Abstract

Antiaging effects of two inorganic nanoparticles [4% nano-titanium oxide (nano-TiO2) and nano-zinc oxide (nano-ZnO)] on asphalt were investigated by liquid-state nuclear magnetic resonance (NMR) spectroscopy, multiple stress creep recovery (MSCR) tests, and linear amplitude sweep (LAS) tests. The rheology test results showed that rutting and fatigue performance of asphalt binder increased with the addition of nano-oxides, and the addition of nano-ZnO showed improved rutting resistance and fatigue life compared with nano-TiO2. H1 NMR spectroscopy shows that the aromatic hydrogen ratios and branchiness index (BI) of asphalt decrease significantly after aging. It indicated that some isomerization and dehydrogenation occurred during the aging process. After adding nano-oxides into asphalt binder, the aromatic hydrogen content and the number of branched chains in asphalt susceptible to oxidation are further reduced, which slows the aging degree of asphalt. C13 NMR spectroscopy shows that the content of aromatic carbon is the key factor affecting asphalt aging. After original asphalt aging, the aromatic carbon ratios decreased, and adding nano-oxides into asphalt binder, whereas two kinds of nano-oxide-modified asphalt have different trends of aromatic carbon ratios. The antioxidant mechanism of nano-TiO2 is to inhibit the loss of aromatic carbon, whereas the oxidation of nano-ZnO-modified asphalt either inhibits the reaction of aging or causes sufficient aromatization to offset the influence of different degrees of asphalt aging.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This study was supported by the Fundamental Research Funds for the Central Universities, Southwest Jiaotong University, under Grant 2682021CX017, the National Natural Science Foundation of China under Grant 52008352, the Sichuan Applied Basic Research Project (2021YJ0533), and the Sichuan Science and Technology Program (2021JDTD0023). We would like to thank the Analytical and Testing Center of Southwest Jiaotong University and Sichuan Yakang Expressway Co., Ltd.

References

AASHTO. 2010a. Estimating damage tolerance of asphalt binders using the linear amplitude sweep. AASHTO TP 101-14. Washington, DC: AASHTO.
AASHTO. 2010b. Standard specification for performance-graded asphalt binder using multiple stress creep recovery (MSCR) test. AASHTO MP 19-10. Washington, DC: AASHTO.
AASHTO. 2017. Standard specification for performance-graded asphalt binder. AASHTO M 320. Washington, DC: AASHTO.
Abdul Jameel, A. G. 2019. “A functional group approach for predicting fuel properties.” Ph.D. thesis, Dept. of Chemical Engineering, King Fahd Univ. of Petroleum and Minerals. https://doi.org/10.1016/0016-2361(90)90326-L.
Ali, L. H., K. A. Al-Ghannam, and J. M. Al-Rawi. 1990. “Chemical structure of asphaltenes in heavy crude oils investigated by NMR.” Fuel 69 (4): 519–521. https://doi.org/10.1016/0016-2361(90)90326-L.
Ashish, P. K., D. Singh, and S. Bohm. 2016. “Evaluation of rutting, fatigue and moisture damage performance of nanoclay modified asphalt binder.” Constr. Build. Mater. 113 (Jun): 341–350. https://doi.org/10.1016/j.conbuildmat.2016.03.057.
ASTM. 2012. Standard test method for effect of heat and air on a moving film of asphalt (rolling thin-film oven test). ASTM D2872-04. West Conshohocken, PA: ASTM.
ASTM. 2014. Standard test method for determining the complex shear modulus (G*) of bituminous mixtures using dynamic shear rheometer. ASTM D7552-09. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard test method for determining the flexural creep stiffness of asphalt binder using the bending beam rheometer (BBR). ASTM D6648-08. West Conshohocken, PA: ASTM.
ASTM. 2019. Standard practice for accelerated aging of asphalt binder using a pressurized aging vessel (PAV). ASTM D6521-19a. West Conshohocken, PA: ASTM.
Betancourt Cardozo, F. B., E. Avella Moreno, and C. A. Trujillo. 2016. “Structural characterization of unfractionated asphalts by H1NMR and C13NMR.” Energy Fuels 30 (4): 2729–2740. https://doi.org/10.1021/acs.energyfuels.5b02941.
Brown, S. F., R. D. Rowlett, and J. L. Boucher. 1990. “Asphalt modification.” In Proc., of the Conf. on US SHRP Highway Research Program: Sharing the Benefits, 181–203. London: Thomas Telford Publishing.
CEN (European Committee for Standardization). 2009. Bitumen and bituminous binders—Specifications for paving grade bitumens. EN 12591. Brussels, Belgium: CEN.
Chen, Y. Z., A. J. Chen, C. J. Li, and Z. X. Li. 2017. “Analysis of performance for nano-ZnO modified asphalt mixture.” Zhongguo Gonglu Xuebao/China J. Highway Transp. 30 (7): 25–32. https://doi.org/10.19721/j.cnki.1001-7372.2017.07.004.
Dickinson, E. M. 1980. “Structural comparison of petroleum fractions using proton and C13NMR spectroscopy.” Fuel 59 (5): 290–294. https://doi.org/10.1016/0016-2361(80)90211-2.
Ding, H., and S. A. M. Hesp. 2021. “Variable-temperature Fourier-transform infrared spectroscopy study of asphalt binders from the SHRP materials reference library.” Fuel 298 (Aug): 120819. https://doi.org/10.1016/j.fuel.2021.120819.
Ding, H., A. Rahman, Q. Li, and Y. Qiu. 2017. “Advanced mechanical characterization of asphalt mastics containing tourmaline modifier.” Constr. Build. Mater. 150 (Sep): 520–528. https://doi.org/10.1016/j.conbuildmat.2017.05.203.
Ding, H., H. Zhang, H. Liu, and Y. Qiu. 2021. “Thermoreversible aging in model asphalt binders.” Constr. Build. Mater. 303 (Oct): 124355. https://doi.org/10.1016/j.conbuildmat.2021.124355.
Eberhardsteiner, L., J. Füssl, B. Hofko, F. Handle, M. Hospodka, R. Blab, and H. Grothe. 2015. “Towards a microstructural model of bitumen ageing behavior.” Int. J. Pavement Eng. 16 (10): 939–949. https://doi.org/10.1080/10298436.2014.993192.
Fang, C., R. Yu, S. Liu, and Y. Li. 2013. “Nanomaterials applied in asphalt modification: A review.” J. Mater. Sci. Technol. 29 (7): 589–594. https://doi.org/10.1016/j.jmst.2013.04.008.
Fonnesbeck, J. E. 1997. “Structural elucidation of asphalt using NMR spectroscopy and GPC fractionation with laser desorption mass spectrometry.” Ph.D. thesis, Dept. of Chemistry, Montana State Univ.
García-Morales, M., P. Partal, F. J. Navarro, and C. Gallegos. 2006. “Effect of waste polymer addition on the rheology of modified bitumen.” Fuel 85 (7–8): 936–943. https://doi.org/10.1016/j.fuel.2005.09.015.
Hagen, A. A., M. P. Johnson, and B. B. Randolph. 1989. “C13NMR studies on roadway asphalts.” Fuel Sci. Technol. Int. 7 (9): 1289–1326. https://doi.org/10.1080/08843758908962291.
Hasan, M. U., M. F. Ali, and A. Bukhari. 1983. “Structural characterization of Saudi Arabian heavy crude oil by NMR spectroscopy.” Fuel 62 (5): 518–523. https://doi.org/10.1016/0016-2361(83)90219-3.
Hong, H., H. Zhang, and S. Zhang. 2020. “Effect of multi-dimensional nanomaterials on the aging behavior of asphalt by atomic force microscope.” Constr. Build. Mater. 260 (Nov): 120389. https://doi.org/10.1016/j.conbuildmat.2020.120389.
Huang, J. 2010. “Characterization of asphalt fractions by NMR spectroscopy.” Pet. Sci. Technol. 28 (6): 618–624. https://doi.org/10.1080/10916460903073797.
Huggins, M. L. 1961. “Viscoelastic properties of polymers.” J. Am. Chem. Soc. 83 (19): 4110–4111. https://doi.org/10.1021/ja01480a050.
Hussain, C. M. 2018. Handbook of nanomaterials for industrial applications. Amsterdam, Netherlands: Elsevier.
Hussein, S., T. Hussein, and G. Khoshnaw. 2021. “Impact of nano materials on the properties of asphalt cement.” Eurasian J. Sci. Eng. 7 (1): 155–162. https://doi.org/10.23918/eajse.v7i1p155.
Jennings, P., et al. 1993. Binder characterization and evaluation by nuclear magnetic resonance spectroscopy. Gaithersburg, MD: NIST.
Jennings, P. W., M. A. Desando, M. F. Raub, R. Moats, T. M. Mendez, F. F. Stewart, J. O. Hoberg, J. A. S. Pribanic, and J. A. Smith. 1992. “NMR spectroscopy in the characterization of eight selected asphalts.” Fuel Sci. Technol. Int. 10 (4–6): 887–907. https://doi.org/10.1080/08843759208916026.
Khattak, M. J., A. Khattab, H. H. Rizvi, and P. Zhang. 2012. “The impact of carbon nano-fiber modification on asphalt binder rheology.” Constr. Build. Mater. 30 (May): 257–264. https://doi.org/10.1016/j.conbuildmat.2011.12.022.
Kim, Y. R., C. Baek, B. S. Underwood, V. Subramanian, M. N. Guddati, and K. Lee. 2008. “Application of viscoelastic continuum damage model based finite element analysis to predict the fatigue performance of asphalt pavements.” KSCE J. Civ. Eng. 12 (2): 109–120. https://doi.org/10.1007/s12205-008-0109-x.
Kovinich, J., S. A. M. Hesp, and H. Ding. 2021. “Modulated differential scanning calorimetry study of wax-doped asphalt binders.” Thermochim. Acta 699 (May): 178894. https://doi.org/10.1016/j.tca.2021.178894.
Lesueur, D., J.-F. Gerard, P. Claudy, J.-M. Letoffe, D. Martin, and J.-P. Planche. 1998. “Polymer modified asphalts as viscoelastic emulsions.” J. Rheol. 42 (5): 1059–1074. https://doi.org/10.1122/1.550918.
Li, Y., R. Moraes, E. Lyngdal, and H. Bahia. 2016. “Effect of polymer and oil modification on the aging susceptibility of asphalt binders.” Transp. Res. Rec. 2574 (1): 28–37. https://doi.org/10.3141/2574-03.
Liu, H., P. Hao, H. Wang, and S. Adhikari. 2014. “Effects of physio-chemical factors on asphalt aging behavior.” J. Mater. Civ. Eng. 26 (1): 190–197. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000786.
Lytton, R. L., J. Uzan, E. G. Fernando, R. Roque, D. Hiltunen, and S. M. Stoffels. 1993. Vol. 357 of Development and validation of performance prediction models and specifications for asphalt binders and paving mixes. Washington, DC: Strategic Highway Research Program.
McLean, J. D., and P. K. Kilpatrick. 1997. “Comparison of precipitation and extrography in the fractionation of crude oil residua.” Energy Fuels 11 (3): 570–585. https://doi.org/10.1021/ef9601125.
Menapace, I., M. N. d’Eurydice, P. Galvosas, M. W. Hunter, O. Sirin, and E. Masad. 2017. “Aging evaluation of asphalt samples with low field nuclear magnetic resonance.” Mater. Charact. 128 (Jun): 165–175. https://doi.org/10.1016/j.matchar.2017.01.029.
Menapace, I., E. Masad, G. Papavassiliou, and E. Kassem. 2016. “Evaluation of ageing in asphalt cores using low-field nuclear magnetic resonance.” Int. J. Pavement Eng. 17 (10): 847–860. https://doi.org/10.1080/10298436.2015.1019503.
Miknis, F. P., A. T. Pauli, A. Beemer, and B. Wilde. 2005. “Use of NMR imaging to measure interfacial properties of asphalts.” Fuel 84 (9): 1041–1051. https://doi.org/10.1016/j.fuel.2004.12.019.
Miknis, F. P., A. T. Pauli, L. C. Michon, and D. A. Netzel. 1998. “NMR imaging studies of asphaltene precipitation in asphalts.” Fuel 77 (5): 399–405. https://doi.org/10.1016/S0016-2361(98)80030-6.
Partal, P., F. Martínez-Boza, B. Conde, and C. Gallegos. 1999. “Rheological characterisation of synthetic binders and unmodified bitumens.” Fuel 78 (1): 1–10. https://doi.org/10.1016/S0016-2361(98)00121-5.
Partl, M. N., H. U. Bahia, F. Canestrari, C. De la Roche, H. Di Benedetto, H. Piber, and D. Sybilski, eds. 2012. Advances in interlaboratory testing and evaluation of bituminous materials: State-of-the-art report of the RILEM technical committee 206-ATB. Berlin: Springer Science and Business Media.
Petersen, J. C. 1986. “Quantitative functional group analysis of asphalts using differential infrared spectrometry and selective chemical reactions—Theory and application.” Transp. Res. Rec. 1096 (1): 1–11.
Polacco, G., J. Stastna, D. Biondi, and L. Zanzotto. 2006. “Relation between polymer architecture and nonlinear viscoelastic behavior of modified asphalt.” Curr. Opin. Colloid Interface Sci. 11 (4): 230–245. https://doi.org/10.1016/j.cocis.2006.09.001.
Qiu, Y., H. Ding, A. Rahman, and W. Wang. 2018. “Damage characteristics of waste engine oil bottom rejuvenated asphalt binder in the non-linear range and its microstructure.” Constr. Build. Mater. 174 (Jun): 202–209. https://doi.org/10.1016/j.conbuildmat.2018.04.056.
Qu, X., Q. Liu, M. Guo, D. Wang, and M. Oeser. 2018. “Study on the effect of aging on physical properties of asphalt binder from a microscale perspective.” Constr. Build. Mater. 187 (Oct): 718–729. https://doi.org/10.1016/j.conbuildmat.2018.07.188.
Reese, R. 1997. “Properties of aged asphalt binder related to asphalt concrete fatigue life.” J. Assoc. Asphalt Paving Technol. 66 (Aug): 604–632.
Rocha Segundo, I., S. Landi Jr., A. Margaritis, G. Pipintakos, E. Freitas, C. Vuye, J. Blom, T. Tytgat, S. Denys, and J. Carneiro. 2020. “Physicochemical and rheological properties of a transparent asphalt binder modified with nano-TiO2.” Nanomaterials 10 (11): 2152. https://doi.org/10.3390/nano10112152.
Saboo, N. 2020. “New damage parameter for fatigue analysis of asphalt binders in linear amplitude sweep test.” J. Mater. Civ. Eng. 32 (6): 04020126. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003225.
Shafabakhsh, G. H., and O. J. Ani. 2015. “Experimental investigation of effect of nano TiO2/SiO2 modified bitumen on the rutting and fatigue performance of asphalt mixtures containing steel slag aggregates.” Constr. Build. Mater. 98 (Nov): 692–702. https://doi.org/10.1016/j.conbuildmat.2015.08.083.
Siddiqui, M. N. 2010. “NMR finger printing of chemical changes in asphalt fractions on oxidation.” Pet. Sci. Technol. 28 (4): 401–411. https://doi.org/10.1080/10916460903070751.
Siddiqui, M. N., and M. F. Ali. 1999. “Investigation of chemical transformations by NMR and GPC during the laboratory aging of Arabian asphalt.” Fuel 78 (12): 1407–1416. https://doi.org/10.1016/S0016-2361(99)00080-0.
Singh, D., P. K. Ashish, A. Kataware, and A. Habal. 2017. “Evaluating performance of PPA-and-Elvaloy-modified binder containing WMA additives and lime using MSCR and LAS tests.” J. Mater. Civ. Eng. 29 (8): 04017064. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001934.
Tian, X., R. Zhang, Z. Yang, Y. Chu, Y. Xu, and Q. Zhang. 2018. “Multiscale study on the effect of nano-organic montmorillonite on the performance of rubber asphalt.” J. Nanomater. 2018 (Jan): 1–10. https://doi.org/10.1155/2018/9638603.
Wang, C., C. Castorena, J. Zhang, and Y. Richard Kim. 2015. “Unified failure criterion for asphalt binder under cyclic fatigue loading.” Supplement, Road Mater. Pavement Des. 16 (S2): 125–148. https://doi.org/10.1080/14680629.2015.1077010.
Wu, S.-P., L. Pang, L.-T. Mo, Y.-C. Chen, and G.-J. Zhu. 2009. “Influence of aging on the evolution of structure, morphology and rheology of base and SBS modified bitumen.” Constr. Build. Mater. 23 (2): 1005–1010. https://doi.org/10.1016/j.conbuildmat.2008.05.004.
Xie, X., T. Hui, Y. Luo, H. Li, G. Li, and Z. Wang. 2020. “Research on the properties of low temperature and anti-UV of asphalt with nano-ZnO/nano-TiO2/copolymer SBS composite modified in high-altitude areas.” Adv. Mater. Sci. Eng. 2020 (Apr): 1–15. https://doi.org/10.1155/2020/9078731.
Xu, X., H. Guo, X. Wang, M. Zhang, Z. Wang, and B. Yang. 2019. “Physical properties and anti-aging characteristics of asphalt modified with nano-zinc oxide powder.” Constr. Build. Mater. 224 (Nov): 732–742. https://doi.org/10.1016/j.conbuildmat.2019.07.097.
Ye, F., J. Yang, and P. Huang. 2006. “Performance of modified asphalt aging under ultraviolet radiation.” In GeoShanghai Int. Conf. 2006: Pavement Mechanics and Performance, Geotechnical Special Publication 154, edited by B. Huang, R. Meier, J. Prozzi, and E. Tutumluer, 102–109. Reston, VA: ASCE.
You, Z., J. Mills-Beale, J. M. Foley, S. Roy, G. M. Odegard, Q. Dai, and S. W. Goh. 2011. “Nanoclay-modified asphalt materials: Preparation and characterization.” Constr. Build. Mater. 25 (2): 1072–1078. https://doi.org/10.1016/j.conbuildmat.2010.06.070.
Yu, J.-Y., H.-L. Zhang, P. Sun, and S.-F. Zhao. 2018. “Laboratory performances of nano-particles/polymer modified asphalt mixtures developed for the region with hot summer and cold winter and field evaluation.” Road Mater. Pavement Des. 21 (6): 1–16. https://doi.org/10.1080/14680629.2018.1557070.
Zhang, H., H. Duan, C. Zhu, Z. Chen, and H. Luo. 2021a. “Mini-review on the application of nanomaterials in improving anti-aging properties of asphalt.” Energy Fuels 35 (14): 11017–11036. https://doi.org/10.1021/acs.energyfuels.1c01035.
Zhang, H., K. Shen, G. Xu, J. Tong, R. Wang, D. Cai, and X. Chen. 2020. “Fatigue resistance of aged asphalt binders: An investigation of different analytical methods in linear amplitude sweep test.” Constr. Build. Mater. 241 (Apr): 118099. https://doi.org/10.1016/j.conbuildmat.2020.118099.
Zhang, H., C. Zhu, and H. Duan. 2021b. “Synergetic effect of multi-dimensional nanomaterials on aging resistance of asphalt.” J. Test. Eval. 49 (3): 2028–2034. https://doi.org/10.1520/JTE20200391.
Zhang, H., C. Zhu, J. Yu, C. Shi, and D. Zhang. 2015. “Influence of surface modification on physical and ultraviolet aging resistance of bitumen containing inorganic nanoparticles.” Constr. Build. Mater. 98 (Nov): 735–740. https://doi.org/10.1016/j.conbuildmat.2015.08.138.
Zhang, S., H. Hong, H. Zhang, and Z. Chen. 2021c. “Investigation of anti-aging mechanism of multi-dimensional nanomaterials modified asphalt by FTIR, NMR and GPC.” Constr. Build. Mater. 305 (Oct): 124809. https://doi.org/10.1016/j.conbuildmat.2021.124809.
Zhu, C., H. Zhang, G. Xu, and C. Shi. 2017. “Aging rheological characteristics of SBR modified asphalt with multi-dimensional nanomaterials.” Constr. Build. Mater. 151 (Oct): 388–393. https://doi.org/10.1016/j.conbuildmat.2017.06.121.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 1January 2023

History

Received: Dec 4, 2021
Accepted: May 11, 2022
Published online: Nov 2, 2022
Published in print: Jan 1, 2023
Discussion open until: Apr 2, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Haibo Di, Ph.D. [email protected]
Research Assistant, School of Civil Engineering, Southwest Jiaotong Univ., Chengdu, Sichuan 610031, China; Senior Engineer, Sichuan Yakang Expressway Co., Ltd., 171 County Rd., Yucheng, Yaan, Sichuan Province 610000, China. Email: [email protected]
Research Assistant, Highway Engineering Key Laboratory of Sichuan Province, School of Civil Engineering, Southwest Jiaotong Univ., Chengdu 610031, China. Email: [email protected]
Associate Professor, Highway Engineering Key Laboratory of Sichuan Province, School of Civil Engineering, Southwest Jiaotong Univ., Chengdu 610031, China. ORCID: https://orcid.org/0000-0003-0974-9280. Email: [email protected]
Haibo Ding, Ph.D. [email protected]
Assistant Professor, Highway Engineering Key Laboratory of Sichuan Province, School of Civil Engineering, Southwest Jiaotong Univ., Chengdu 610031, China. Email: [email protected]
Research Assistant, Highway Engineering Key Laboratory of Sichuan Province, School of Civil Engineering, Southwest Jiaotong Univ., Chengdu 610031, China (corresponding author). ORCID: https://orcid.org/0000-0003-3286-9141. Email: [email protected]
Bing Huang, Ph.D. [email protected]
Research Assistant, School of Civil Engineering, Southwest Jiaotong Univ., Chengdu, Sichuan 610031, China; Sichuan Yakang Expressway Co., Ltd., Chengdu, Sichuan 610000, China. Email: [email protected]
Professor, Highway Engineering Key Laboratory of Sichuan Province, School of Civil Engineering, Southwest Jiaotong Univ., Chengdu 610031, China. ORCID: https://orcid.org/0000-0002-2250-5363. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Physical Investigation of Polymer Nanocomposite-Modified Bitumens Containing Halloysite Nanotube and Sepiolite Nanoclay, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-16519, 36, 3, (2024).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share