Discussions and Closures
Sep 1, 2022

Discussion of “Optimization of the Strength Activity of Rice Husk Ash in Cementitious Mixtures” by Asghar Gholizadeh-Vayghan, Sina Nasiri, and Pedram Ghassemi

This article is a reply.
VIEW THE ORIGINAL ARTICLE
Publication: Journal of Materials in Civil Engineering
Volume 34, Issue 11
First page of PDF

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data or models used during the study are available from the corresponding author by request.

References

Abrão, P. C. R. A., F. A. Cardoso, and V. M. John. 2020. “Efficiency of portland-pozzolana cements: Water demand, chemical reactivity and environmental impact.” Constr. Build. Mater. 247 (Jun): 118546. https://doi.org/10.1016/j.conbuildmat.2020.118546.
Alcântara, M. A. D. M., L. P. D. Santos, A. Souza, and D. C. D. Lima. 2017. “Efeito da cinza de casca de arroz na plasticidade e compactação de uma mistura solo-cal.” Matéria 22 (3): 1–9. https://doi.org/10.1590/s1517-707620170003.0209.
Araos Henríquez, P., D. Aponte, J. Ibáñez-Insa, and M. Barra Bizinotto. 2021. “Ladle furnace slag as a partial replacement of Portland cement.” Constr. Build. Mater. 289 (Jun): 123106. https://doi.org/10.1016/j.conbuildmat.2021.123106.
Arrieta Baldovino, J. d. J., R. L. dos Santos Izzo, É. R. da Silva, and J. Lundgren Rose. 2020. “Sustainable use of recycled-glass powder in soil stabilization.” J. Mater. Civ. Eng. 32 (5): 04020080. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003081.
Baldovino, J. J. A., R. L. S. Izzo, J. L. Rose, and M. D. I. Domingos. 2021. “Strength, durability, and microstructure of geopolymers based on recycled-glass powder waste and dolomitic lime for soil stabilization.” Constr. Build. Mater. 271 (Feb): 121874. https://doi.org/10.1016/j.conbuildmat.2020.121874.
Basha, E. A., R. Hashim, H. B. Mahmud, and A. S. Muntohar. 2005. “Stabilization of residual soil with rice husk ash and cement.” Constr. Build. Mater. 19 (6): 448–453. https://doi.org/10.1016/j.conbuildmat.2004.08.001.
Choi, K., H. W. Lee, Z. Mao, S. Lavy, and B. Y. Ryoo. 2016. “Environmental, economic, and social implications of highway concrete rehabilitation alternatives.” J. Constr. Eng. Manage. 142 (2): 04015079. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001063.
Consoli, N. C., E. J. Bittar Marin, R. A. Quiñónez Samaniego, K. S. Heineck, and A. D. R. Johann. 2019a. “Use of sustainable binders in soil stabilization.” J. Mater. Civ. Eng. 31 (2): 06018023. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002571.
Consoli, N. C., A. M. L. Caicedo, R. Beck Saldanha, H. C. S. Filho, and C. J. M. Acosta. 2020a. “Eggshell produced limes: Innovative materials for soil stabilization.” J. Mater. Civ. Eng. 32 (11): 06020018. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003418.
Consoli, N. C., M. da Silva Carretta, L. Festugato, H. B. Leon, L. F. Tomasi, and K. S. Heineck. 2021a. “Ground waste glass–carbide lime as a sustainable binder stabilising three different silica sands.” Géotechnique 71 (6): 480–493. https://doi.org/10.1680/jgeot.18.P.099.
Consoli, N. C., L. Festugato, H. C. S. Filho, G. D. Miguel, A. T. Neto, and D. Andreghetto. 2020b. “Durability assessment of soil-pozzolan-lime blends through ultrasonic-pulse velocity test.” J. Mater. Civ. Eng. 32 (8): 04020223. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003298.
Consoli, N. C., D. Foppa, L. Festugato, and K. S. Heineck. 2007. “Key parameters for strength control of artificially cemented soils.” J. Geotech. Geoenviron. Eng. 133 (2): 197–205. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197).
Consoli, N. C., V. B. Godoy, L. F. Tomasi, T. M. De Paula, M. S. Bortolotto, and F. Favretto. 2019b. “Fibre-reinforced sand-coal fly ash-lime-NaCl blends under severe environmental conditions.” Geosynth. Int. 26 (5): 525–538. https://doi.org/10.1680/jgein.19.00039.
Consoli, N. C., H. B. Leon, M. da Silva Carretta, J. V. L. Daronco, and D. E. Lourenço. 2019c. “The effects of curing time and temperature on stiffness, strength and durability of sand-environment friendly binder blends.” Soils Found. 59 (5): 1428–1439. https://doi.org/10.1016/j.sandf.2019.06.007.
Consoli, N. C., H. C. Scheuermann Filho, H. B. Leon, M. da Silva Carretta, M. B. Corte, R. E. Cordeiro, R. D. Caballero, and D. E. Lourenço. 2021b. “General relationships controlling loss of mass, stiffness and strength of sustainable binders amended sand.” Transp. Geotech. 27 (Mar): 100473. https://doi.org/10.1016/j.trgeo.2020.100473.
Consoli, N. C., A. Tebechrani Neto, B. R. S. Correa, R. A. Quiñónez Samaniego, and N. Cristelo. 2021c. “Durability evaluation of reclaimed asphalt pavement, ground glass and carbide lime blends based on unconfined compression tests.” Transp. Geotech. 27 (Mar): 100461. https://doi.org/10.1016/j.trgeo.2020.100461.
Consoli, N. C., D. Winter, H. B. Leon, and H. C. Scheuermann Filho. 2018. “Durability, strength, and stiffness of green stabilized sand.” J. Geotech. Geoenviron. Eng. 144 (9): 04018057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001928.
Debnath, N. K., V. Acharya, S. Jangu, P. Singh, M. R. Majhi, and V. K. Singh. 2021. “Characterization of fly ash solid-waste for low-cost insulation refractory bricks.” Mater. Today: Proc. 47 (Part 8): 1598–1600. https://doi.org/10.1016/j.matpr.2021.04.265.
Ekinci, A., H. C. Scheuermann Filho, and N. C. Consoli. 2022. “Copper slag–hydrated lime–Portland cement stabilised marine-deposited clay.” Proc. Inst. Civ. Eng. Ground Improv. 175 (1): 51–63. https://doi.org/10.1680/jgrim.18.00123.
Escalante-Garcia, J. I., L. J. Espinoza-Perez, A. Gorokhovsky, and L. Y. Gomez-Zamorano. 2009. “Coarse blast furnace slag as a cementitious material, comparative study as a partial replacement of portland cement and as an alkali activated cement.” Constr. Build. Mater. 23 (7): 2511–2517. https://doi.org/10.1016/j.conbuildmat.2009.02.002.
Henzinger, C., S. A. Schuhmacher, and L. Festugato. 2018. “Applicability of the porosity/binder index to nonhomogeneous mixtures of fine-grained soil with lignite fly ash.” J. Mater. Civ. Eng.. 30 (9): 06018013. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002447.
Hoppe Filho, J., C. A. O. Pires, O. D. Leite, M. R. Garcez, and M. H. F. Medeiros. 2021. “Characterization of red ceramic waste for application as mineral addition in portland cement.” J. Mater. Civ. Eng. 33 (6): 04021108. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003719.
Jaya, R. P., B. H. A. Bakar, M. A. M. Johari, M. H. W. Ibrahim, M. R. Hainin, and D. S. Jayanti. 2014. “Strength and microstructure analysis of concrete containing rice husk ash under seawater attack by wetting and drying cycles.” Adv. Cem. Res. 26 (3): 145–154. https://doi.org/10.1680/adcr.13.00010.
Kupwade-Patil, K., C. De Wolf, S. Chin, J. Ochsendorf, A. E. Hajiah, A. Al-Mumin, and O. Büyüköztürk. 2018a. “Impact of embodied energy on materials/buildings with partial replacement of ordinary portland cement (OPC) by natural pozzolanic volcanic ash.” J. Cleaner Prod. 177 (Mar): 547–554. https://doi.org/10.1016/j.jclepro.2017.12.234.
Kupwade-Patil, K., S. D. Palkovic, A. Bumajdad, C. Soriano, and O. Büyüköztürk. 2018b. “Use of silica fume and natural volcanic ash as a replacement to portland cement: Micro and pore structural investigation using NMR, XRD, FTIR and X-ray microtomography.” Constr. Build. Mater. 158 (Jan): 574–590. https://doi.org/10.1016/j.conbuildmat.2017.09.165.
Melanta, S., E. Miller-Hooks, and H. G. Avetisyan. 2013. “Carbon footprint estimation tool for transportation construction projects.” J. Constr. Eng. Manage. 139 (5): 547–555. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000598.
Miguel, G. D., L. Festugato, E. Batista Moreira, and M. Bellaver Corte. 2021. “Geopolymers based on recycled glass powder for soil stabilization.” Geotech. Geol. Eng. 38 (4): 4013–4031. https://doi.org/10.1007/s10706-021-01762-7.
Nwankwo, C. O., G. O. Bamigboye, I. E. E. Davies, and T. A. Michaels. 2020. “High volume portland cement replacement: A review.” Constr. Build. Mater. 260 (Nov): 120445. https://doi.org/10.1016/j.conbuildmat.2020.120445.
Oliveira, T. C. F., B. G. S. Dezen, and E. Possan. 2020. “Use of concrete fine fraction waste as a replacement of portland cement.” J. Cleaner Prod. 273 (Nov): 123126. https://doi.org/10.1016/j.jclepro.2020.123126.
Pliya, P., and D. Cree. 2015. “Limestone derived eggshell powder as a replacement in portland cement mortar.” Constr. Build. Mater. 95 (Oct): 1–9. https://doi.org/10.1016/j.conbuildmat.2015.07.103.
Rissanen, J., K. Ohenoja, P. Kinnunen, and M. Illikainen. 2017. “Partial replacement of portland-composite cement by fluidized bed combustion fly ash.” J. Mater. Civ. Eng. 29 (8): 04017061. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001899.
Saldanha, R. B., H. C. Scheuermann Filho, J. E. C. Mallmann, N. C. Consoli, and Reddy K. R. 2018. “Physical–mineralogical–chemical characterization of carbide lime: An environment-friendly chemical additive for soil stabilization.” J. Mater. Civ. Eng. 30 (6): 06018004. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002283.
Scheuermann Filho, H. C., C. G. Martins, R. J. W. Menezes, L. E. Dornelles, and N. C. Consoli. 2021. “The effect of key parameters on the strength of a dispersive soil stabilized with sustainable binders.” Geotech. Geol. Eng. 39 (7): 5395–5404. https://doi.org/10.1007/s10706-021-01833-9.
Scheuermann Filho, H. C., R. L. Sacco, and N. C. Consoli. 2020. “The effect of grain size of ground glass particles on the strength of green stabilized sand.” Soils Rocks 43 (4): 669–677. https://doi.org/10.28927/SR.434669.
Tay, J.-H., and K.-Y. Show. 1991. “Properties of cement made from sludge.” J. Environ. Eng. 117 (2): 236–246. https://doi.org/10.1061/(ASCE)0733-9372(1991)117:2(236).
Thongsanitgarn, P., W. Wongkeo, and A. Chaipanich. 2014. “Hydration and compressive strength of blended cement containing fly ash and limestone as cement replacement.” J. Mater. Civ. Eng. 26 (12): 04014088. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001002.
Zhutovsky, S., and A. Shishkin. 2021. “Recycling of hydrated portland cement paste into new clinker.” Constr. Build. Mater. 280 (Apr): 122510. https://doi.org/10.1016/j.conbuildmat.2021.122510.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 11November 2022

History

Received: Jul 30, 2021
Accepted: Sep 30, 2021
Published online: Sep 1, 2022
Published in print: Nov 1, 2022
Discussion open until: Feb 1, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, Graduate Program of Civil Engineering, Federal Univ. of Rio Grande do Sul, Porto Alegre 90035-190, Brazil (corresponding author). ORCID: https://orcid.org/0000-0001-7590-896X. Email: [email protected]; [email protected]
Ph.D. Candidate, Graduate Program of Civil Engineering, Federal Univ. of Rio Grande do Sul, Porto Alegre 90035-190, Brazil. ORCID: https://orcid.org/0000-0001-6028-9115. Email: [email protected]
Ph.D. Candidate, Graduate Program of Civil Engineering, Federal Univ. of Rio Grande do Sul, Porto Alegre 90035-190, Brazil. ORCID: https://orcid.org/0000-0002-7664-8706. Email: [email protected]
Associate Professor, Graduate Program of Civil Engineering, Federal Univ. of Rio Grande do Sul, Porto Alegre 90035-190, Brazil. ORCID: https://orcid.org/0000-0002-6710-8927. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share