Technical Papers
Jul 22, 2022

Recycling Construction and Demolition Waste as Aggregate in Porous Asphalt Pavement for Urban Stormwater Management

Publication: Journal of Materials in Civil Engineering
Volume 34, Issue 10

Abstract

This paper investigates the viability of recycling construction and demolition waste as aggregate in porous asphalt pavement for stormwater runoff management. The influence of granulometric composition, recycled aggregate content (0%, 12.5%, 25%, and 37.5%), and binder content (4% to 6%) was investigated. A comprehensive characterization to identify the minimum binder content that might ensure a suitable hydraulic conductivity with minimum influence in the mechanical properties and moisture-induced damage was performed. The tested mixtures presented suitable particle loss, tensile strength, moisture-induced damage, and hydraulic conductivity for application as porous asphalt mixture for urban stormwater runoff management. The use of recycled aggregate resulted in acceptable air voids content only in mixtures produced with a binder content of 4.5%. The porous asphalt mixture produced with granulometric composition GC3, 25% recycled aggregate, and 4.5% asphalt binder could be potentially used for the intended application in stormwater runoff management.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The data supporting the paper findings are available within the paper and supplementary file.

Acknowledgments

This project was partially funded by the National Council for Scientific and Technological Development (CNPq) and CAPES Foundation.

References

AASHTO. 2018. Resistance of compacted asphalt mixtures to moisture-induced damage. AASHTO T 283. Washington, DC: AASHTO.
AASHTO. 2021. Theoretical maximum specific gravity (Gmm) and density of asphalt mixtures. AASHTO T 209. Washington, DC: AASHTO.
ABNT (Acronym for Brazilian Association for Technical Standards). 2015. Pavimentos permeáveis de concreto—Requisitos e procedimentos. NBR 16416. São Paulo, Brazil: ABNT.
ABNT (Associacao Brasileira De Normas Tecnicas). 2004. Agregados reciclados de resíduos sólidos da construção civil—Utilização em pavimentação e preparo de concreto sem função estrutural—Requisitos. NBR 15116. São Paulo, Brazil: ABNT.
ABRELPE (Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais). 2020. Panorama dos resíduos sólidos no Brasil 2019. São Paulo, Brazil: ABRELPE.
ACI (American Concrete Institute). 2010. Pervious concrete. ACI 522R-10. Farmington Hills, MI: ACI.
AFNOR (Association Française de Normalisation). 1993. Mesure de propriétés liées à la perméabilité des matériaux des mélanges hydrocarbonés—Partie 2 : Détermination du pourcentage de vides communicants des matériaux liés. NF P98-254-2. Paris: AFNOR.
Afonso, M. L., M. Dinis-Almeida, and C. S. Fael. 2017. “Study of the porous asphalt performance with cellulosic fibres.” Constr. Build. Mater. 135 (Mar): 104–111. https://doi.org/10.1016/j.conbuildmat.2016.12.222.
Afonso, M. L., T. S. Santos, C. S. Fael, and M. Dinis-Almeida. 2019. “Hydraulic conductivity of the permeable asphalt pavement—Laboratory vs in situ test.” IOP Conf. Ser. Mater. Sci. Eng. 471 (2): 022023. https://doi.org/10.1088/1757-899X/471/2/022023.
Akhtar, A., and A. K. Sarmah. 2018. “Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective.” J. Cleaner Prod. 186 (Jun): 262–281. https://doi.org/10.1016/j.jclepro.2018.03.085.
Alvarez, A. E., A. E. Martin, and C. Estakhri. 2011. “A review of mix design and evaluation research for permeable friction course mixtures.” Constr. Build. Mater. 25 (3): 1159–1166. https://doi.org/10.1016/j.conbuildmat.2010.09.038.
Arocho-Irizarry, M., R. Segarra, V. M. Diaz, and S. Hwang. 2018. “Eco-friendly pervious concrete infrastructure for stormwater management and bicycle parking: A case study.” Urban Water J. 15 (7): 713–721. https://doi.org/10.1080/1573062X.2018.1536760.
ASTM. 2013. Standard practice for open-graded friction course (OGFC) mix design. ASTM D7064/D7064M. West Conshohocken, PA: ASTM.
ASTM. 2017. Standard test method for indirect tensile (IDT) strength of bituminous mixtures 1. ASTM D6931-17. West Conshohocken, PA: ASTM.
Bentarzi, Y., A. Ghenaim, A. Terfous, A. Wanko, F. Feugeas, J. B. Poulet, and R. Mosé. 2016. “Hydrodynamic behaviour of a new permeable pavement material under high rainfall conditions.” Urban Water J. 13 (7): 687–696. https://doi.org/10.1080/1573062X.2015.1024688.
Bentarzi, Y., A. Terfous, A. Ghenaim, A. Wanko, F. Hlawka, and J. B. Poulet. 2013. “Hydrodynamic characteristics of a new permeable pavement material produced from recycled concrete and organic matter.” Urban Water J. 10 (4): 260–267. https://doi.org/10.1080/1573062X.2012.727835.
Brasileiro, L. L. 2013. Utilização de agregados reciclados provenientes de RCD em substituição ao agregado natural no concreto asfáltico. Teresina, Brazil: Nature Science Center.
Cantero, B., I. F. Sáez del Bosque, A. Matías, M. I. Sánchez de Rojas, and C. Medina. 2019. “Inclusion of construction and demolition waste as a coarse aggregate and a cement addition in structural concrete design.” Arch. Civ. Mech. Eng. 19 (4): 1338–1352. https://doi.org/10.1016/j.acme.2019.08.004.
Castillo-Rodríguez, J. T., I. Andrés-Doménech, M. Martín, I. Escuder-Bueno, S. Perales-Momparler, and J. Mira-Peidro. 2021. “Quantifying the impact on stormwater management of an innovative ceramic permeable pavement solution.” Water Resour. Manage. 35 (4): 1251–1271. https://doi.org/10.1007/s11269-021-02778-7.
Chen, J. S., and C. H. Yang. 2020. “Porous asphalt concrete: A review of design, construction, performance and maintenance.” Int. J. Pavement Res. Technol. 13 (6): 601–612. https://doi.org/10.1007/s42947-020-0039-7.
Chen, M. J., and Y. D. Wong. 2015. “Porous asphalt mixture with a combination of solid waste aggregates.” J. Mater. Civ. Eng. 27 (6): 04014194. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001154.
De Paula Junior, A. C. 2019. Estudo do potencial de aplicação de resíduo de concreto em substituição ao agregado graúdo para concretos permeáveis. Juiz de Fora, Brazil: Dept. of Civil Engineering.
Dumke, M. P. 2005. Concreto Asfáltico Drenante Com Fibras De Celulose, Ligante Modificado Por Polímero E Asfalto-Borracha. Florianópolis, Brazil: Dept. of Civil Engineering.
Frigio, F., E. Pasquini, M. N. Partl, and F. Canestrari. 2015. “Use of reclaimed asphalt in porous asphalt mixtures: Laboratory and field evaluations.” J. Mater. Civ. Eng. 27 (7): 04014211. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001182.
Gautam, P. K., P. Kalla, R. Nagar, and A. S. Jethoo. 2018. “Laboratory investigation on use of quarry waste in open graded friction course.” Resour. Policy 59 (Sep): 62–67. https://doi.org/10.1016/j.resourpol.2018.02.009.
Ghisellini, P., M. Ripa, and S. Ulgiati. 2018. “Exploring environmental and economic costs and benefits of a circular economy approach to the construction and demolition sector. A literature review.” J. Cleaner Prod. 178 (Mar): 618–643. https://doi.org/10.1016/j.jclepro.2017.11.207.
Guimarães, J. M. F. 2012. Concreto asfáltico drenante em asfaltos modificados por polímero SBS e borracha moída de pneus. Florianópolis, Brazil: Dept. of Civil Engineering.
Hammes, G., L. P. Thives, and E. Ghisi. 2018. “Application of stormwater collected from porous asphalt pavements for non-potable uses in buildings.” J. Environ. Manage. 222 (May): 338–347. https://doi.org/10.1016/j.jenvman.2018.05.094.
Hamzah, M. O., M. R. M. Hasan, C. N. C. Wan, and N. H. Abdullah. 2010. “A Comparative study on performance of Malaysian porous asphalt mixes incorporating conventional and modified binders.” J. Appl. Sci. 10 (20): 2403–2410. https://doi.org/10.3923/jas.2010.2403.2410.
Ibrahim, H. A., Y. Goh, Z. A. Ng, S. P. Yap, K. H. Mo, C. W. Yuen, and F. Abutaha. 2020. “Hydraulic and strength characteristics of pervious concrete containing a high volume of construction and demolition waste as aggregates.” Constr. Build. Mater. J. 253 (Aug): 1119251. https://doi.org/10.1016/j.conbuildmat.2020.119251.
IPR (Instituto de Pesquisas em Transportes). 1994a. Agregado graúde—Adesividade a ligante betuminoso. DNER-ME 078-94. Rio de Janeiro, Brazil: IPR.
IPR (Instituto de Pesquisas em Transportes). 1994b. Mistura betuminosa—Determinação da densidade aparente.pdf. DNER-ME 117-94. Rio de Janeiro, Brazil: IPR.
IPR (Instituto de Pesquisas em Transportes). 1994c. Misturas betuminosas—Determinação da resistência à tração por compressão diametral. DNER-ME 138-94. Rio de Janeiro, Brazil: IPR.
IPR (Instituto de Pesquisas em Transportes). 1995. Misturas betuminosas a quente—Ensaio Marshall. DNER-ME 043-95. Rio de Janeiro, Brazil: IPR.
IPR (Instituto de Pesquisas em Transportes). 1999. Pavimentação—Pré-misturado a quente com asfalto polímero—Camada porosa de atrito. DNER-ES 386/99. Rio de Janeiro, Brazil: IPR.
IPR (Instituto de Pesquisas em Transportes). 2010. EM Cimento asfáltico modificado por polímero SBS—Especificação de material. DNIT 129-2010. Rio de Janeiro, Brazil: IPR.
Kamali, M., M. Delkash, and M. Tajrishy. 2017. “Evaluation of permeable pavement responses to urban surface runoff.” J. Environ. Manage. 187 (Feb): 43–53. https://doi.org/10.1016/j.jenvman.2016.11.027.
Kayhanian, M., H. Li, J. T. Harvey, and X. Liang. 2019. “Application of permeable pavements in highways for stormwater runoff management and pollution prevention: California research experiences.” Int. J. Transp. Sci. Technol. 8 (4): 358–372. https://doi.org/10.1016/j.ijtst.2019.01.001.
Kolodziej, V. M. F. 2016. Estudo das propriedades acústicas, drenantes e mecânicas de revestimentos asfálticos porosos. Florianópolis, Brazil: Federal Univ. of Santa Catarina.
Li, J., Y. Zhang, G. Liu, and X. Peng. 2017. “Preparation and performance evaluation of an innovative pervious concrete pavement.” Constr. Build. Mater. 138 (May): 479–485. https://doi.org/10.1016/j.conbuildmat.2017.01.137.
National Academies of Sciences, Engineering, and Medicine. 2018. Performance-based mix design for porous friction courses. NCHRP Research Rep. 877. Washington, DC: National Academies Press. https://doi.org/10.17226/25173.
Oliveira, C. G. M. 2003. Estudo de propriedades mecânicas e hidráulicas do concreto asfáltico drenante. Brasília, Brazil: Federal Univ. of Brasília.
Oliveira, T. C. F., B. G. S. Dezen, and E. Possan. 2020. “Use of concrete fine fraction waste as a replacement of Portland cement.” J. Cleaner Prod. 273 (Nov): 123126. https://doi.org/10.1016/j.jclepro.2020.123126.
Pappalardo, V., and D. La Rosa. 2020. “Policies for sustainable drainage systems in urban contexts within performance-based planning approaches.” Sustainable Cities Soc. 52 (Sep): 101830. https://doi.org/10.1016/j.scs.2019.101830.
Pappalardo, V., D. La Rosa, A. Campisano, and P. La Greca. 2017. “The potential of green infrastructure application in urban runoff control for land use planning: A preliminary evaluation from a southern Italy case study.” Ecosyst. Serv. 26 (Jun): 345–354. https://doi.org/10.1016/j.ecoser.2017.04.015.
Pattanaik, M. L., R. Choudhary, and B. Kumar. 2018. “Clogging evaluation of open graded friction course mixes with EAF steel slag and modified binders.” Constr. Build. Mater. 159 (Jan): 220–233. https://doi.org/10.1016/j.conbuildmat.2017.10.096.
Porse, E., and S. Pincetl. 2019. “Effects of stormwater capture and use on urban streamflows.” Water Resour. Manage. 33 (2): 713–723. https://doi.org/10.1007/s11269-018-2134-y.
Poulikakos, L. D., R. Gubler, M. N. Partl, M. Pittet, A. Junod, L. Arnaud, and E. Simond. 2006a. “Current state of porous asphalt in Switzerland.” In Proc., 10th Int. Conf. on Asphalt Pavements, 10. Québec: International Society for Asphalt Pavements.
Poulikakos, L. D., M. Pittet, L. Arnaud, A. Junod, R. Gubler, E. Simond, M. Partl, and A.-G. Dumont. 2006b. “Mechanical properties of porous asphalt, recommendations for standardization.” In Proc., Faculte de L’environnement Naturel, Architectural et Construit, Laboratoire des Voies de Circulation—LAVOC, 110. Lausanne, Switzerland: Ecole Polytechnique Fédérale de Lausanne.
Putman, B. J., and L. C. Kline. 2012. “Comparison of mix design methods for porous asphalt mixtures.” J. Mater. Civ. Eng. 24 (11): 1359–1367. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000529.
Rahman, M. A., M. A. Imteaz, A. Arulrajah, J. Piratheepan, and M. M. Disfani. 2015. “Recycled construction and demolition materials in permeable pavement systems: Geotechnical and hydraulic characteristics.” J. Cleaner Prod. 90 (Mar): 183–194. https://doi.org/10.1016/j.jclepro.2014.11.042.
Revilla-Cuesta, V., M. Skaf, F. Faleschini, J. M. Manso, and V. Ortega-López. 2020. “Self-compacting concrete manufactured with recycled concrete aggregate: An overview.” J. Cleaner Prod. 262 (Jul): 262121362. https://doi.org/10.1016/j.jclepro.2020.121362.
Shirini, B., and R. Imaninasab. 2016. “Performance evaluation of rubberized and SBS modified porous asphalt mixtures.” Constr. Build. Mater. 107 (Mar): 165–171. https://doi.org/10.1016/j.conbuildmat.2016.01.006.
Silva, C. A. R. 2009. Estudo do agregado reciclado de construção civil em misturas betuminosas para vias urbanas. Ouro Preto, Brazil: Federal Univ. of Ouro Preto.
Silva, R. V., J. De Brito, and R. K. Dhir. 2019. “Use of recycled aggregates arising from construction and demolition waste in new construction applications.” J. Cleaner Prod. 236 (Nov): 117629. https://doi.org/10.1016/j.jclepro.2019.117629.
Skaf, M., V. Ortega-López, J. A. Fuente-Alonso, A. Santamaría, and J. M. Manso. 2016. “Ladle furnace slag in asphalt mixes.” Constr. Build. Mater. 122 (Sep): 488–495. https://doi.org/10.1016/j.conbuildmat.2016.06.085.
Sriravindrarajah, R., K. J. Mohammad, and A. Singh. 2013. “Permeability and drying of pervious concrete pavers.” In Proc., 7th Int. Structural Engineering and Construction Conf.: New Developments in Structural Engineering and Construction, edited by S. Yazdani and A. Singh, 1703–1707. Honolulu: International Structural Engineering and Construction Society.
Turco, M., G. Brunetti, S. A. Palermo, G. Capano, G. Grossi, M. Maiolo, and P. Piro. 2020. “On the environmental benefits of a permeable pavement: Metals potential removal efficiency and life cycle assessment.” Urban Water J. 17 (7): 619–627. https://doi.org/10.1080/1573062X.2020.1713380.
Vaz, I. C. M., E. Ghisi, and L. P. Thives. 2020. “Life cycle energy assessment and economic feasibility of stormwater harvested from pervious pavements.” Water Res. 172 (Mar): 170115322. https://doi.org/10.1016/j.watres.2019.115322.
Weiss, P. T., M. Kayhanian, J. S. Gulliver, and L. Khazanovich. 2019. “Permeable pavement in northern North American urban areas: Research review and knowledge gaps.” Int. J. Pavement Eng. 20 (2): 143–162. https://doi.org/10.1080/10298436.2017.1279482.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 10October 2022

History

Received: Aug 31, 2021
Accepted: Feb 3, 2022
Published online: Jul 22, 2022
Published in print: Oct 1, 2022
Discussion open until: Dec 22, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

J. L. Carmo [email protected]
CEng.
Environmental Engineering Postgraduation Program, Regional Univ. of Blumenau, 3250 São Paulo St., Blumenau, SC 89030-000, Brazil. Email: [email protected]
A. B. Rohden, Dr.Eng. [email protected]
Adjunt Professor, Environmental Engineering Postgraduation Program, Regional Univ. of Blumenau, 3250 São Paulo St., Blumenau, SC 89030-000, Brazil. Email: [email protected]
Associate Professor, Civil Engineering Postgraduation Program: Construction and Infrastructure, Federal Univ. of Rio Grande do Sul, 99 Osvaldo Aranha Ave., 7th floor, Room 706, Porto Alegre, RS 90035-190, Brazil (corresponding author). ORCID: https://orcid.org/0000-0003-1641-5705. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share