Technical Papers
Sep 27, 2021

Exploiting the Equilibrium Matrix to Ensure the Geometric Stability of Planar Trusses

Publication: Practice Periodical on Structural Design and Construction
Volume 27, Issue 1

Abstract

Equilibrium can be used to determine the geometric stability (kinematic determinacy) of a structure. For initial (conceptual) design, analyzing a structure’s equilibrium matrix first eliminates the added computational expense associated with performing a complete structural analysis if the design is determined to be unstable. This paper describes an economical procedure for ensuring the geometric stability of complex planar trusses using the equilibrium matrix and its transpose, the compatibility matrix, to support initial design. Equilibrium and compatibility matrices were derived for an individual truss member, and then the assembly process to produce the global equilibrium matrix (and global compatibility matrix) was demonstrated. Several examples illustrated the concepts, beginning with considering only the equilibrium of key joints (nodes) and progressing to formal analyses of the structure’s equilibrium and compatibility matrices using linear algebra. It was shown that structures can be simultaneously geometrically unstable (possessing one or more mechanisms) and statically indeterminate (possessing one or more states of self-stress). Analysis of a complex planar truss fully illustrated the utility of the procedure, and, by using the analysis results and associated visualization tools, strategies for rendering an unstable truss stable were presented.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

Affan, A., and C. Calladine. 1989. “Initial bar tensions in pin-jointed assemblies.” J. Space Struct. 4 (1): 1–16. https://doi.org/10.1177/026635118900400101.
Block, P., M. DeJong, and J. Ochsendorf. 2006. “As hangs the flexible line: Equilibrium of masonry arches.” Nexus Network J. 8 (2): 13–24. https://doi.org/10.1007/s00004-006-0015-9.
Buchholdt, H. A., M. Davies, and M. J. L. Hussey. 1968. “The analysis of cable nets.” IMA J. Appl. Math. 4 (4): 339–358. https://doi.org/10.1093/imamat/4.4.339.
Calladine, C. R. 1978. “Buckminster Fuller’s ‘tensegrity’ structures and Clerk Maxwell’s rules for the construction of stiff frames.” Int. J. Solids Struct. 14 (2): 161–172. https://doi.org/10.1016/0020-7683(78)90052-5.
Calladine, C. R. 1982. “Modal stiffnesses of a pretensioned cable net.” Int. J. Solids Struct. 18 (10): 829–846. https://doi.org/10.1016/0020-7683(82)90068-3.
Calladine, C. R., and S. Pellegrino. 1991. “First-order infinitesimal mechanisms.” Int. J. Solids Struct. 27 (4): 505–515. https://doi.org/10.1016/0020-7683(91)90137-5.
Calladine, C. R., and S. Pellegrino. 1992. “Further remarks on first-order infinitesimal mechanisms.” Int. J. Solids Struct. 29 (17): 2119–2122. https://doi.org/10.1016/0020-7683(92)90060-7.
Capecchi, D. 2012. History of virtual work laws: A history of mechanics prospective. Milan, Italy: Springer. https://doi.org/10.1007/978-88-470-2056-6.
Chen, Y., P. Sareh, and J. Feng. 2015. “Effective insights into the geometric stability of symmetric skeletal structures under symmetric variations.” Int. J. Solids Struct. 69–70 (Sep): 277–290. https://doi.org/10.1016/j.ijsolstr.2015.05.023.
Chen, Y., J. Yan, J. Feng, and P. Sareh. 2020. “A hybrid symmetry–PSO approach to finding the self-equilibrium configurations of prestressable pin-jointed assemblies.” Acta Mech. 231 (4): 1485–1501. https://doi.org/10.1007/s00707-019-02586-6.
Chilton, J. 2007. Space grid structures. Jordan Hill, UK: Taylor & Francis.
Connelly, R., and S. Guest. 2015. “Frameworks, tensegrities and symmetry: Understanding stable structures.” Accessed August 30, 2020. https://pi.math.cornell.edu/∼web7510/framework.pdf.
Connelly, R., and H. Servatius. 1994. “Higher-order rigidity—What is the proper definition?” Discr. Comput. Geom. 11 (2): 193–200. https://doi.org/10.1007/BF02574003.
Connelly, R., and W. Whiteley. 1992. “The stability of tensegrity frameworks.” Int. J. Space Struct. 7 (2): 153–163. https://doi.org/10.1177/026635119200700208.
Crapo, H. 1979. “Structural rigidity.” Accessed November 2, 2020. https://hdl.handle.net/2099/521.
Deng, H., and A. S. K. Kwan. 2005. “Unified classification of stability of pin-jointed bar assemblies.” Int. J. Solids Struct. 42 (15): 4393–4413. https://doi.org/10.1016/j.ijsolstr.2005.01.009.
Dugas, R. 1957. A history of mechanics. London: Routledge & Kegan Paul.
Fowler, P. W., and S. D. Guest. 2000. “A symmetry extension of Maxwell’s rule for rigidity of frames.” Int. J. Solids Struct. 37 (12): 1793–1804. https://doi.org/10.1016/S0020-7683(98)00326-6.
Fowler, P. W., S. D. Guest, and B. Schulze. 2014. “Mobility in symmetry-regular bar-and-joint frameworks.” In Rigidity and symmetry, 117–130. New York: Springer. https://doi.org/10.1007/978-1-4939-0781-6_7.
Guest, S. 2006. “The stiffness of prestressed frameworks: A unifying approach.” Int. J. Solids Struct. 43 (3): 842–854. https://doi.org/10.1016/j.ijsolstr.2005.03.008.
Guest, S. D., and J. W. Hutchinson. 2003. “On the determinacy of repetitive structures.” J. Mech. Phys. Solids 51 (3): 383–391. https://doi.org/10.1016/S0022-5096(02)00107-2.
Hanaor, A. 1988. “Prestressed pin-jointed structures—Flexibility analysis and prestress design.” Comput. Struct. 28 (6): 757–769. https://doi.org/10.1016/0045-7949(88)90416-6.
Heyman, J. 1966. “The stone skeleton.” Int. J. Solids Struct. 2 (2): 249–279. https://doi.org/10.1016/0020-7683(66)90018-7.
Juan, S. H., and J. M. M. Tur. 2008. “Tensegrity frameworks: Static analysis review.” Mech. Mach. Theory 43 (7): 859–881. https://doi.org/10.1016/j.mechmachtheory.2007.06.010.
Kangwai, R. D., and S. D. Guest. 1999. “Detection of finite mechanisms in symmetric structures.” Int. J. Solids Struct. 36 (36): 5507–5527. https://doi.org/10.1016/S0020-7683(98)00234-0.
Kangwai, R. D., and S. D. Guest. 2000. “Symmetry-adapted equilibrium matrices.” Int. J. Solids Struct. 37 (11): 1525–1548. https://doi.org/10.1016/S0020-7683(98)00318-7.
Kumar, P., and S. Pellegrino. 2000. “Computation of kinematic paths and bifurcation points.” Int. J. Solids Struct. 37 (46): 7003–7027. https://doi.org/10.1016/S0020-7683(99)00327-3.
Kurrer, K.-E. 2018. The history of the theory of structures: Searching for equilibrium. Berlin: Wiley.
Kuznetsov, E. N. 1979. “Statistical-kinematic analysis and limit equilibrium of systems with unilateral constraints.” Int. J. Solids Struct. 15 (10): 761–767. https://doi.org/10.1016/0020-7683(79)90002-7.
Kuznetsov, E. N. 1988. “Underconstrained structural systems.” Int. J. Solids Struct. 24 (2): 153–163. https://doi.org/10.1016/0020-7683(88)90026-1.
Kuznetsov, E. N. 1991a. “Systems with infinitesimal mobility: Part I—Matrix analysis and first-order infinitesimal mobility.” ASME J. Appl. Mech. 58 (2): 513–519. https://doi.org/10.1115/1.2897214.
Kuznetsov, E. N. 1991b. “Systems with infinitesimal mobility: Part II—Compound and higher-order infinitesimal mechanisms.” ASME J. Appl. Mech. 58 (2): 520–526. https://doi.org/10.1115/1.2897215.
Kuznetsov, E. N. 1999. “Singular configurations of structural systems.” Int. J. Solids Struct. 36 (6): 885–897. https://doi.org/10.1016/S0020-7683(97)00333-8.
Kwan, A. S. K., and S. Pellegrino. 1994. “Matrix formulation of macro-elements for deployable structures.” Comput. Struct. 50 (2): 237–254. https://doi.org/10.1016/0045-7949(94)90299-2.
Leine, R. I. 2009. “The historical development of classical stability concepts: Lagrange, Poisson and Lyapunov stability.” Nonlinear Dyn. 59 (1): 173–182. https://doi.org/10.1007/s11071-009-9530-z.
Lu, J., N. Li, and Y. Luo. 2011. “Kinematic analysis of planar deployable structures with angulated beams based on equilibrium matrix.” Adv. Struct. Eng. 14 (6): 1005–1015. https://doi.org/10.1260/1369-4332.14.6.1005.
Martin, R. N. D. 1976. “The genesis of a mediaeval historian: Pierre Duhem and the origins of statics.” Ann. Sci. 33 (2): 119–129. https://doi.org/10.1080/00033797600200181.
Maxwell, J. C. 1864. “L. On the calculation of the equilibrium and stiffness of frames.” London Edinburgh Dublin Philos. Mag. J. Sci. 27 (182): 294–299. https://doi.org/10.1080/14786446408643668.
McGuire, W., and R. H. Gallagher. 1979. Matrix structural analysis. Chichester, UK: Wiley.
Millar, C., A. McRobie, and W. Baker. 2020. “A graphical method for determining truss stability.” J. Int. Assoc. Shell Spatial Struct. 61 (4): 285–295. https://doi.org/10.20898/j.iass.2020.011.
Murakami, H. 2001. “Static and dynamic analyses of tensegrity structures. Part II. Quasi-static analysis.” Int. J. Solids Struct. 38 (20): 3615–3629. https://doi.org/10.1016/S0020-7683(00)00233-X.
Obara, P., J. Kłosowska, and W. Gilewski. 2019. “Truth and myths about 2D tensegrity trusses.” Appl. Sci. 9 (1): 179. https://doi.org/10.3390/app9010179.
Pellegrino, S. 1986. “Mechanics of kinematically indeterminate structures.” Ph.D. dissertation, Dept. of Engineering, Univ. of Cambridge.
Pellegrino, S. 1990. “Analysis of prestressed mechanisms.” Int. J. Solids Struct. 26 (12): 1329–1350. https://doi.org/10.1016/0020-7683(90)90082-7.
Pellegrino, S. 1993. “Structural computations with the singular value decomposition of the equilibrium matrix.” Int. J. Solids Struct. 30 (21): 3025–3035. https://doi.org/10.1016/0020-7683(93)90210-X.
Pellegrino, S. 2014. Deployable structures. Vienna, Austria: Springer.
Pellegrino, S., and C. R. Calladine. 1984. “Two-step matrix analysis of prestressed cable nets.” In Proc., 3rd Int. Conf. on Space Structures. Guildford, UK. London: Elsevier.
Pellegrino, S., and C. R. Calladine. 1986. “Matrix analysis of statically and kinematically indeterminate frameworks.” Int. J. Solids Struct. 22 (4): 409–428. https://doi.org/10.1016/0020-7683(86)90014-4.
Pellegrino, S., A. S. K. Kwan, and T. F. Van Heerden. 1992. “Reduction of equilibrium, compatibility and flexibility matrices, in the force method.” Int. J. Numer. Methods Eng. 35 (6): 1219–1236. https://doi.org/10.1002/nme.1620350605.
Roth, B., and W. Whiteley. 1981. “Tensegrity frameworks.” Trans. Am. Math. Soc. 265 (2): 419. https://doi.org/10.1090/S0002-9947-1981-0610958-6.
Roy, K., T. C. H. Ting, H. H. Lau, and J. B. P. Lim. 2018. “Effect of thickness on the behaviour of axially loaded back-to- back cold-formed steel built-up channel sections—Experimental and numerical investigation.” Structures 16 (Nov): 327–346. https://doi.org/10.1016/j.istruc.2018.09.009.
Sack, R. L. 1984. Structural analysis. New York: McGraw-Hill.
Salerno, G. 1992. “How to recognize the order of infinitesimal mechanisms: A numerical approach.” Int. J. Numer. Methods Eng. 35 (7): 1351–1395. https://doi.org/10.1002/nme.1620350702.
Sebastian, W. M. 2004. “Collapse considerations and electrical analogies for statically indeterminate structures.” J. Struct. Eng. 130 (10): 1445–1453. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:10(1445).
Steinman, D. B. 1932. The Wichert truss. New York: D. Van Nostrand.
Strang, G. 2016. Introduction to linear algebra. Wellesley, MA: Wellesley-Cambridge Press.
Tarnai, T. 1980. “Problems concerning spherical polyhedra and structural rigidity.” Accessed November 20, 2020. https://hdl.handle.net/2099/851.
Tarnai, T. 2001. “Infinitesimal and finite mechanisms.” In Vol. 412 of Deployable structures, edited by S. Pellegrino, 113–142. Vienna, Austria: Springer. https://doi.org/10.1007/978-3-7091-2584-7_7.
Tarnai, T., and J. Szabó. 2002. “Rigidity and stability of prestressed infinitesimal mechanisms.” In New approaches to structural mechanics, shells and biological structures, 245–256. Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-94-015-9930-6_20.
Vassart, N., R. Laporte, and R. Motro. 2000. “Determination of mechanism’s order for kinematically and statically indetermined systems.” Int. J. Solids Struct. 37 (28): 3807–3839. https://doi.org/10.1016/S0020-7683(99)00178-X.
von Scheven, M., E. Ramm, and M. Bischoff. 2021. “Quantification of the redundancy distribution in truss and beam structures.” Int. J. Solids Struct. 213 (Mar): 41–49. https://doi.org/10.1016/j.ijsolstr.2020.11.002.
Whiteley, W. J. 1984. “Infinitesimal motions of a bipartite framework.” Pac. J. Math. 110 (1): 233–255. https://doi.org/10.2140/pjm.1984.110.233.

Information & Authors

Information

Published In

Go to Practice Periodical on Structural Design and Construction
Practice Periodical on Structural Design and Construction
Volume 27Issue 1February 2022

History

Received: Mar 5, 2021
Accepted: Jul 23, 2021
Published online: Sep 27, 2021
Published in print: Feb 1, 2022
Discussion open until: Feb 27, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Isha Galaz Abdullah, M.ASCE [email protected]
Graduate Student, Dept. of Civil and Environmental Engineering, Univ. of North Carolina at Charlotte, 9201 University City Blvd., EPIC Bldg., Charlotte, NC 28223-0001. Email: [email protected]
David C. Weggel, Ph.D., A.M.ASCE [email protected]
P.E.
Professor, Dept. of Civil and Environmental Engineering, Univ. of North Carolina at Charlotte, 9201 University City Blvd., EPIC Bldg., Suite 3164, Charlotte, NC 28223-0001 (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share