considerable complexity and challenges. Most of the works are based on finite element (FE) methodology to simulate the blast-induced behavior of the masonry-infilled RC structures considering the material constitutive and interaction aspects. Many literature studies have focused on FE codes for numerical modeling of masonry-infilled RC frames and interpretation of their response to various blast load scenarios (far-field, near, and contact blasts). The review presented herein addresses the aspects to include: Estimation of the blast load parameters, including the code provision and its simulation in the analysis module; updated knowledge on geometric and material modeling; effect of strain rate on constitutive parameters while modeling the materials; macro, micro, and simplified micro approaches to model masonry infill walls and their response under blast loading; modeling of interaction between RC frame and masonry infills and the performance of the integral and nonintegral system under blast loading. It is envisaged that such studies, in turn, would facilitate evolving the rational design methodologies for the blast-resistant design of framed structures. At the end of this paper, some parametric studies of field interest that are carried out in the literature are reported to understand the behavior of masonry-infilled RC frames against blast loads and derived some valuable conclusions. The review presented in this study provides a thematic analysis of the available literature aimed to assist the analyst in selecting a suitable tool for investigating masonry-infilled RC frames exposed to blast loads.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors thank the Ministry of Human Resource Department (MHRD), Government of India, for the research assistantship at IIT Roorkee.

References

ABAQUS/Explicit. 2013. User’s manual. France: Dassault Systemes Simulia Corporation.
Abdulla, K. F., L. S. Cunningham, and M. Gillie. 2017. “Simulating masonry wall behaviour using a simplified micro-model approach.” Eng. Struct. 151 (Nov): 349–365. https://doi.org/10.1016/j.engstruct.2017.08.021.
Abou-Zeid, B. M., W. W. El-Dakhakhni, A. G. Razaqpur, and S. Foo. 2011. “Response of arching unreinforced concrete masonry walls to blast loading.” J. Struct. Eng. 137 (10): 1205–1214. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000344.
Aghdamy, S., C. Wu, and M. Griffith. 2013. “Simulation of retrofitted unreinforced concrete masonry unit walls under blast loading.” Int. J. Prot. Struct. 4 (1): 21–44. https://doi.org/10.1260/2041-4196.4.1.21.
Al-Salloum, Y., T. Almusallam, S. M. Ibrahim, H. Abbas, and S. Alsayed. 2015. “Rate-dependent behavior and modeling of concrete based on SHPB experiments.” Cem. Concr. Compos. 55 (Jan): 34–44. https://doi.org/10.1016/j.cemconcomp.2014.07.011.
Alsayed, S. H., H. M. Elsanadedy, Z. M. Al-Zaheri, Y. A. Al-Salloum, and H. Abbas. 2016. “Blast response of GFRP-strengthened infill masonry walls.” Constr. Build. Mater. 115 (Jul): 438–451. https://doi.org/10.1016/j.conbuildmat.2016.04.053.
ASCE. 1997. Design of blast resistant buildings in petrochemical facilities. Reston, VA: ASCE.
ASCE. 2010. Minimum design loads for buildings and other structures. ASCE/SEI 7-10. Reston, VA: ASCE.
ASCE. 2011. Blast protection of buildings. ASCE/SEI 59-11. Reston, VA: ASCE.
Asprone, D., E. Cadoni, and A. Prota. 2009. “Experimental analysis on tensile dynamic behavior of existing concrete under high strain rates.” ACI Struct. J. 106 (1): 106–113. https://doi.org/10.14359/56289.
AUTODYN. 2009. Interactive non-linear dynamic analysis software, version 12, user’s manual. Canonsburg, PA: SAS IP Inc.
Baraldi, D., S. Bullo, and A. Cecchi. 2016. “Continuous and discrete strategies for the modal analysis of regular masonry.” Int. J. Solids Struct. 84 (May): 82–98. https://doi.org/10.1016/j.ijsolstr.2016.01.015.
Beak, M., S. A. Colwell, D. Crowhurst, and B. R. Ellis. 1994. “Behaviour of masonry and concrete panels under explosion and static loading.” Inst. Chem. Eng. Symp. Ser. 134: 227–247.
Bertolesi, E., G. Milani, and P. B. Lourenço. 2016. “Implementation and validation of a total displacement non-linear homogenization approach for in-plane loaded masonry.” Comput. Struct. 176 (Nov): 13–33. https://doi.org/10.1016/j.compstruc.2016.08.001.
Biggs, J. M. 1964. Introduction to structural dynamics. New York: Massachusetts Institute of Technology Mc Graw Hill.
BIS (Bureau of Indian Standard). 1968. Indian standard code of criteria for blast resistant design of structures for explosions above ground. IS:4991. New Delhi, India: BIS.
Borrvall, T., and W. Riedel. 2011. “RHT concrete model in LS-DYNA.” In Proc., 8th European LS-DYNA Users Conf. California: NVIDIA.
Burnett, S., M. Gilbert, T. Molyneaux, G. Beattie, and B. Hobbs. 2007. “The performance of unreinforced masonry walls subjected to low-velocity impacts: Finite element analysis.” Int. J. Impact Eng. 34 (8): 1433–1450. https://doi.org/10.1016/j.ijimpeng.2006.08.004.
Burrell, R. P., H. Aoude, and M. Saatcioglu. 2014. “Response of SFRC columns under blast loads.” J. Struct. Eng. 141 (9): 04014209. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001186.
Cascini, L., R. Gagliardo, and F. Portioli. 2020. “LiABlock_3D: A software tool for collapse mechanism analysis of historic masonry structures.” Int. J. Archit. Herit. 14 (1): 75–94. https://doi.org/10.1080/15583058.2018.1509155.
Casolo, S., and F. Pena. 2007. “Rigid element model for in-plane dynamics of masonry walls considering hysteretic behaviour and damage.” Earthquake Eng. Struct. Dyn. 36 (8): 1029–1048. https://doi.org/10.1002/eqe.670.
CEB-FIP (Comite Euro-International du Beton-Federation International de la Precontrainte). 1990. Model code-final draft. Lausanne, Switzerland: Thomas Thelford Publications.
Chernin, L., M. Vilnay, I. Shufrin, and D. Cotsovos. 2019. “Pressure—impulse diagram method—A fundamental review.” Proc. Inst. Civ. Eng. Comput. Mech. 172 (2): 55–69. https://doi.org/10.1680/jencm.17.00017.
Chiou, Y.-J., J.-C. Tzeng, and Y.-W. Liou. 1999. “Experimental and analytical study of masonry infilled frames.” J. Struct. Eng. 125 (10): 1109–1117. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:10(1109).
Chiquito, M., R. Castedo, A. P. Santos, L. M. Lopez, and A. Perez-Caldentey. 2021. “Numerical modelling and experimental validation of the behaviour of brick masonry walls subjected to blast loading.” Int. J. Impact Eng. 148 (Feb): 103760. https://doi.org/10.1016/j.ijimpeng.2020.103760.
Cowper, G., and P. Symonds. 1957. Strain hardening and strain-rate effects in the impact loading of cantilever beams. Providence, RI: Division of Applied Mathematics, Brown Univ.
Crisafulli, F. J. 1997. “Seismic behaviour of reinforced concrete structures with masonry infills.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of Canterbury.
D’Altri, A. M., S. de Miranda, G. Castellazzi, and V. Sarhosis. 2018. “A 3D detailed micro-model for the in-plane and out-of-plane numerical analysis of masonry panels.” Comput. Struct. 206 (Aug): 18–30. https://doi.org/10.1016/j.compstruc.2018.06.007.
D’Altri, A. M., V. Sarhosis, G. Milani, J. Rots, S. Cattari, S. Lagomarsino, E. Sacco, A. Tralli, G. Castellazzi, and S. de Miranda. 2020. “Modeling strategies for the computational analysis of unreinforced masonry structures: Review and classification.” Arch. Comput. Methods Eng. 27 (4): 1153–1185. https://doi.org/10.1007/s11831-019-09351-x.
de Bellis, M. L., and D. Addessi. 2011. “A Cosserat based multi-scale model for masonry structures.” Int. J. Multiscale Comput. Eng. 9 (5): 543–563. https://doi.org/10.1615/IntJMultCompEng.2011002758.
Dennis, S. T., J. T. Baylot, and S. C. Woodson. 2002. “Response of ¼ scale concrete masonry unit (CMU) walls to blast.” J. Eng. Mech. 128 (2): 134–142. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:2(134).
Derakhshan, H., D. Y. Dizhur, M. C. Griffith, and J. M. Ingham. 2014. “Seismic assessment of out-of-plane loaded unreinforced masonry walls in multi-storey buildings.” Bull. N. Z. Soc. Earthquake Eng. 47 (2): 119–138. https://doi.org/10.5459/bnzsee.47.2.119-138.
Doerr, A., N. Gebbeken, M. Larcher, M. Steyerer, and C. Haberacker. 2013. “The effect of near-field explosions on masonry.” In Proc., 15th Int. Symp. on Interaction of the Effects of Munitions with Structures. Germany: Bundeswehr.
Doherty, K., M. C. Griffith, and N. Lam. 2002. “Displacement-based seismic analysis for out-of-plane bending of unreinforced masonry walls.” Earthquake Eng. Struct. Dyn. 31 (4): 833–850. https://doi.org/10.1002/eqe.126.
Eamon, C. D., J. T. Baylot, and J. L. O’Daniel. 2004. “Modelling concrete masonry walls subjected to explosive loads.” J. Eng. Mech. 130 (9): 1098–1106. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:9(1098).
El-Dakhakhni, W. W., M. Elgaaly, and A. A. Hamid. 2003. “Three-strut model for concrete masonry-infilled steel frames.” J. Struct. Eng. 29 (2): 177–185. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:2(177).
El-Dakhakhni, W. W., W. F. Mekky, and S. H. Changiz-Rezaei. 2009. “Vulnerability screening and capacity assessment of reinforced concrete columns subjected to blast.” J. Perform. Constr. Facil. 23 (5): 353–365. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000015.
Fallah, A. S., and L. A. Louca. 2007. “Pressure-impulse diagrams for elastic-plastic-hardening and softening single-degree-of-freedom models subjected to blast loading.” Int. J. Impact Eng. 34 (4): 823–842. https://doi.org/10.1016/j.ijimpeng.2006.01.007.
FEMA (Federal Emergency Management Agency). 2003. Primer for design of commercial buildings to mitigate terrorist attacks. FEMA 427. Washington, DC: FEMA.
FEMA (Federal Emergency Management Agency). 2011. Reference manual to mitigate potential terrorist attacks against buildings. FEMA 426. Washington, DC: FEMA.
Gantes, C. J., and N. G. Pnevmatikos. 2004. “Elastic–plastic response spectra for exponential blast loading.” Int. J. Impact Eng. 30 (3): 323–343. https://doi.org/10.1016/S0734-743X(03)00077-0.
Gebbeken, N., T. Linse, and T. Araujo. 2012. “Masonry under dynamic actions—experimental investigations, material modeling and numerical simulations.” In Advances in protective structures research, 131–162. London: Taylor & Francis Group.
Ghaderi, M., V. A. Maleki, and K. Andalibi. 2015. “Retrofitting of unreinforced masonry walls under blast loading by FRP and spray on polyurea.” Cumhur. Sci. J. 36 (4): 462–477.
Godio, M., N. W. Portal, M. Flansbjer, J. Magnusson, and M. Byggnevi. 2021. “Experimental and numerical approaches to investigate the out-of-plane response of unreinforced masonry walls subjected to free far-field blasts.” Eng. Struct. 239 (15): 112328. https://doi.org/10.1016/j.engstruct.2021.112328.
Grady, D. E., and M. E. Kipp. 1987. “Dynamic rock fragmentation.” In Fracture mechanics of rock, 429–475. London: Academic Press.
Graziotti, F., A. Penna, and G. Magenes. 2016. “A non-linear SDOF model for the simplified evaluation of the displacement demand of low-rise URM buildings.” Bull. Earthquake Eng. 14 (6): 1589–1612. https://doi.org/10.1007/s10518-016-9896-5.
Greco, F., L. Leonetti, R. Luciano, and P. N. Blasi. 2016. “An adaptive multiscale strategy for the damage analysis of masonry modeled as a composite material.” Compos. Struct. 153 (Oct): 972–988. https://doi.org/10.1016/j.compstruct.2016.06.066.
Grote, D., S. Park, and M. Zhou. 2001. “Dynamic behavior of concrete at high strain rates and pressures.” Int. J. Impact Eng. 25 (9): 869–886. https://doi.org/10.1016/S0734-743X(01)00020-3.
Hao, H. 2009. “Numerical modelling of masonry wall response to blast loads.” Aust. J. Struct. Eng. 10 (1): 37–52. https://doi.org/10.1080/13287982.2009.11465031.
Hao, H., and B. G. Tarasov. 2008. “Experimental study of dynamic material properties of clay brick and mortar at different strain rates.” Aust. J. Struct. Eng. 8 (2): 117–132. https://doi.org/10.1080/13287982.2008.11464992.
Hao, H., and C. Wu. 2006. “Numerical simulation of damage of low-rise RC frame structures with infilled masonry walls to explosive loads.” Aust. J. Struct. Eng. 7 (1): 13–22. https://doi.org/10.1080/13287982.2006.11464960.
Hiermaier, S. J. 2008. Structures under crash and impact—Continuum mechanics, discretization and experimental characterization. New York: Springer.
Jacques, E., A. Lloyd, P. Imbeau, D. Palermo, and J. Quek. 2015. “GFRP-retrofitted reinforced concrete columns subjected to simulated blast loading.” J. Struct. Eng. 141 (11): 04015028. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001251.
Jayasooriya, J. H. A. R. 2010. “Vulnerability and damage analysis of reinforced concrete framed buildings subjected to near field blast events.” Ph.D. thesis, Faculty of Built Environment Engineering, Queensland Univ. of Technology.
John, R., T. Antoun, and A. M. Rajendran. 1992. “Effect of strain rate and size on tensile strength of concrete.” In Proc., 1991 APS Topical Conf. on Shock Compression of Condensed Matter, edited by S. C. Schmidt, R. D. Dick, J. W. Forbes, and D. G. Tasker, 501–504. Williamsburg, VA: Elsevier Science Publishers.
Keane, B., and P. Esper. 2009. “Forensic investigation of blast damage to British buildings.” J. Civ. Eng. 162 (5): 4–11. https://doi.org/10.1680/cien.2009.162.5.4.
Keys, R. A., and S. K. Clubley. 2017a. “Establishing a predictive method for blast induced masonry debris distribution using experimental and numerical methods.” Eng. Fail. Anal. 82 (Dec): 82–91. https://doi.org/10.1016/j.engfailanal.2017.07.017.
Keys, R. A., and S. K. Clubley. 2017b. “Experimental analysis of debris distribution of masonry panels subjected to long duration blast loading.” Eng. Struct. 130 (1): 229–241. https://doi.org/10.1016/j.engstruct.2016.10.054.
Khan, I. K., and H. Abbas. 2011. “Static and dynamic response of cost effective unreinforced brick masonry buildings.” Arch. Civ. Mech. Eng. 11 (4): 921–941. https://doi.org/10.1016/S1644-9665(12)60087-9.
Kikuchi, A., T. Kawai, and N. Suzuki. 1992. “The rigid bodies-spring models and their applications to three-dimensional crack problems.” Comput. Struct. 44 (1–2): 469–480. https://doi.org/10.1016/0045-7949(92)90269-6.
Kingery, C. N., and G. Bulmash. 1984. Air blast parameters from TNT spherical air burst and hemispherical surface burst. Aberdeen Proving Ground, MD: Ballistic Research Laboratories.
Knock, C., I. Horsfall, S. M. Champion, and I. C. Harrod. 2004. “The bounce and roll of masonry debris.” Int. J. Impact Eng. 30 (1): 1–16. https://doi.org/10.1016/S0734-743X(03)00057-5.
Koli, S., P. Chellapandi, L. B. Rao, and A. Sawant. 2020. “Study on JWL equation of state for the numerical simulation of nearfield and far-field effects in underwater explosion scenario.” Eng. Sci. Technol. Int. J. 23 (4): 758–768. https://doi.org/10.1016/j.jestch.2020.01.007.
Krauthammer, T., S. Astarlioglu, J. Blasko, T. B. Soh, and P. H. Ng. 2008. “Pressure-impulse diagrams for the behavior assessment of structural components.” Int. J. Impact Eng. 35 (8): 771–783. https://doi.org/10.1016/j.ijimpeng.2007.12.004.
Li, B., H. C. Rong, and T. C. Pan. 2007. “Drift–controlled design of reinforced concrete frame structures under distant blast conditions—Part I: Theoretical basis.” Int. J. Impact Eng. 34 (4): 743–754. https://doi.org/10.1016/j.ijimpeng.2006.01.010.
Li, Z., L. Chen, Q. Fang, H. Hao, Y. Zhang, H. Xiang, W. Chen, S. Yang, and Q. Bao. 2017. “Experimental and numerical study of unreinforced clay brick masonry walls subjected to vented gas explosions.” Int. J. Impact Eng. 104 (Jun): 107–126. https://doi.org/10.1016/j.ijimpeng.2017.02.002.
Liu, J., Y. Lu, and J. Lei. 2013. “Numerical simulation of masonry wall under explosive load inside.” Adv. Mater. Res. 712–715 (Jun): 909–912. https://doi.org/10.4028/www.scientific.net/AMR.712-715.909.
Lourenco, P. B. 1996. “Computational strategies for masonry structures.” Ph.D. thesis, Dept. of Civil Engineering, Delft Univ. of Technology.
Lourenco, P. B., and L. C. Silva. 2020. “Computational applications in masonry structures: From the meso-scale to the super-large/super-complex.” Int. J. Multiscale Comput. Eng. 18 (1): 1–30. https://doi.org/10.1615/IntJMultCompEng.2020030889.
LS-DYNA. 2015. Keyword user’s manual. Livermore, CA: Livermore Software Technology Corporation.
Ma, G. W., H. Hao, and Y. Lu. 2001. “Homogenisation of masonry using numerical simulations.” J. Eng. Mech. 127 (5): 421–431. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:5(421).
Ma, G. W., H. Hao, and Y. X. Zhou. 1998. “Modeling of wave propagation induced by underground explosion.” Comput. Geotech. 22 (3–4): 283–303. https://doi.org/10.1016/S0266-352X(98)00011-1.
Maier, G., and A. Nappi. 1990. “A theory of no-tension discretized structural systems.” Eng. Struct. 12 (4): 227–234. https://doi.org/10.1016/0141-0296(90)90021-J.
Malena, M., F. Portioli, R. Gagliardo, G. Tomaselli, L. Cascini, and G. de Felice. 2019. “Collapse mechanism analysis of historic masonry structures subjected to lateral loads: A comparison between continuous and discrete models.” Comput. Struct. 220 (Aug): 14–31. https://doi.org/10.1016/j.compstruc.2019.04.005.
Malomo, D., R. Pinho, and A. Penna. 2020. “Applied element modelling of the dynamic response of a full-scale clay brick masonry building specimen with flexible diaphragms.” Int. J. Archit. Heritage 14 (10): 1484–1501. https://doi.org/10.1080/15583058.2019.1616004.
Malvar, L. J. 1998. “Review of static and dynamic properties of steel reinforcement bars.” ACI Mater. J. 95 (5): 609–616. https://doi.org/10.14359/403.
Malvar, L. J., and J. E. Crawford. 1998. “Dynamic increase factors for concrete.” In Twenty-eighth DDESB seminar, 1–17. Orlando, FL: Defense Technical Information Center.
Mays, G. C., and P. D. Smith. 1995. Blast effects on buildings. London: Thomas Telford Publications.
Mazars, J. 1986. “A description of micro–macroscale damage of concrete structures.” Eng. Fract. Mech. 25 (5–6): 729–737. https://doi.org/10.1016/0013-7944(86)90036-6.
Mendis, P., and T. Ngo. 2003. “Vulnerability assessment of concrete tall buildings subjected to extreme loading conditions.” In Proc., CIB-CTBUH Int. Conf. on Tall Buildings, 8–10. Chicago: CIB-CTBUH.
Michaloudis, G., and N. Gebbeken. 2019. “Modeling masonry walls under far-field and contact detonations.” Int. J. Impact Eng. 123 (Jan): 84–97. https://doi.org/10.1016/j.ijimpeng.2018.09.019.
Milani, G. 2011. “Simple homogenization model for the non-linear analysis of in-plane loaded masonry walls.” Comput. Struct. 89 (17–18): 1586–1601. https://doi.org/10.1016/j.compstruc.2011.05.004.
Milani, G., P. B. Lourenco, and A. Tralli. 2009. “Homogenized rigid plastic model for masonry walls subjected to impact.” Int. J. Solids Struct. 46 (22–23): 4133–4149. https://doi.org/10.1016/j.ijsolstr.2009.08.007.
Mistler, M., A. Anthoine, and C. Butenweg. 2007. “In-plane and out-of-plane homogenization of masonry.” Comput. Struct. 85 (17–18): 1321–1330. https://doi.org/10.1016/j.compstruc.2006.08.087.
Mohammed, M. 2010. “Suicide car bombers kill 41 in central Baghdad.” Accessed November 22, 2021. https://www.reuters.com/article/idUSTRE6320EK20100404.
Moxnes, J. F., G. Ødegardstuen, A. Atwood, and P. Curran. 1999. “Mechanical properties of a porous material studied in a high speed piston driven compaction experiment.” In Proc., 30th Int. Annual Conf. of the ICT. Karlsruhe, Germany: Frauenhofer ICT.
Myers, J. J., A. Belarbi, and K. A. El-Domiaty. 2004. “Blast resistance of FRP retrofitted un-reinforced masonry (URM) walls with and without arching action.” Masonry Soc. J. 22 (Aug): 9–26.
Nasiri, E., and Y. Liu. 2019. “The out-of-plane behaviour of concrete masonry infills bounded by reinforced concrete frames.” Eng. Struct. 184 (4): 406–420. https://doi.org/10.1016/j.engstruct.2019.01.098.
Ngo, T., P. Mendis, A. Gupta, and J. Ramsay. 2007. “Blast loading and blast effects on structures—An overview.” Electr. J. Struct. Eng. 7 (1): 76–91.
Ngo, T., P. Mendis, M. Hongwei, and S. Mak. 2004. “High strain rate behaviour of concrete cylinders subjected to uniaxial compressive impact loading.” In Proc., 18th Australasian Conf. Mechanics of Structures and Materials. Boca Raton, FL: CRC Press.
Ngo, T. D. 2005. “Behaviour of high strength concrete subject to impulsive loading.” Ph.D. thesis, Dept. of Civil and Environmental Engineering, Univ. of Melbourne.
Pandey, A. K., and R. S. Bisht. 2014. “Numerical modelling of infilled clay brick masonry under blast loading.” Adv. Struct. Eng. 17 (4): 591–606. https://doi.org/10.1260/1369-4332.17.4.591.
Parisi, F., C. Balestrieri, and D. Asprone. 2016. “Blast resistance of tuff stone masonry walls.” Eng. Struct. 113 (15): 233–244. https://doi.org/10.1016/j.engstruct.2016.01.056.
Pereira, J. M., J. Campos, and P. B. Lourenco. 2015. “Masonry infill walls under blast loading using confined underwater blast wave generators (WBWG).” Eng. Struct. 92 (Jun): 69–83. https://doi.org/10.1016/j.engstruct.2015.02.036.
Pereira, J. M., A. Dias, and P. B. Lourenço. 2013. “Dynamic properties of clay brick at different strain rates.” In Proc., 12th Canadian Masonry Symp., 1–9. Vancouver, BC, Canada: Canadian Masonry Symposiums.
Pereira, J. M., and P. B. Lourenco. 2016. “Experimental characterization of masonry and masonry components at high strain rates.” J. Mater. Civ. Eng. 29 (2): 4016223. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001755.
Petracca, M., L. Pela, R. Rossi, S. Oller, G. Camata, and E. Spacone. 2016. “Regularization of first order computational homogenization for multiscale analysis of masonry structures.” Comput. Mech. 57 (2): 257–276. https://doi.org/10.1007/s00466-015-1230-6.
Portioli, F. P. A. 2019. “Rigid block modelling of historic masonry structures using mathematical programming: A unified formulation for non-linear time history, static pushover and limit equilibrium analysis.” Bull. Earthquake Eng. 18 (Jan): 211–239. https://doi.org/10.1007/s10518-019-00722-0.
Rafsanjani, S. H., P. B. Lourenco, and N. Peixinho. 2015. “Dynamic interface model for masonry walls subjected to high strain rate out-of-plane loads.” Int. J. Impact Eng. 76 (Feb): 28–37. https://doi.org/10.1016/j.ijimpeng.2014.09.002.
Remennikov, A. 2003. “A review of methods for predicting bomb blast effects on buildings.” J. Battlef. Technol. 6 (3): 5–10.
Reuland, Y., P. Lestuzzi, and I. F. C. Smith. 2019. “A model-based data-interpretation framework for post-earthquake building assessment with scarce measurement data.” Soil Dyn. Earthquake Eng. 116 (Jan): 253–263. https://doi.org/10.1016/j.soildyn.2018.10.008.
Salerno, G., and G. de Felice. 2009. “Continuum modeling of periodic brickwork.” Int. J. Solids Struct. 46 (5): 1251–1267. https://doi.org/10.1016/j.ijsolstr.2008.10.034.
Sarhosis, V., and J. V. Lemos. 2018. “A detailed micro-modelling approach for the structural analysis of masonry assemblages.” Comput. Struct. 206 (Aug): 66–81. https://doi.org/10.1016/j.compstruc.2018.06.003.
Sattar, S. 2014. “Influence of masonry infill walls and other building characteristics on seismic collapse of concrete frame buildings.” Ph.D. thesis, Dept. of Civil, Environmental and Architectural Engineering, Univ. of Colorado Boulder.
Shadlou, M., and M. M. Kashani. 2019. “A review on the current trends on computational modelling of masonry-infilled reinforced concrete frames.” J. Phys. Conf. Ser. 1264 (1): 012044. https://doi.org/10.1088/1742-6596/1264/1/012044.
Shamim, S., S. Ahamd, and A. K. Rehan. 2020. “Numerical modelling of masonry panel subjected to surface blast loading.” J. Xian Univ. Archit. Technol. 12 (7): 846–857.
Shamim, S., S. Ahamd, and A. K. Rehan. 2021. “Blast vulnerability of multi-storey masonry infill reinforced concrete frames.” Civ. Eng. Archit. 9 (3): 853–868. https://doi.org/10.13189/cea.2021.090327.
Shariq, M., H. Abbas, H. Irtaza, and M. Qamaruddin. 2008. “Influence of openings on seismic performance of masonry building walls.” Build. Environ. 43 (7): 1232–1240. https://doi.org/10.1016/j.buildenv.2007.03.005.
Shi, Y., H. Hao, and Z. X. Li. 2008. “Numerical derivation of pressure-impulse diagrams for prediction of RC column damage to blast loads.” Int. J. Impact Eng. 35 (11): 1213–1227. https://doi.org/10.1016/j.ijimpeng.2007.09.001.
Shi, Y., N. Wang, Z. X. Li, and Y. Ding. 2021. “Experimental studies on the dynamic compressive and tensile strength of clay brick under high strain rates.” Constr. Build. Mater. 272 (Feb): 121908. https://doi.org/10.1016/j.conbuildmat.2020.121908.
Shi, Y., W. Xiong, Z. X. Li, and Q. Xu. 2016. “Experimental studies on the local damage and fragments of unreinforced masonry walls under close-in explosions.” Int. J. Impact Eng. 90 (Apr): 122–131. https://doi.org/10.1016/j.ijimpeng.2015.12.002.
Sielicki, P. W., and T. Łodygowski. 2019. “Masonry wall behaviour under explosive loading.” Eng. Fail. Anal. 104 (Oct): 274–291. https://doi.org/10.1016/j.engfailanal.2019.05.030.
Smith, N. L. 2014. “Response of two-way reinforced masonry infill walls under blast loading.” Master’s thesis, Dept. of Civil Engineering, McMaster Univ.
Soroushian, P., and K. Choi. 1987. “Steel mechanical properties at different strain rates.” J. Struct. Eng. 113 (4): 663–672. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:4(663).
SP (Special Publication). 1987. Structure to resist the effect of accidental explosions: Reinforced concrete design. ARLCD-SP-84001. Dover, DE: SP.
Stavridis, A. 2009. “Analytical and experimental study of seismic performance of reinforced concrete frames infilled with masonry walls.” Ph.D. thesis, Dept. of Structural Engineering, Univ. of California San Diego.
Stavrogin, A. N., and B. G. Tarasov. 2001. Experimental physics and rock mechanics. Lisse, Netherlands: Balkema Publishers.
Stefanou, I., K. Sab, and J. V. Heck. 2015. “Three dimensional homogenization of masonry structures with building blocks of finite strength: A closed form strength domain.” Int. J. Solids Struct. 54 (Feb): 258–270. https://doi.org/10.1016/j.ijsolstr.2014.10.007.
Trapani, F. D., G. Macaluso, L. Cavaleri, and M. Papia. 2015. “Masonry infills and RC frames interaction: Literature overview and state of the art of macro modeling approach.” Eur. J. Environ. Civ. Eng. 19 (9): 1059–1095. https://doi.org/10.1080/19648189.2014.996671.
Trovalusci, P., and R. Masiani. 2003. “Non-linear micro polar and classical continua for anisotropic discontinuous materials.” Int. J. Solids Struct. 40 (5): 1281–1297. https://doi.org/10.1016/S0020-7683(02)00584-X.
USACE (US Army Corps of Engineers). 2002. Design and analysis of hardened structures for conventional weapons effects. UFC 3-340-01. Washington, DC: USACE.
US DoA (US Department of the Army). 1986. Fundamentals of protective design for conventional weapons. TM 5-855-1. Washington, DC: US DoA.
US DoA (US Department of the Army). 1990. Structures to resist the effects of accidental explosions. TM 5-1300. Washington, DC: US DoA.
US DoD (US Department of Defense). 2003. Minimum antiterrorism standards for buildings. UFC 4-010-01. Washington, DC: US DoD.
US DoD (US Department of Defense). 2004. Ammunition and explosives safety standards. DoD 6055. Washington, DC: US DoD.
US DoD (US Department of Defense). 2008. Structures to resist the effects of accidental explosions. UFC 3-340-02. Washington, DC: US DoD.
Varma, R. K., C. P. S. Tomar, and S. Parkash. 1997. “Damage to brick masonry panel walls under high explosive detonations.” In Proc., Structure Under Extreme Loading Conditions. New York: ASME.
Wang, M., H. Hao, Y. Ding, and Z. X. Li. 2009. “Prediction of fragment size and ejection distance of masonry wall under blast load using homogenized masonry material properties.” Int. J. Impact Eng. 36 (6): 808–820. https://doi.org/10.1016/j.ijimpeng.2008.11.012.
Wei, J., Z. Du, Y. Zheng, and O. Ounhueane. 2021. “Research on damage characteristics of brick masonry under explosion load.” Shock Vib. 2021 (Aug): 1–11. https://doi.org/10.1155/2021/5519231.
Wei, X., T. Huang, and N. Li. 2011. “Numerical derivation of pressure-impulse diagrams for unreinforced brick masonry walls.” Adv. Mater. Res. 368–373 (Oct): 1435–1439. https://doi.org/10.4028/www.scientific.net/AMR.368-373.1435.
Wei, X., and M. G. Stewart. 2010. “Model validation and parametric study on the blast response of unreinforced brick masonry walls.” Int. J. Impact Eng. 37 (11): 1150–1159. https://doi.org/10.1016/j.ijimpeng.2010.04.003.
Wei, X. Y., and H. Hao. 2009. “Numerical derivation of homogenised dynamic masonry material properties with strain rate effect.” Int. J. Impact Eng. 36 (3): 522–536. https://doi.org/10.1016/j.ijimpeng.2008.02.005.
Weli, S. S., I. S. Abbood, L. S. Al-Rukaibawi, and F. L. Hamid. 2021. “Evaluation of masonry walls subjected to blast loading based on material modelling approach.” Mater. Today: Proc. 49 (Jan): 3687–3695. https://doi.org/10.1016/j.matpr.2021.10.015.
Wilding, B. V., M. Godio, and K. Beyer. 2020. “The ratio of shear to elastic modulus of in-plane loaded masonry.” Mater. Struct. 53 (2): 40. https://doi.org/10.1617/s11527-020-01464-1.
Wu, C., and H. Hao. 2006. “Derivation of 3D masonry properties using numerical homogenization technique.” Int. J. Numer. Methods Eng. 66 (11): 1717–1737. https://doi.org/10.1002/nme.1537.
Wu, C., and H. Hao. 2007. “Safe scaled distance for masonry infilled RC frame structures subjected to air blast loads.” J. Perform. Constr. Facil. 21 (6): 422–431. https://doi.org/10.1061/(ASCE)0887-3828(2007)21:6(422).
Wu, C., H. Hao, and Y. Lu. 2005. “Dynamic response and damage analysis of masonry structures and masonry infilled RC frames to blast ground motion.” Eng. Struct. 27 (3): 323–333. https://doi.org/10.1016/j.engstruct.2004.10.004.
Yuan, X., L. Chen, J. Wu, and J. Tang. 2012. “Numerical simulation of masonry walls subjected to blast loads.” Adv. Mater. Res. 461 (Feb): 93–96. https://doi.org/10.4028/www.scientific.net/AMR.461.93.
Zhang, X., Y. Chiu, H. Hao, A. Hsieh, N. Salter, and J. Cui. 2018. “Dynamic compressive material properties of clay bricks at different strain rates.” Constr. Build. Mater. 192 (Dec): 754–767. https://doi.org/10.1016/j.conbuildmat.2018.10.150.
Zhou, X., and H. Hao. 2008. “Modelling of compressive behaviour of concrete-like materials at high strain rate.” Int. J. Solids Struct. 45 (17): 4648–4661. https://doi.org/10.1016/j.ijsolstr.2008.04.002.
Zucchini, A., and P. B. Lourenco. 2004. “A coupled homogenisation-damage model for masonry cracking.” Comput. Struct. 82 (11–12): 917–929. https://doi.org/10.1016/j.compstruc.2004.02.020.
Zucchini, A., and P. B. Lourenco. 2009. “A micro-mechanical homogenisation model for masonry: Application to shear walls.” Int. J. Solid Struct. 46 (3–4): 871–886. https://doi.org/10.1016/j.ijsolstr.2008.09.034.

Information & Authors

Information

Published In

Go to Practice Periodical on Structural Design and Construction
Practice Periodical on Structural Design and Construction
Volume 27Issue 4November 2022

History

Published online: Sep 6, 2022
Published in print: Nov 1, 2022
Discussion open until: Feb 6, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Scholar, Dept. of Civil, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India (corresponding author). ORCID: https://orcid.org/0000-0001-9597-1755. Email: [email protected]
Pradeep Bhargava, Ph.D. [email protected]
Professor, Dept. of Civil, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Influence of masonry infills on blast response of earthquake-resistant reinforced concrete buildings, Structures, 10.1016/j.istruc.2023.02.078, 50, (908-924), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share