Abstract

In this study, to give a new final disposal to the Dredged Sediments (DS) in the Port of Rio Grande, the manufacture of Compressed Earth Blocks (CEB) with the addition of alkali-activated cement (AAC) is proposed. This binder was produced by mixing Rice Husk Ash (RHA), Carbide Lime (CL), and Sodium Hydroxide Solutions (SHS). The methodology includes AAC optimization for the production of CEBs, considering their performance in terms of unconfined compressive strength (UCS), durability analysis by wetting and drying cycles, and the qualification of the blocks, according to strength and water absorption criteria. The results show that AAC is a satisfactory option to improve the mechanical performance of DS. After 28 days of curing, the CEBs pass the requirements established by the Brazilian standard NBR 8492 to be used in the execution of masonry without structural function in Brazil.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

ABNT (Associação Brasileira de Normas Técnicas). 2004. Resíduos sólidos: Classificação. NBR 10.004. Rio de Janeiro, Brasil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2012. Tijolo de solo-cimento—Análise dimensional, determinação da resistência à compressão e da absorção de água: Método de ensaio. NBR 8492. Rio de Janeiro, Brasil: ABNT.
Antonelli, J. F. C., and M. A. Azambuja. 2021. “Analysis of the current scenario of Compressed Earth Block (CEB) production.” Revista Nacional de Gerenciamento de Cidades 9 (73). https://doi.org/10.17271/2318847297320213011.
ASTM. 2010. Standard test method for compressive strength of cylindrical concrete specimens. ASTM C39. West Conshohocken, PA: ASTM.
ASTM. 2012. Standard test methods for laboratory compaction characteristics of soil using standard effort. ASTM D698. West Conshohocken, PA: ASTM.
ASTM. 2014. Standard test methods for specific gravity of soil solids by water pycnometer. ASTM D854. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard test method for wetting and drying compacted soil-cement mixtures. ASTM D559. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard test method for particle-size analysis of soils. ASTM D422. West Conshohocken, PA: ASTM.
ASTM. 2017a. Standard practice for classification of soils for engineering purposes. ASTM D2487. West Conshohocken, PA: ASTM.
ASTM. 2017b. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318. West Conshohocken, PA: ASTM.
ASTM. 2018. Standard test methods for sampling and testing brick and structural clay tile. ASTM C67. West Conshohocken, PA: ASTM.
Belayali, F., W. Maherzi, M. Benzerzour, N. Abriak, and A. Senouci. 2022. “Compressed earth blocks using sediments and alkali-activated byproducts.” Sustainability 14 (6): 3158. https://doi.org/10.3390/su14063158.
Burgueño, L. E. T. 2009. “Estimativas da contaminação dos sedimentos dragados no porto de Rio Grande para disposição em solo.” Master’s thesis, Graduate Program in Ocean Engineering, Universidade Federal do Rio Grande, Brazil.
Calliari, L. J., A. A. Machado, P. Marroig, S. Vinzon, and N. Gianuca. 2020. “Mud deposits at Cassino beach: Role of dredging.” Geo-Mar. Lett. 40 (6): 1031–1043. https://doi.org/10.1007/s00367-019-00619-6.
Consoli, N. C., C. A. P. Daassi-Gli, C. A. Ruver, A. Lotero, H. C. Scheuermann Filho, C. J. Moncaleano, and D. E. Lourenço. 2021. “Lime–ground glass–sodium hydroxide as an enhanced sustainable binder stabilizing silica sand.” J. Geotech. Geoenviron. Eng. 147 (10): 06021011. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002624.
Consoli, N. C., D. Foppa, L. Festugato, and K. S. Heineck. 2007. “Key parameters for strength control of artificially cemented soils.” J. Geotech. Geoenviron. Eng. 133 (2): 197–205. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197).
Consoli, N. C., H. B. Leon, M. da Silva Carretta, J. V. L. Daronco, and D. E. Lourenço. 2019. “The effects of curing time and temperature on stiffness, strength, and durability of sand-environment friendly binder blends.” Soils Found. 59 (5): 1428–1439. https://doi.org/10.1016/j.sandf.2019.06.007.
Consoli, N. C., A. M. Lotero Caicedo, R. B. Saldanha, H. C. Scheuermann Filho, and C. J. Moncaleano Acosta. 2020. “Eggshell produced limes: Innovative materials for soil stabilization.” J. Mater. Civ. Eng. 32 (11): 06020018. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003418.
Criado, M., A. Fernández-Jiménez, and A. Palomo. 2010. “Alkali activation of fly ashes. Part III. Effect of curing conditions on reaction and its graphical description.” Fuel 89 (11): 3185–3192. https://doi.org/10.1016/j.fuel.2010.03.051.
Diambra, A., E. Ibraim, A. Peccin, N. C. Consoli, and L. Festugato. 2017. “Theoretical derivation of artificially cemented granular soil strength.” J. Geotech. Geoenviron. Eng. 143 (5): 04017003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001646.
Duxson, P., A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. Van Deventer. 2007. “Geopolymer technology: The current state of the art.” J. Mater. Sci. 42 (9): 2917–2933. https://doi.org/10.1007/s10853-006-0637-z.
ESRI. 2022. “Environmental Systems Research Institute ESRI ArcGIS Desktop Help 10.8. 3D Analyst Toolbox.” Accessed June 12, 2022. https://desktop.arcgis.com/es/arcmap/latest/tools/3d-analyst-toolbox/surface-difference.htm.
Fernández-Jiménez, A., N. Cristelo, T. Miranda, and Á. Palomo. 2017. “Sustainable alkali activated materials: Precursor and activator derived from industrial wastes.” J. Cleaner Prod. 162 (Sep): 1200–1209. https://doi.org/10.1016/j.jclepro.2017.06.151.
Fernández-Jiménez, A., A. Palomo, and M. Criado. 2006a. “Alkali activated fly ash binders. A comparative study between sodium and potassium activators.” Mater. Constr. 56 (281): 51–65. https://doi.org/10.3989/mc.2006.v56.i281.92.
Fernández-Jiménez, A., A. Palomo, I. Y. Sobrados, and J. Sanz. 2006b. “The role played by the reactive alumina content in the alkaline activation of fly ashes: Microporous and mesoporous.” Microporous and Mesoporous 91 (1–3): 111–119. https://doi.org/10.1016/j.micromeso.2005.11.015.
Fernando, S., M. C. M. Nasvi, C. Gunasekara, and D. W. Law. 2021. “Systematic review on alkali-activated binders blended with rice husk ash.” J. Mater. Civ. Eng. 33 (9): 04021229. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003825.
Garcia-Lodeiro, I., A. Palomo, and A. Fernández-Jiménez. 2015. “An overview of the chemistry of alkali-activated cement-based binders.” In Handbook of alkali-activated cements, mortars and concretes, 19–47. Amsterdam, Netherlands: Elsevier.
Gonçalves, M., I. S. Vilarinho, M. Capela, A. Caetano, R. M. Novais, J. A. Labrincha, and M. P. Seabra. 2021. “Waste-based one-Part Alkali activated materials.” Materials 14 (11): 2911. https://doi.org/10.3390/ma14112911.
Haha, M. B., G. Le Saout, F. Winnefeld, and B. Lothenbach. 2011. “Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags.” Cem. Concr. Res. 41 (3): 301–310. https://doi.org/10.1016/j.cemconres.2010.11.016.
HB. 2009. The Australian earth building handbook. HB 195. Sydney: Standards Australia International Ltd.
IBGE. 2019. “Produção agrícola municipal. Instituto Brasileiro de Geografia e Estatística.” Accessed November 15, 2021. https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9117-producao-agricola-municipal-culturas-temporarias-e-permanentes.html?=&t=sobre.
Khanday, S. A., M. Hussain, and A. K. Das. 2021. “Rice husk ash–based geopolymer stabilization of Indian peat: Experimental investigation.” J. Mater. Civ. Eng. 33 (12): 04021347. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003982.
Khater, H. M. 2012. “Effect of calcium on geopolimerization of aluminosilicate wastes.” J. Mater. Civ. Eng. 24 (1): 92–101. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000352.
Ladd, R. S. 1978. “Preparing test specimens using undercompaction.” Geotech. Test. J. 1 (1): 16–23. https://doi.org/10.1520/GTJ10364J.
Lecomte, I., C. Henrist, M. Liégeois, F. Maseri, A. Rulmont, and R. Cloots. 2006. “Micro-structural comparison between geopolymers, alkali-activated slag cement and Portland cement.” J. Eur. Ceram. Soc. 26 (16): 3789–3797. https://doi.org/10.1016/j.jeurceramsoc.2005.12.021.
Lima, J. S., P. H. Apolônio, E. P. Marinho, E. A. Vasconcelos, A. C. V. Nóbrega, and J. C. O. Freitas. 2021. “Use of rice husk ash to produce alternative sodium silicate for geopolymerization reactions.” Cerâmica 67 (381): 58–64. https://doi.org/10.1590/0366-69132021673812891.
Lotero, A., N. C. Consoli, C. J. Moncaleano, A. T. Neto, and E. Koester. 2021. “Mechanical properties of alkali-activated ground waste glass–carbide lime blends for geotechnical uses.” J. Mater. Civ. Eng. 33 (10): 04021284. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003918.
Mejía-Arcila, J., W. Valencia-Saavedra, and R. Mejía de Gutiérrez. 2020. “Eco-efficient alkaline activated binders for manufacturing blocks and pedestrian pavers with low carbon footprint: Mechanical properties and LCA assessment.” Materiales de Construcción 70 (340): e232. https://doi.org/10.3989/mc.2020.17419.
Mendes, B. C., L. G. Pedroti, C. M. F. Vieira, M. Marvil, A. R. G. Azevedo, J. M. Franco de Carvalho, and J. C. L. Ribeiro. 2021. “Application of eco-friendly alternative activators in alkali-activated materials: A review.” J. Build. Eng. 35 (Mar): 102010. https://doi.org/10.1016/j.jobe.2020.102010.
Mirlean, N., L. Calliari, and K. Johannesson. 2020. “Dredging in an estuary causes contamination by fluid mud on a tourist ocean beach. Evidence via REE ratios.” Mar. Pollut. Bull. 159 (Oct): 111495. https://doi.org/10.1016/j.marpolbul.2020.111495.
Mitsuuchi-Tashima, M. 2012. “Producción y caracterización de materiales cementantes a partir del silicoaluminato cálcico vítreo (VCAS).” Ph.D. dissertation, Dept. of Construction Engineering and Civil Engineering Projects, Universitat Politècnica de València.
Montgomery, D. C. 2011. Design and analysis of experiments. México: Limusa Wiley.
NTC. 2004. Bloques de suelo cemento para muros y divisones. Definiciones. Especificaciones. Métodos de Ensayo. Condiciones de entrega. NTC 5324. Bogotá, Colombia: ICONTEC.
NZS (New Zealand Standards). 1998. Materials and workmanship for earth buildings. NZS 4298. Wellington, NZ: NZS.
Ongpeng, J., E. Gapuz, J. J. S. Andres, D. Prudencio, J. Cuadlisan, M. Tadina, A. Zacarias, D. Benauro, A. Pabustan. 2020. “Alkali-activated binder as stabilizer in compressed earth blocks.” IOP Conf. Ser.: Mater. Sci. Eng. 849: 012042. https://doi.org/10.1088/1757-899X/849/1/012042.
Poorveekan, K., K. M. S. Ath, A. Anburuvel, and N. Sathiparan. 2021. “Investigation of the engineering properties of cementless stabilized earth blocks with alkali-activated eggshell and rice husk ash as a binder.” Constr. Build. Mater. 277 (Mar): 122371. https://doi.org/10.1016/j.conbuildmat.2021.122371.
Provis, J. L. 2018. “Alkali-activated materials.” Cem. Concr. Res. 114 (2018): 40–48. https://doi.org/10.1016/j.cemconres.2017.02.009.
Reig, L., M. M. Tashima, M. V. Borrachero, J. Monzó, C. R. Cheeseman, and J. Payá. 2013. “Properties and microstructure of alkali-activated red clay brick waste.” Constr. Build. Mater. 43 (2013): 98–106. https://doi.org/10.1016/j.conbuildmat.2013.01.031.
Rivera, J. F., R. M. Gutiérrez, S. Ramirez-Benavides, and A. Orobio. 2020. “Compressed and stabilized soil blocks with fly ash-based alkali-activated cements.” Constr. Build. Mater. 264 (Dec): 120285. https://doi.org/10.1016/j.conbuildmat.2020.120285.
Robayo, R. A., A. Mulford, J. Munera, and R. Mejía de Gutiérrez. 2016. “Alternative cements based on alkali-activated red clay brick waste.” Constr. Build. Mater. 128 (Dec): 163–169. https://doi.org/10.1016/j.conbuildmat.2016.10.023.
Saldanha, R. B., H. C. Scheuermann Filho, J. E. C. Mallmann, N. C. Consoli, and K. R. Reddy. 2018. “Physical-mineralogical-chemical characterization of carbide lime: An environment-friendly chemical additive for soil stabilization.” J. Mater. Civ. Eng. 30 (6): 06018004. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002283.
Silva, R. A., E. Soares, D. V. Oliveira, T. Miranda, N. M. Cristelo, and D. Leitão. 2015. “Mechanical characterisation of dry-stack masonry made of CEBs stabilised with alkaline activation.” Constr. Build. Mater. 75 (Jan): 349–358. https://doi.org/10.1016/j.conbuildmat.2014.11.038.
Torres-Carrasco, M., and F. Puertas. 2017. “Alkaline activation of different aluminosilicates as an alternative to portland cement: Alkali activated cements or geopolymers.” Rev. Ing. Construcción 32 (2): 5–12. https://doi.org/10.4067/S0718-50732017000200001.
Turco, C., A. C. Paula Junior, E. R. Teixeira, and R. Mateus. 2021. “Optimisation of Compressed Earth Blocks (CEBs) using natural origin materials: A systematic literature compilation review.” Constr. Build. Mater. 309 (Nov): 125140. https://doi.org/10.1016/j.conbuildmat.2021.125140.
UNE (Una Norma Española). 2016. Métodos de ensayo de piezas para fábrica de albañilería. Parte 1: Determinación de la resistencia a compresión. UNE-EN 772-1. Madrid, Spain: UNE.
Villwock, B. J., and J. L. Nicolodi. 2021. “Potencialidade de utilização da ilha do terrapleno de leste para a disposição de sedimentos dragados no Porto de Rio Grande, Brasil.” Pesquisas Em Geociências 48 (3): 1–20. https://doi.org/10.22456/1807-9806.106479.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 4April 2023

History

Received: Dec 25, 2021
Accepted: Jul 13, 2022
Published online: Jan 23, 2023
Published in print: Apr 1, 2023
Discussion open until: Jun 23, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Camila Larrosa [email protected]
Master’s Student, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil. Email: [email protected]
Postdoctoral Fellow, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil. ORCID: https://orcid.org/0000-0002-2843-8384. Email: [email protected]
Cezar Bastos [email protected]
Professor of Civil Engineering, Engineering School, Universidade Federal do Rio Grande, Rio Grande, RS 96203-295, Brazil. Email: [email protected]
Ph.D. Student, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil. ORCID: https://orcid.org/0000-0002-3024-3690. Email: [email protected]
Professor of Civil Engineering, Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-6408-451X. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Effect of Cement Type on Compacted Iron Ore Tailings-Binder Response Blends: Comparative Study, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-17486, 36, 8, (2024).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share