Abstract

This study aims at analyzing the influence of agroindustrial waste incorporation into red ceramics to produce lightweight aggregates sintered in a microwave oven. Sustainable artificial lightweight aggregates are sought out, particularly in the context of a circular economy. At first, red clay, sugarcane bagasse ash, and rice husk ash were characterized by means of X-ray fluorescence, loss on ignition, X-ray diffraction, grain sizing, true specific mass, and thermal gravimetric analysis. Three different ceramic masses were extruded: the reference, with no added waste; clay with 40% sugarcane bagasse ash; and clay with 40% rice husk ash. All samples were presintered in a conventional oven at 600°C for 60 min. Conventional sintering occurred at temperatures between 700°C and 1,100°C at a 10°C/min heating rate. Microwave sintering occurred for 5, 10, and 15 min, at a 50°C/min heating rate in a chamber coated with silicon carbide (susceptor). After sintering, specimens were characterized regarding linear shrinkage, water absorption, apparent porosity, apparent specific mass, X-ray diffraction, and scanning electron microscopy. Results showed that microwave sintering increased compressive strength, decreased water absorption, and provided microstructure refinement. The addition of waste reduced specimens’ specific mass after sintering. Sugarcane bagasse ash–added red ceramic specimens sintered in a microwave oven yielded values close to those of Brazilian expanded clay, thus appearing as an alternative for production of more sustainable lightweight aggregates, in view of greater agroindustrial waste utilization and lower energetic consumption during the sintering process.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data generated during the study are available from the corresponding author by request.

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES)–Finance Code 001.

References

ABNT (Associação Brasileira de Normas Técnicas). 1995. Rocks and soils—Terminology. NBR 6502. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2016. Soil—Plasticity limit determination. NBR 7180. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2018. Concrete—Compression test of cylindrical specimens. NBR 5739. Rio de Janeiro, Brazil: ABNT.
Agrawal, D. K. 1998. “Microwave processing of ceramics.” Curr. Opin. Solid State Mater. Sci. 3 (5): 480–485. https://doi.org/10.1016/S1359-0286(98)80011-9.
Alavi-Borazjani, S. A., I. Capela, and L. A. C. Tarelho. 2020. “Valorization of biomass ash in biogas technology: Opportunities and challenges.” Energy Rep. 6 (Feb): 472–476. https://doi.org/10.1016/j.egyr.2019.09.010.
Al-Khaiat, H., and M. N. Haque. 1998. “Effect of initial curing on early strength and physical.” Cem. Concr. Res. 28 (6): 859–866. https://doi.org/10.1016/S0008-8846(98)00051-9.
ASTM. 2006. Standard test method for water absorption, bulk density, apparent porosity, and apparent specific gravity of fired whiteware products. ASTM C373-88. West Conshohocken, PA: ASTM.
ASTM. 2018. Standard test methods for chemical analysis of hydraulic cement. ASTM C114. West Conshohocken, PA: ASTM.
Bhattacharya, M., and T. Basak. 2016. “A review on the susceptor assisted microwave processing of materials.” Energy 97 (Feb): 306–338. https://doi.org/10.1016/j.energy.2015.11.034.
Chandrasekhar, S., K. G. Satyanarayana, P. N. Pramada, P. Raghavan, and T. N. Gupta. 2003. “Processing, properties and applications of reactive silica from rice husk—An overview.” J. Mater. Sci. 38 (15): 3159–3168. https://doi.org/10.1023/A:1025157114800.
Ciacco, E. F. S., J. R. Rocha, and A. R. Coutinho. 2017. “The energy consumption in the ceramic tile industry in Brazil.” Appl. Therm. Eng. 113 (Feb): 1283–1289. https://doi.org/10.1016/j.applthermaleng.2016.11.068.
Cinexpan. 2020. Ficha Técnica do Produto: Argila Expandida Tipo 1506. Várzea Paulista, Brasil: CINEXPAN Argila Expandida.
Conab. 2020. Arroz—Análise Mensal—Maio-Junho/2020. Brasília, Brazil: Conab.
Cordeiro, G. C., R. D. Toledo Filho, and E. M. R. Fairbairn. 2009. “Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash.” Constr. Build. Mater. 23 (10): 3301–3303. https://doi.org/10.1016/j.conbuildmat.2009.02.013.
De Silva, G. H. M. J. S., and B. V. A. Perera. 2018. “Effect of waste rice husk ash (RHA) on structural, thermal and acoustic properties of fired clay bricks.” J. Build. Eng. 18 (Sep): 252–259. https://doi.org/10.1016/j.jobe.2018.03.019.
Domagała, L. 2020. “Size effect in compressive strength tests of cored specimens of lightweight aggregate concrete.” Materials 13 (5): 1187. https://doi.org/10.3390/ma13051187.
Ebadzadeh, T., M. H. Sarrafi, and E. Salahi. 2009. “Microwave-assisted synthesis and sintering of mullite.” Ceram. Int. 35 (8): 3175–3179. https://doi.org/10.1016/j.ceramint.2009.05.013.
Ellen Macarthur Foundation. 2013. Towards the circular economy: Economic and business rationale for an accelerated transition. Cowes, UK: Ellen Macarthur Foundation.
FAO (Food and Agriculture Organization). 2019. World food and agriculture—Statistical pocketbook 2019. Rome: FAO.
FAO (Food and Agriculture Organization). 2020. Food outlook—Biannual report on global food markets. Rome: FAO.
Faria, K. C. P., R. F. Gurgel, and J. N. F. Holanda. 2012. “Recycling of sugarcane bagasse ash waste in the production of clay bricks.” J. Environ. Manage. 101 (Jun): 7–12. https://doi.org/10.1016/j.jenvman.2012.01.032.
Fernandes, J. P. C., R. F. K. Gunnewiek, P. M. Souto, and R. H. G. A. Kiminami. 2013. “Monoqueima de porcelanas esmaltadas em forno de micro-ondas.” Ceramica 59 (352): 545–550. https://doi.org/10.1590/S0366-69132013000400009.
Ferraiolo, G., M. Zilli, and A. Converti. 2007. “Fly ash disposal and utilization.” J. Chem. Technol. Biotechnol. 47 (4): 281–305. https://doi.org/10.1002/jctb.280470402.
Jafari, S., and S. S. Mahini. 2017. “Lightweight concrete design using gene expression programing.” Constr. Build. Mater. 139 (May): 93–100. https://doi.org/10.1016/j.conbuildmat.2017.01.120.
Jittin, V., A. Bahurudeen, and S. D. Ajinkya. 2020. “Utilisation of rice husk ash for cleaner production of different construction products.” J. Cleaner Prod. 263 (Aug): 121578. https://doi.org/10.1016/j.jclepro.2020.121578.
Kazmi, S. M. S., S. Abbas, M. J. Munir, and A. Khitab. 2016. “Exploratory study on the effect of waste rice husk and sugarcane bagasse ashes in burnt clay bricks.” J. Build. Eng. 7 (Sep): 372–378. https://doi.org/10.1016/j.jobe.2016.08.001.
Kazmi, S. M. S., M. J. Munir, I. Patnaikuni, and Y.-F. Wu. 2017. “Pozzolanic reaction of sugarcane bagasse ash and its role in controlling alkali silica reaction.” Constr. Build. Mater. 148 (Sep): 231–240. https://doi.org/10.1016/j.conbuildmat.2017.05.025.
Keen, D. A., and M. T. Dove. 1999. “Local structures of amorphous and crystalline phases of silica, SiO2, by neutron total scattering.” J. Phys.: Condens. Matter 11 (47): 9263–9273. https://doi.org//10.1088/0953-8984/11/47/311.
Khan, I., and R. Umar. 2019. “Environmental risk assessment of coal fly ash on soil and groundwater quality, Aligarh, India.” Groundwater Sustainable Dev. 8 (Dec): 346–357. https://doi.org/10.1016/j.gsd.2018.12.002.
Kirkelund, G. M., L. Skevi, and L. M. Ottosen. 2020. “Electrodialytically treated MSWI fly ash use in clay bricks.” Constr. Build. Mater. 254 (Sep): 119286. https://doi.org/10.1016/j.conbuildmat.2020.119286.
Lyra, G. P., V. dos Santos, B. C. De Santis, R. R. Rivaben, C. Fischer, E. M. D. J. A. Pallone, and J. A. Rossignolo. 2019. “Reuse of sugarcane bagasse ash to produce a lightweight aggregate using microwave oven sintering.” Constr. Build. Mater. 222 (Oct): 222–228. https://doi.org/10.1016/j.conbuildmat.2019.06.150.
Ma, S. J., X. W. Zhou, X. J. Su, W. Mo, J. L. Yang, and P. Liu. 2009. “A new practical method to determine the microwave energy absorption ability of materials.” Miner. Eng. 22 (13): 1154–1159. https://doi.org/10.1016/j.mineng.2009.05.003.
Menezes, R. R., P. M. Souto, and R. H. G. A. Kiminami. 2007. “Sinterização de cerâmicas em microondas. Parte I: Aspectos fundamentais.” Ceramica 53 (325): 1–10. https://doi.org/10.1590/S0366-69132007000100002.
Monteiro, S. N., and C. M. F. Vieira. 2014. “On the production of fired clay bricks from waste materials: A critical update.” Constr. Build. Mater. 68 (Jan): 599–610. https://doi.org/10.1016/j.conbuildmat.2014.07.006.
Muthuraj, R., C. Lacoste, P. Lacroix, and A. Bergeret. 2019. “Sustainable thermal insulation biocomposites from rice husk, wheat husk, wood fibers and textile waste fibers: Elaboration and performances evaluation.” Ind. Crops Prod. 135 (Sep): 238–245. https://doi.org/10.1016/j.indcrop.2019.04.053.
Oghbaei, M., and O. Mirzaee. 2010. “Microwave versus conventional sintering: A review of fundamentals, advantages and applications.” J. Alloys Compd. 494 (1–2): 175–189. https://doi.org/10.1016/j.jallcom.2010.01.068.
Pandey, S., D. Byerlee, D. Dawe, A. Dobermann, S. Mohanty, S. Rozelle, and B. Hardy. 2010. Rice in the global economy: Strategic research and policy issues for food security. Los Baños, Philippines: International Rice Reaserch Institute.
Pode, R. 2016. “Potential applications of rice husk ash waste from rice husk biomass power plant.” Renewable Sustainable Energy Rev. 53 (Jan): 1468–1485. https://doi.org/10.1016/j.rser.2015.09.051.
Presenda, Á., M. D. Salvador, F. L. Peñaranda-Foix, R. Moreno, and A. Borrell. 2015. “Effect of microwave sintering on microstructure and mechanical properties in Y-TZP materials used for dental applications.” Ceram. Int. 41 (5): 7125–7132. https://doi.org/10.1016/j.ceramint.2015.02.025.
Priyadharshini, P., G. M. O. Ganesh, and A. S. Santhi. 2012. “A review on artificial aggregates.” Int. J. Earth Sci. Eng. 5 (4): 540–546.
Rossignolo, J. A., M. V. Borrachero, L. Soriano, and J. Payá. 2018. “Influence of microwave oven calcination on the pozzolanicity of sugar cane bagasse ashes (SCBA) from the cogeneration industry.” Constr. Build. Mater. 187 (Oct): 892–902. https://doi.org/10.1016/j.conbuildmat.2018.08.016.
Rybakov, K. I., E. A. Olevsky, and E. V. Krikun. 2013. “Microwave sintering: Fundamentals and modeling.” J. Am. Ceram. Soc. 96 (4): 1003–1020. https://doi.org/10.1111/jace.12278.
Shafigh, P., L. J. Chai, H. B. Mahmud, and M. A. Nomeli. 2018. “A comparison study of the fresh and hardened properties of normal weight and lightweight aggregate concretes.” J. Build. Eng. 15 (Dec): 252–260. https://doi.org/10.1016/j.jobe.2017.11.025.
Shafigh, P., M. Z. Jumaat, and H. Mahmud. 2010. “Mix design and mechanical properties of oil palm shell lightweight aggregate concrete: A review.” Int. J. Phys. Sci. 5 (14): 2127–2134.
Silva, A. G. P. D., and C. Alves Júnior. 1998. “A sinterização rápida: Sua aplicação, análise e relação com as técnicas inovadoras de sinterização.” Cerâmica 44 (290): 225–232. https://doi.org/10.1590/S0366-69131998000600004.
Smol, M., J. Kulczycka, A. Henclik, K. Gorazda, and Z. Wzorek. 2015. “The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy.” J. Cleaner Prod. 95 (May): 45–54. https://doi.org/10.1016/j.jclepro.2015.02.051.
Thostenson, E. T., and T. W. Chou. 1999. “Microwave processing: Fundamentals and applications.” Composites, Part A 30 (9): 1055–1071. https://doi.org/10.1016/S1359-835X(99)00020-2.
UNICA (União da Indústria de Cana de Açúcar). 2020. Moagem de cana-de-açúcar e produção de açúcar e etanol—Safra 2019/2020. Brasília, Brazil: UNICA.
Vassilev, S. V., C. G. Vassileva, Y. C. Song, W. Y. Li, and J. Feng. 2017. “Ash contents and ash-forming elements of biomass and their significance for solid biofuel combustion.” Fuel 208 (Nov): 377–409. https://doi.org/10.1016/j.fuel.2017.07.036.
Viel, M., F. Collet, and C. Lanos. 2018. “Chemical and multi-physical characterization of agro-resources’ by-product as a possible raw building material.” Ind. Crops Prod. 120 (Sep): 214–237. https://doi.org/10.1016/j.indcrop.2018.04.025.
Wu, S., et al. 2016. “Dioxin distribution characteristics and health risk assessment in different size particles of fly ash from MSWIs in China.” Waste Manage. 50 (Apr): 113–120. https://doi.org/10.1016/j.wasman.2016.01.038.
Zhang, L. 2013. “Production of bricks from waste materials—A review.” Constr. Build. Mater. 47 (Oct): 643–655. https://doi.org/10.1016/j.conbuildmat.2013.05.043.
Zhang, Z., Y. C. Wong, A. Arulrajah, and S. Horpibulsuk. 2018. “A review of studies on bricks using alternative materials and approaches.” Constr. Build. Mater. 188 (Nov): 1101–1118. https://doi.org/10.1016/j.conbuildmat.2018.08.152.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 8August 2022

History

Received: Aug 25, 2021
Accepted: Nov 24, 2021
Published online: May 17, 2022
Published in print: Aug 1, 2022
Discussion open until: Oct 17, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Gabriela Pitolli Lyra [email protected]
Ph.D. Student and Postgraduate Student, Programme in Materials Science and Engineering, Univ. of São Paulo, Univ. of São Paulo/Faculty of Animal Science and Food Engineering, Av. Duque de Caxias Norte, 225, 13.635-900 Pirassununga, Brazil. Email: [email protected]
Bruno Carlos De Santis, Ph.D. [email protected]
Dept. of Materials Engineering, Federal Univ. of São Carlos—UFSCAR, Rod. Washington Luiz, km 235, São Carlos, SP CEP 13565-905, Brazil. Email: [email protected]
Valdemir Santos, Ph.D. [email protected]
Postgraduate, Programme in Materials Science and Engineering, Univ. of São Paulo, Univ. of São Paulo/Faculty of Animal Science and Food Engineering, Av. Duque de Caxias Norte, 225, 13.635-900 Pirassununga, Brazil. Email: [email protected]
Eliria Maria de Jesus Agnolon Pallone [email protected]
Professor and Postgraduate, Programme in Materials Science and Engineering, Univ. of São Paulo, Univ. of São Paulo/Faculty of Animal Science and Food Engineering, Av. Duque de Caxias Norte, 225, 13.635-900 Pirassununga, Brazil. Email: [email protected]
Ruth Herta Goldschmidt Aliaga Kiminami [email protected]
Professor, Dept. of Materials Engineering, Federal Univ. of São Carlos—UFSCAR, Rod. Washington Luiz, km 235, São Carlos, SP CEP 13565-905, Brazil. Email: [email protected]
Professor and Postgraduate, Programme in Materials Science and Engineering, Univ. of São Paulo, Univ. of São Paulo/Faculty of Animal Science and Food Engineering, Av. Duque de Caxias Norte, 225, 13.635-900 Pirassununga, Brazil (corresponding author). ORCID: https://orcid.org/0000-0001-7246-7345. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Experimental investigation and optimization of lightweight concrete bricks developed using vermiculite, Frontiers in Materials, 10.3389/fmats.2023.1117138, 10, (2023).
  • Developing lightweight concrete bricks by replacing fine aggregate with vermiculite: a regression analysis prediction approach, Asian Journal of Civil Engineering, 10.1007/s42107-023-00586-5, (2023).
  • Data Mining based IBBOA-BP Sintering Endpoint Prediction Model, 2022 IEEE 10th International Conference on Computer Science and Network Technology (ICCSNT), 10.1109/ICCSNT56096.2022.9972983, (80-84), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share