Technical Papers
Aug 25, 2022

Optimal Constituent Mix Ratio for Improved Fresh Properties of Cementitious and Alkali-Activated Porous Concretes

Publication: Journal of Materials in Civil Engineering
Volume 34, Issue 11

Abstract

This study focuses on the ideal mix of constituents (aggregate, binder, liquid phase, and admixtures) for porous concrete (PC) with optimal fresh properties to be used in pervious road pavements. Ordinary portland cement (CEM-I) and alkali-activated blast furnace slag (AA-BFS) were used as binders. This experimental investigation focused on finding the mix proportion that can best produce a consistent fresh mixture in which the mortar attaches strongly to the coarse aggregates. CEM-I and AA-BFS mortars and concretes were designed to meet the consistency criteria for PC mixtures and then tested to assess their volumetric and mechanical properties. The effect of mix composition on the consistency of fresh mixtures was adjudged through statistical analyses. In the case of AA-BFS mixtures, latex admixture (LA) and a polycarboxylate-ether-based superplasticizer (SP) both helped to achieve a higher level of consistency, and the addition of a viscosity-modifying admixture was necessary for CEM-I PC mixtures only. In terms of hardened properties, AA-BFS mortars exhibited slightly higher strengths than CEM-I ones independently of curing time. Although neither LA nor SP increased strength values at the mortar scale, in PC mixtures, the use of LA proved fundamental in the production of AA-BFS concrete with adequate strength values. This study recognizes that the optimization method as per the consistency assessment of fresh mixtures can be applied to PC with both cementitious and AA-BFS binders.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used throughout the study appear in the published article.

Acknowledgments

This research was partially funded by Regione Piemonte in the frame of WIN_STREET Project (Water IN STReet design with Environmental Engineering Technologies for urbanized areas, code F.E.S.R. 2007/2013). The authors would like to thank Ms. Isabella Gaudiuso and Ms. Sandra Frasca for their contribution to the laboratory activities. The materials employed in the investigation were kindly provided by Buzzi Unicem Spa, which is acknowledged for its cooperation and support.

References

Abbott, C. L., and L. Comino-Mateos. 2003. “In-situ hydraulic performance of a permeable pavement sustainable urban drainage system.” Water Environ. J. 17 (3): 187–190. https://doi.org/10.1111/j.1747-6593.2003.tb00460.x.
ACI (American Concrete Institute). 2009. Standard practice for selecting proportions for normal, heavyweight, and mass concrete. ACI PRC-211.1-91. Farmington Hills, MI: ACI.
ACI (American Concrete Institute). 2010. Report on pervious concrete. ACI 522R-10. Farmington Hills, MI: ACI.
ACI (American Concrete Institute). 2014. Report on performance-based requirements for concrete. ACI PRC-329-14. Farmington Hills, MI: ACI.
Ahiablame, L. M., B. A. Engel, and I. Chaubey. 2012. “Effectiveness of low impact development practices: Literature review and suggestions for future research.” Water Air Soil Pollution 223 (7): 4253–4273. https://doi.org/10.1007/s11270-012-1189-2.
Aïtcin, P.-C., and R. J. Flatt. 2016. Science and technology of concrete admixtures. Cambridge, UK: Woodhead Publishing.
Aliabdo, A. A., A. E. M. Abd Elmoaty, and A. M. Fawzy. 2018. “Experimental investigation on permeability indices and strength of modified pervious concrete with recycled concrete aggregate.” Constr. Build. Mater. 193 (Dec): 105–127. https://doi.org/10.1016/j.conbuildmat.2018.10.182.
Alonso, M. M., S. Gismera, M. T. Blanco, M. Lanzón, and F. Puertas. 2017. “Alkali-activated mortars: Workability and rheological behaviour.” Constr. Build. Mater. 145 (Aug): 576–587. https://doi.org/10.1016/j.conbuildmat.2017.04.020.
Aoki, Y., R. S. Ravindrarajah, and H. Khabbaz. 2012. “Properties of pervious concrete containing fly ash.” Road Mater. Pavement Des. 13 (1): 1–11. https://doi.org/10.1080/14680629.2011.651834.
Arhin, S. A., R. Madhi, and W. Khan. 2014. “Optimal mix designs for pervious concrete for an urban area.” Int. J. Eng. Res. Technol. 3 (12): 42–50. https://doi.org/10.17577/IJERTV3IS120111.
Arioz, O., D. K. Bzeni, R. R. Zangy, and E. Arioz. 2020. “Properties of slag-based geopolymer pervious concrete for ambient curing condition.” IOP Conf. Ser.: Mater. Sci. Eng. 737 (1): 012068. https://doi.org/10.1088/1757-899x/737/1/012068.
ASTM. 2011. Standard test method for bulk specific gravity and density of compacted bituminous mixtures using automatic vacuum sealing method. ASTM D6752-11. West Conshohocken, PA: ASTM.
ASTM. 2021. Standard practice for quality management systems in petroleum products, liquid fuels, and lubricants testing laboratories. ASTM D6792. West Conshohocken, PA: ASTM.
Avinash, L., P. Adarsh Reddy, and S. Vivek. 2018. “Study on strength characteristics of pervious concrete using mineral admixtures.” Int. J. Eng. Technol. 7 (3.12): 612. https://doi.org/10.14419/ijet.v7i3.12.16439.
Bakharev, T., J. G. Sanjayan, and Y.-B. Cheng. 2000. “Effect of admixtures on properties of alkali-activated slag concrete.” Cem. Concr. Res. 30 (9): 1367–1374. https://doi.org/10.1016/S0008-8846(00)00349-5.
Barluenga, G., and F. Hernández-Olivares. 2004. “SBR latex modified mortar rheology and mechanical behaviour.” Cem. Concr. Res. 34 (3): 527–535. https://doi.org/10.1016/j.cemconres.2003.09.006.
Bassani, M., L. Tefa, E. Comino, M. Rosso, F. Giurca, A. Garcia Perez, R. Ricci, F. Bertola, and F. Canonico. 2017. “Environmental and engineering performance assessment of biofilters and retention systems for pavement stormwater.” In Proc., AIIT Int. Congress on Transport Infrastructure and Systems: Transport Infrastructure and Systems, 153. London: CRC Press.
Bassani, M., L. Tefa, and P. Palmero. 2019a. “A preliminary investigation into the use of alkali-activated blast furnace slag mortars for high-performance pervious concrete pavements.” In Proc., 5th Int. Symp. on Asphalt Pavements & Environment (APE), Lecture Notes in Civil Engineering, edited by M. Pasetto, M. N. Partl, and G. Tebaldi, 183–192. Cham, Switzerland: Springer.
Bassani, M., L. Tefa, A. Russo, and P. Palmero. 2019b. “Alkali-activation of recycled construction and demolition waste aggregate with no added binder.” Constr. Build. Mater. 205 (Apr): 398–413. https://doi.org/10.1016/j.conbuildmat.2019.02.031.
Beeldens, A., D. Van Gemert, E. De Winne, C. Caestecker, and M. Van Messern. 1997. “Development of porous polymer cement concrete for highway pavements in Belgium.” In Proc., 2nd East Asia Symp. on Polymers in Concrete EASPIC, 121–129. Koriyama, Japan: CRC Press.
Bhutta, M. A. R., N. Hasanah, N. Farhayu, M. W. Hussin, M. bin Md Tahir, and J. Mirza. 2013. “Properties of porous concrete from waste crushed concrete (recycled aggregate).” Constr. Build. Mater. 47 (Oct): 1243–1248. https://doi.org/10.1016/j.conbuildmat.2013.06.022.
Bhutta, M. A. R., K. Tsuruta, and J. Mirza. 2012. “Evaluation of high-performance porous concrete properties.” Constr. Build. Mater. 31 (Jun): 67–73. https://doi.org/10.1016/j.conbuildmat.2011.12.024.
Bu, J., Z. Tian, S. Zheng, and Z. Tang. 2017. “Effect of sand content on strength and pore structure of cement mortar.” J. Wuhan Univ. Technol. Mater. Sci. Ed. 32 (2): 382–390. https://doi.org/10.1007/s11595-017-1607-9.
Burnham, T., B. Izevbekhai, and P. R. Rangaraju. 2006. “The evolution of high-performance concrete pavement design in Minnesota.” In Vol. 25 of Proc., Int. Conf. on Long-Life Concrete Pavements, 27. Washington, DC: Federal Highway Administration.
CEN (European Committee for Standardization). 2010. Tests for mechanical and physical properties of aggregates—Part 2: Methods for the determination of resistance to fragmentation. EN 1097-2:2010. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 2011. Cement—Part 1: Composition, specifications and conformity criteria for common cements. EN 197-1:2011. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 2012. Tests for geometrical properties of aggregates—Part 1: Determination of particle size distribution—Sieving method. EN 933-1:2012. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 2013. Tests for mechanical and physical properties of aggregates—Part 6: Determination of particle density and water absorption. EN 1097-6:2013. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 2016. Methods of testing cement—Part 1: Determination of strength. EN 196-1:2016. Brussels, Belgium: CEN.
Chandrappa, A. K., and K. P. Biligiri. 2016a. “Influence of mix parameters on pore properties and modulus of pervious concrete: An application of ultrasonic pulse velocity.” Mater. Struct. 49 (12): 5255–5271. https://doi.org/10.1617/s11527-016-0858-9.
Chandrappa, A. K., and K. P. Biligiri. 2016b. “Pervious concrete as a sustainable pavement material—Research findings and future prospects: A state-of-the-art review.” Constr. Build. Mater. 111 (May): 262–274. https://doi.org/10.1016/j.conbuildmat.2016.02.054.
Chen, X., Z. Niu, H. Zhang, M. Lu, Y. Lu, M. Zhou, and B. Li. 2020. “Design of a chitosan modifying alkali-activated slag pervious concrete with the function of water purification.” Constr. Build. Mater. 251 (Aug): 118979. https://doi.org/10.1016/j.conbuildmat.2020.118979.
Cheng, A., H.-M. Hsu, S.-J. Chao, and K.-L. Lin. 2011. “Experimental study on properties of pervious concrete made with recycled aggregate.” Int. J. Pavement Res. Technol. 4 (2): 104–110.
Chindaprasirt, P., S. Hatanaka, T. Chareerat, N. Mishima, and Y. Yuasa. 2008. “Cement paste characteristics and porous concrete properties.” Constr. Build. Mater. 22 (5): 894–901. https://doi.org/10.1016/j.conbuildmat.2006.12.007.
Chopra, M., M. Wanielista, C. Ballock, and J. Spence. 2007. Compressive strength of pervious concrete pavements. Orlando, FL: Stormwater Management Academy and Univ. of Central Florida.
Croney, D., and P. Croney. 1997. Design and performance of road pavements. New York: McGraw-Hill Professional.
Davidovits, J. 2005. “Geopolymer chemistry and sustainable development. The poly (sialate) terminology: A very useful and simple model.” In Int. Workshop on Geopolymer Cements and Concrete for the Promotion and Understanding of Green-Chemistry. Saint-Quentin, France: Geopolymer Institute.
Dierkes, C., A. Holte, and W. F. Geiger. 1999. “Heavy metal retention within a porous pavement structure.” In Proc., 8th Int. Conf. on Urban Storm Drainage. Sydney, Australia: Institution of Engineers Australia.
Dietz, M. E. 2007. “Low impact development practices: A review of current research and recommendations for future directions.” Water Air Soil Pollut. 186 (1–4): 351–363. https://doi.org/10.1007/s11270-007-9484-z.
Fassman, E. A., and S. Blackbourn. 2010. “Urban runoff mitigation by a permeable pavement system over impermeable soils.” J. Hydrol. Eng. 15 (6): 475–485. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000238.
Ferguson, B. K. 2005. “Porous pavements.” In Integrative studies in water management and land development. Boca Raton, FL: Taylor & Francis.
Field, R., H. Masters, and M. Singer. 1982. “An overview of porous pavement research.” JAWRA J. Am. Water Resour. Assoc. 18 (2): 265–270. https://doi.org/10.1111/j.1752-1688.1982.tb03970.x.
Ghafoori, N., and S. Dutta. 1995a. “Development of no-fines concrete pavement applications.” J. Transp. Eng. 121 (3): 283–288. https://doi.org/10.1061/(ASCE)0733-947X(1995)121:3(283).
Ghafoori, N., and S. Dutta. 1995b. “Laboratory investigation of compacted no-fines concrete for paving materials.” J. Mater. Civ. Eng. 7 (3): 183–191. https://doi.org/10.1061/(ASCE)0899-1561(1995)7:3(183).
Gilbert, J. K., and J. C. Clausen. 2006. “Stormwater runoff quality and quantity from asphalt, paver, and crushed stone driveways in Connecticut.” Water Res. 40 (4): 826–832. https://doi.org/10.1016/j.watres.2005.12.006.
Güneyisi, E., M. Gesoğlu, Q. Kareem, and S. İpek. 2016. “Effect of different substitution of natural aggregate by recycled aggregate on performance characteristics of pervious concrete.” Mater. Struct. 49 (1–2): 521–536. https://doi.org/10.1617/s11527-014-0517-y.
Hoerner, T. E., M. I. Darter, L. Khazanovich, L. Titus-Glover, and L. R. Smith. 2000. Improved prediction models for PCC pavement performance-related specifications. Volume I: Final report. McLean, VA: Office of Engineering R&D Federal Highway Administration.
Huang, B., H. Wu, X. Shu, and E. G. Burdette. 2010. “Laboratory evaluation of permeability and strength of polymer-modified pervious concrete.” Constr. Build. Mater. 24 (5): 818–823. https://doi.org/10.1016/j.conbuildmat.2009.10.025.
Huang, H., C. Qian, F. Zhao, J. Qu, J. Guo, and M. Danzinger. 2016. “Improvement on microstructure of concrete by polycarboxylate superplasticizer (PCE) and its influence on durability of concrete.” Constr. Build. Mater. 110 (May): 293–299. https://doi.org/10.1016/j.conbuildmat.2016.02.041.
Ibrahim, A., E. Mahmoud, M. Yamin, and V. C. Patibandla. 2014. “Experimental study on Portland cement pervious concrete mechanical and hydrological properties.” Constr. Build. Mater. 50 (Jan): 524–529. https://doi.org/10.1016/j.conbuildmat.2013.09.022.
Jang, J. G., Y. B. Ahn, H. Souri, and H. K. Lee. 2015. “A novel eco-friendly porous concrete fabricated with coal ash and geopolymeric binder: Heavy metal leaching characteristics and compressive strength.” Constr. Build. Mater. 79 (Mar): 173–181. https://doi.org/10.1016/j.conbuildmat.2015.01.058.
Jo, M., L. Soto, M. Arocho, J. St John, and S. Hwang. 2015. “Optimum mix design of fly ash geopolymer paste and its use in pervious concrete for removal of fecal coliforms and phosphorus in water.” Constr. Build. Mater. 93 (Sep): 1097–1104. https://doi.org/10.1016/j.conbuildmat.2015.05.034.
Joshaghani, A., A. A. Ramezanianpour, O. Ataei, and A. Golroo. 2015. “Optimizing pervious concrete pavement mixture design by using the Taguchi method.” Constr. Build. Mater. 101 (Part 1): 317–325. https://doi.org/10.1016/j.conbuildmat.2015.10.094.
Kevern, J., K. Wang, M. T. Suleiman, and V. Schaefer. 2005. “Mix design development for pervious concrete in cold weather climates.” In Proc., Mid-Continent Transportation Research Symp. Ames, IA: Iowa DOT.
Kevern, J. T., V. R. Schaefer, and K. Wang. 2009. “Evaluation of pervious concrete workability using gyratory compaction.” J. Mater. Civ. Eng. 21 (12): 764–770. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:12(764).
Kevern, J. T., V. R. Schaefer, and K. Wang. 2011. “Mixture proportion development and performance evaluation of pervious concrete for overlay applications.” ACI Mater. J. 108 (4): 439–448.
Kim, Y. J., A. Gaddafi, and I. Yoshitake. 2016. “Permeable concrete mixed with various admixtures.” Mater. Des. 100 (Jun): 110–119. https://doi.org/10.1016/j.matdes.2016.03.109.
Komnitsas, K. A. 2011. “Potential of geopolymer technology towards green buildings and sustainable cities.” Procedia Eng. 21: 1023–1032. https://doi.org/10.1016/j.proeng.2011.11.2108.
Krizan, D., and B. Zivanovic. 2002. “Effects of dosage and modulus of water glass on early hydration of alkali–slag cements.” Cem. Concr. Res. 32 (8): 1181–1188. https://doi.org/10.1016/S0008-8846(01)00717-7.
Lane, D. S. 1998. Evaluation of concrete characteristics for rigid pavements. Charlottesville, VA: Virginia Transportation Research Council.
Lee, N. K., E. M. Kim, and H. K. Lee. 2016. “Mechanical properties and setting characteristics of geopolymer mortar using styrene-butadiene (SB) latex.” Constr. Build. Mater. 113 (Jun): 264–272. https://doi.org/10.1016/j.conbuildmat.2016.03.055.
Legret, M., V. Colandini, and C. Le Marc. 1996. “Effects of a porous pavement with reservoir structure on the quality of runoff water and soil.” Supplement, Sci. Total Environ. 189 (SC): 335–340. https://doi.org/10.1016/0048-9697(96)05228-X.
Lewis, W. J., and G. Lewis. 1991. “The influence of polymer latex modifiers on the properties of concrete.” Constr. Build. Mater. 5 (4): 201–207. https://doi.org/10.1016/0950-0618(91)90051-L.
Li, L. G., J.-J. Feng, J. Zhu, S.-H. Chu, and A. K. H. Kwan. 2019. “Pervious concrete: Effects of porosity on permeability and strength.” Mag. Concr. Res. 73 (2): 69–79. https://doi.org/10.1680/jmacr.19.00194.
Li, L. G., and A. K. H. Kwan. 2015. “Effects of superplasticizer type on packing density, water film thickness and flowability of cementitious paste.” Constr. Build. Mater. 86 (Jul): 113–119. https://doi.org/10.1016/j.conbuildmat.2015.03.104.
Lian, C., and Y. Zhuge. 2010. “Optimum mix design of enhanced permeable concrete—An experimental investigation.” Constr. Build. Mater. 24 (12): 2664–2671. https://doi.org/10.1016/j.conbuildmat.2010.04.057.
Lian, C., Y. Zhuge, and S. Beecham. 2011. “The relationship between porosity and strength for porous concrete.” Constr. Build. Mater. 25 (11): 4294–4298. https://doi.org/10.1016/j.conbuildmat.2011.05.005.
Liu, H., G. Luo, H. Wei, and H. Yu. 2018. “Strength, permeability, and freeze-thaw durability of pervious concrete with different aggregate sizes, porosities, and water-binder ratios.” Appl. Sci. 8 (8): 1217. https://doi.org/10.3390/app8081217.
Muthaiyan, U. M., and S. Thirumalai. 2017. “Studies on the properties of pervious fly ash-cement concrete as a pavement material.” Cogent Eng. 4 (1): 1318802. https://doi.org/10.1080/23311916.2017.1318802.
National Ready Mixed Concrete Association. 2020. “PIP1—Guide to specifying pervious concrete.” In Pervious in practice, methods, materials, mixtures. Silver Spring, MD: National Ready Mixed Concrete Association.
Nematollahi, B., and J. Sanjayan. 2014. “Effect of different superplasticizers and activator combinations on workability and strength of fly ash based geopolymer.” Mater. Des. 57 (May): 667–672. https://doi.org/10.1016/j.matdes.2014.01.064.
Obla, K., H. Kim, and C. Lobo. 2007a. Effect of continuous (well-graded) combined aggregate grading on concrete performance, phase A: Aggregate voids content (packing density). Silver Spring, MD: National Ready Mixed Concrete Association.
Obla, K., H. Kim, and C. Lobo. 2007b. Effect of continuous (well-graded) combined aggregate grading on concrete performance, phase B: Concrete performance. Silver Spring, MD: National Ready Mixed Concrete Association.
Obla, K. H. 2010. “Pervious concrete—An overview.” Indian Concr. J. 84 (8): 9–18.
Obla, K. H., H. Kim, and C. L. Lobo. 2016a. “Criteria for freeze-thaw resistant concrete mixtures.” Adv. Civ. Eng. Mater. 5 (2): 119–141.
Obla, K. H., C. L. Lobo, and H. Kim. 2016b. “Tests and criteria for concrete resistant to chloride ion penetration.” ACI Mater. J. 113 (5): 621–631. https://doi.org/10.14359/51689107.
O’Brien, R. M. 2007. “A caution regarding rules of thumb for variance inflation factors.” Qual. Quantity 41 (5): 673–690. https://doi.org/10.1007/s11135-006-9018-6.
Pacheco-Torgal, F., D. Moura, Y. Ding, and S. Jalali. 2011. “Composition, strength and workability of alkali-activated metakaolin based mortars.” Constr. Build. Mater. 25 (9): 3732–3745. https://doi.org/10.1016/j.conbuildmat.2011.04.017.
Pagotto, C., M. Legret, and P. Le Cloirec. 2000. “Comparison of the hydraulic behaviour and the quality of highway runoff water according to the type of pavement.” Water Res. 34 (18): 4446–4454. https://doi.org/10.1016/S0043-1354(00)00221-9.
Palacios, M., M. M. Alonso, C. Varga, and F. Puertas. 2019. “Influence of the alkaline solution and temperature on the rheology and reactivity of alkali-activated fly ash pastes.” Cem. Concr. Compos. 95 (Jan): 277–284. https://doi.org/10.1016/j.cemconcomp.2018.08.010.
Palacios, M., Y. F. Houst, P. Bowen, and F. Puertas. 2009. “Adsorption of superplasticizer admixtures on alkali-activated slag pastes.” Cem. Concr. Res. 39 (8): 670–677. https://doi.org/10.1016/j.cemconres.2009.05.005.
Palacios, M., and F. Puertas. 2004. “Stability of superplasticizer and shrinkage-reducing admixtures in high basic media.” Materiales de Construcción 54 (276): 65–86. https://doi.org/10.3989/mc.2004.v54.i276.256.
Palacios, M., and F. Puertas. 2005. “Effect of superplasticizer and shrinkage-reducing admixtures on alkali-activated slag pastes and mortars.” Cem. Concr. Res. 35 (7): 1358–1367. https://doi.org/10.1016/j.cemconres.2004.10.014.
Park, S. B., D. S. Seo, and J. Lee. 2005. “Studies on the sound absorption characteristics of porous concrete based on the content of recycled aggregate and target void ratio.” Cem. Concr. Res. 35 (9): 1846–1854. https://doi.org/10.1016/j.cemconres.2004.12.009.
Pereira da Costa, F. B., L. M. Haselbach, and L. C. P. da Silva Filho. 2021. “Pervious concrete for desired porosity: Influence of w/c ratio and a rheology-modifying admixture.” Constr. Build. Mater. 268 (Jan): 121084. https://doi.org/10.1016/j.conbuildmat.2020.121084.
Puertas, F., B. González-Fonteboa, I. González-Taboada, M. M. Alonso, M. Torres-Carrasco, G. Rojo, and F. Martínez-Abella. 2018. “Alkali-activated slag concrete: Fresh and hardened behaviour.” Cem. Concr. Compos. 85 (Jan): 22–31. https://doi.org/10.1016/j.cemconcomp.2017.10.003.
Rashad, A. M. 2013. “Alkali-activated metakaolin: A short guide for civil Engineer—An overview.” Constr. Build. Mater. 41 (Apr): 751–765. https://doi.org/10.1016/j.conbuildmat.2012.12.030.
Richardson, D. 2005. Aggregate gradation optimization—Literature search. Rolla, MO: Dept. of Civil, Architectural, and Environmental Engineering, Univ. of Missouri.
Roy, D. M., B. E. Scheetz, R. I. A. Malek, and D. Shi. 1993. Concrete components packing handbook. Washington, DC: Strategic Highway Research Program.
Sata, V., A. Wongsa, and P. Chindaprasirt. 2013. “Properties of pervious geopolymer concrete using recycled aggregates.” Constr. Build. Mater. 42 (May): 33–39. https://doi.org/10.1016/j.conbuildmat.2012.12.046.
Scholz, M., and P. Grabowiecki. 2007. “Review of permeable pavement systems.” Build. Environ. 42 (11): 3830–3836. https://doi.org/10.1016/j.buildenv.2006.11.016.
Shaker, F. A., A. S. El-Dieb, and M. M. Reda. 1997. “Durability of styrene-butadiene latex modified concrete.” Cem. Concr. Res. 27 (5): 711–720. https://doi.org/10.1016/S0008-8846(97)00055-0.
Shilstone, J. S. M. 1990. “Concrete mixture optimization.” Concr. Int. 12 (6): 33–39.
Shu, X., B. Huang, H. Wu, Q. Dong, and E. G. Burdette. 2011. “Performance comparison of laboratory and field produced pervious concrete mixtures.” Constr. Build. Mater. 25 (8): 3187–3192. https://doi.org/10.1016/j.conbuildmat.2011.03.002.
Silva, B., A. P. Ferreira Pinto, A. Gomes, and A. Candeias. 2019. “Fresh and hardened state behaviour of aerial lime mortars with superplasticizer.” Constr. Build. Mater. 225 (Nov): 1127–1139. https://doi.org/10.1016/j.conbuildmat.2019.07.275.
Sonebi, M., M. Bassuoni, and A. Yahia. 2016. “Pervious concrete: Mix design, properties and applications.” RILEM Tech. Lett. 1: 109–115. https://doi.org/10.21809/rilemtechlett.2016.24.
Sprinkel, M. M. 1993. “Twenty-year performance of latex-modified concrete overlays.” In Polymer-modified hydraulic-cement mixtures. West Conshohocken, PA: ASTM.
Sumathy, C. T., M. Dharakumar, M. Saroja Devi, and S. Saccubai. 1997. “Modification of cement mortars by polymer latex.” J. Appl. Polym. Sci. 63 (10): 1251–1257. https://doi.org/10.1002/(SICI)1097-4628(19970307)63:10%3C1251::AID-APP2%3E3.0.CO;2-J.
Sun, K., S. Wang, L. Zeng, and X. Peng. 2019. “Effect of styrene-butadiene rubber latex on the rheological behavior and pore structure of cement paste.” Composites, Part B 163 (Apr): 282–289. https://doi.org/10.1016/j.compositesb.2018.11.017.
Sun, Z., X. Lin, and A. Vollpracht. 2018. “Pervious concrete made of alkali activated slag and geopolymers.” Constr. Build. Mater. 189 (Nov): 797–803. https://doi.org/10.1016/j.conbuildmat.2018.09.067.
Tennis, P. D., M. L. Leming, and D. J. Akers. 2004. Pervious concrete pavements. Skokie, IL: Portland Cement Association.
Tho-in, T., V. Sata, P. Chindaprasirt, and C. Jaturapitakkul. 2012. “Pervious high-calcium fly ash geopolymer concrete.” Constr. Build. Mater. 30 (May): 366–371. https://doi.org/10.1016/j.conbuildmat.2011.12.028.
Thomas, R. J., H. Ye, A. Radlinska, and S. Peethamparan. 2016. “Alkali-activated slag cement concrete.” Concr. Int. 38 (1): 33–38.
Tian, B., Y. Liu, K. Niu, S. Li, J. Xie, and X. Li. 2014. “Reduction of tire-pavement noise by porous concrete pavement.” J. Mater. Civ. Eng. 26 (2): 233–239. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000809.
Tkaczewska, E. 2014. “Effect of the superplasticizer type on the properties of the fly ash blended cement.” Constr. Build. Mater. 70 (Nov): 388–393. https://doi.org/10.1016/j.conbuildmat.2014.07.096.
Trost, S. M. 2004. Flexural strength quality control for concrete pavements. Stillwater, OK: Oklahoma DOT.
Ukrainczyk, N., and A. Rogina. 2013. “Styrene–butadiene latex modified calcium aluminate cement mortar.” Cem. Concr. Compos. 41 (Aug): 16–23. https://doi.org/10.1016/j.cemconcomp.2013.04.012.
Wang, K., V. R. Schaefer, J. T. Kevern, and M. T. Suleiman. 2006. “Development of mix proportion for functional and durable pervious concrete.” In Proc., 2006 NRMCA Concrete Technology Forum—Focus on Pervious Concrete. Silver Spring, MD: National Ready Mixed Concrete Association.
Wang, R., and P. Wang. 2010. “Function of styrene-acrylic ester copolymer latex in cement mortar.” Mater. Struct. 43 (4): 443–451. https://doi.org/10.1617/s11527-009-9501-3.
Wang, S.-D., X.-C. Pu, K. L. Scrivener, and P. L. Pratt. 1995. “Alkali-activated slag cement and concrete: A review of properties and problems.” Adv. Cem. Res. 7 (27): 93–102. https://doi.org/10.1680/adcr.1995.7.27.93.
Wu, H., B. Huang, X. Shu, and Q. Dong. 2011. “Laboratory evaluation of abrasion resistance of portland cement pervious concrete.” J. Mater. Civ. Eng. 23 (5): 697–702. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000210.
Yang, J., and G. Jiang. 2003. “Experimental study on properties of pervious concrete pavement materials.” Cem. Concr. Res. 33 (3): 381–386. https://doi.org/10.1016/S0008-8846(02)00966-3.
Zaetang, Y., A. Wongsa, V. Sata, and P. Chindaprasirt. 2015. “Use of coal ash as geopolymer binder and coarse aggregate in pervious concrete.” Constr. Build. Mater. 96 (Oct): 289–295. https://doi.org/10.1016/j.conbuildmat.2015.08.076.
Zhong, R., and K. Wille. 2015. “Material design and characterization of high performance pervious concrete.” Constr. Build. Mater. 98 (Nov): 51–60. https://doi.org/10.1016/j.conbuildmat.2015.08.027.
Zhong, S., and Z. Chen. 2002. “Properties of latex blends and its modified cement mortars.” Cem. Concr. Res. 32 (10): 1515–1524. https://doi.org/10.1016/S0008-8846(02)00813-X.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 11November 2022

History

Received: Sep 7, 2021
Accepted: Mar 2, 2022
Published online: Aug 25, 2022
Published in print: Nov 1, 2022
Discussion open until: Jan 25, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, Dept. of Environment, Land, and Infrastructure Engineering, Politecnico di Torino, 24, corso Duca degli Abruzzi, Torino 10129, Italy (corresponding author). ORCID: https://orcid.org/0000-0003-2560-1497. Email: [email protected]
Assistant Professor, Dept. of Environment, Land, and Infrastructure Engineering, Politecnico di Torino, 24, corso Duca degli Abruzzi, Torino 10129, Italy. ORCID: https://orcid.org/0000-0003-4988-4882. Email: [email protected]
Associate Professor, Dept. of Structural, Geotechnical, and Building Engineering, Politecnico di Torino, 24, corso Duca degli Abruzzi, Torino 10129, Italy. Email: [email protected]
Professor, Dept. of Applied Science and Technology, Politecnico di Torino, 24, corso Duca degli Abruzzi, Torino 10129, Italy. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Properties and Microstructure of Alkali-Activated Slag Paste Modified by Superabsorbent Polymers, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-17117, 36, 5, (2024).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share