Technical Papers
Aug 23, 2021

Characterization of Microstructural Variations in Alkali-Activated Coal Fly Ashes Depending on Their Intrinsic Properties

Publication: Journal of Materials in Civil Engineering
Volume 33, Issue 11

Abstract

There is significant microstructural variability in alkali-activated coal fly ashes (CFA) depending on the activation conditions and the intrinsic properties of the utilized CFAs. This study systematically presents the impact of intrinsic CFA properties on these variations while keeping the activation conditions constant. Four high-Ca and four low-Ca CFAs were activated with 10 M NaOH under hydrothermal conditions (80°C, 1 day). The mineralogical and morphological changes investigated through X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) point out some poorly zeolitic formations with N─ A─ S─ (H) phase for low-Ca samples and with (N, C)─ A─ S─ H phase for high-Ca samples. Due to their self-cementitious properties, the mechanical performance—determined by compressive strength tests—of the high-Ca CFAs was higher than that of the low-Ca ones; albeit, too much free CaO had a detrimental effect. In all samples, the performance was enhanced with increased fineness. The mechanical performance of alkali-activated CFAs is mainly attributed to the amorphous or poorly crystalline phases. XRD and FTIR were able to confirm the amorphous gel formation. However, a direct correlation of their results with strength development could not be established. On the other hand, the SEM micrographs of the higher-strength samples showed a denser structure. Obtained results map out microstructural variations of alkali-activated CFAs, guiding the way for their effective reutilization.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Raw data were generated at Middle East Technical University. Derived data supporting the findings of this study appear in the published article and are available from the corresponding author upon request as well.

Acknowledgments

This study was supported by METU BAP Grant Nos. GAP-303-2018-2692 and GAP-303-2020-10287. The authors also wish to acknowledge the support of TÜRKÇİMENTO (Turkish Cement Manufacturer Association).

References

Ahmaruzzaman, M. 2010. “A review on the utilization of fly ash.” Progress Energy Combus. Sci. 36 (3): 327–363. https://doi.org/10.1016/j.pecs.2009.11.003.
Alonso, S., and A. Palomo. 2001. “Alkaline activation of metakaolin and calcium hydroxide mixtures: Influence of temperature, activator concentration and solids ratio.” Mater. Lett. 47 (1–2): 55–62. https://doi.org/10.1016/S0167-577X(00)00212-3.
Antiohos, S., and S. Tsimas. 2005. “Investigating the role of reactive silica in the hydration mechanisms of high-calcium fly ash/cement systems.” Cem. Concr. Compos. 27 (2): 171–181. https://doi.org/10.1016/j.cemconcomp.2004.02.004.
Arioz, E., O. Arioz, and O. M. Kockar. 2012. “Leaching of F-type fly ash based geopolymers.” Proc. Eng. 42 (Jan): 1114–1120. https://doi.org/10.1016/j.proeng.2012.07.503.
Atiş, C. D., E. B. Görür, O. Karahan, C. Bilim, S. İlkentapar, and E. Luga. 2015. “Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration.” Constr. Build. Mater. 96 (Oct): 673–678. https://doi.org/10.1016/j.conbuildmat.2015.08.089.
Baba, A., and A. Kaya. 2004. “Leaching characteristics of fly ash from thermal power plants of Soma and Tunçbilek, Turkey.” Environ. Monit. Assess. 91 (1): 171–181. https://doi.org/10.1023/B:EMAS.0000009234.42446.d3.
Bae, S., C. Meral, J. Oh, J. Moon, M. Kunz, and P. J. M. Monteiro. 2014. “Characterization of morphology and hydration products of high-volume fly ash paste by monochromatic scanning X-ray micro-diffraction (μ-SXRD).” Cem. Concr. Res. 59 (May): 155–164. https://doi.org/10.1016/j.cemconres.2014.03.001.
Bakharev, T. 2006. “Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing.” Cem. Concr. Res. 36 (6): 1134–1147. https://doi.org/10.1016/j.cemconres.2006.03.022.
Barbosa, V. F. F., and K. J. D. MacKenzie. 2003. “Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate.” Mater. Res. Bull. 38 (2): 319–331. https://doi.org/10.1016/S0025-5408(02)01022-X.
Bernal, S. A., J. L. Provis, A. Fernández-Jiménez, P. V. Krivenko, E. Kavalerova, M. Palacios, and C. Shi. 2014a. “Binder chemistry—High-calcium alkali-activated materials.” In Alkali activated materials, 59–91. Berlin: Springer.
Bernal, S. A., J. L. Provis, V. Rose, and R. Mejía de Gutierrez. 2011a. “Evolution of binder structure in sodium silicate-activated slag-metakaolin blends.” Cem. Concr. Compos. 33 (1): 46–54. https://doi.org/10.1016/j.cemconcomp.2010.09.004.
Bernal, S. A., J. L. Provis, B. Walkley, R. San Nicolas, J. D. Gehman, D. G. Brice, A. R. Kilcullen, P. Duxson, and J. S. J. van Deventer. 2013. “Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation.” Cem. Concr. Res. 53 (2): 127–144. https://doi.org/10.1016/j.cemconres.2013.06.007.
Bernal, S. A., E. D. Rodríguez, R. Mejía de Gutiérrez, M. Gordillo, and J. L. Provis. 2011b. “Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends.” J. Mater. Sci. 46 (16): 5477–5486. https://doi.org/10.1007/s10853-011-5490-z.
Bernal, S. A., R. San Nicolas, R. J. Myers, R. Mejía de Gutiérrez, F. Puertas, J. S. J. van Deventer, and J. L. Provis. 2014b. “MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders.” Cem. Concr. Res. 57 (Mar): 33–43. https://doi.org/10.1016/j.cemconres.2013.12.003.
Bernal, S. A., J. S. J. van Deventer, and J. L. Provis. 2015. “What happens to 5 year old metakaolin geopolymers’ the effect of alkali cation.” In Proc., 1st Int. Conf. on Calcined Clays for Sustainable Concrete, edited by K. Scrivener and A. Favier. Berlin: Springer.
Bishop, J. L., M. D. Lane, M. D. Dyar, S. J. King, A. J. Brown, and G. A. Swayze. 2014. “Spectral properties of Ca-sulfates: Gypsum, bassanite, and anhydrite.” Am. Mineral. 99 (10): 2105–2115. https://doi.org/10.2138/am-2014-4756.
Blissett, R. S., and N. A. Rowson. 2012. “A review of the multi-component utilisation of coal fly ash.” Fuel 97 (Jul): 1–23. https://doi.org/10.1016/j.fuel.2012.03.024.
Bortnovsky, O., J. Dědeček, Z. Tvarůžková, Z. Sobalík, and J. Šubrt. 2008. “Metal ions as probes for characterization of geopolymer materials.” J. Am. Ceramic Soc. 91 (9): 3052–3057. https://doi.org/10.1111/j.1551-2916.2008.02577.x.
Canfield, G. M., J. Eichler, K. Griffith, and J. D. Hearn. 2014. “The role of calcium in blended fly ash geopolymers.” J. Mater. Sci. 49 (17): 5922–5933. https://doi.org/10.1007/s10853-014-8307-z.
Celik, K., C. Meral, A. P. Gursel, P. K. Mehta, A. Horvath, and P. J. M. Monteiro. 2015. “Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder.” Cem. Concr. Compos. 56 (1): 59–72. https://doi.org/10.1016/j.cemconcomp.2014.11.003.
Celik, K., C. Meral, M. Mancio, P. K. Mehta, and P. J. M. Monteiro. 2014. “A comparative study of self-consolidating concretes incorporating high-volume natural pozzolan or high-volume fly ash.” Constr. Build. Mater. 67 (Sep): 14–19. https://doi.org/10.1016/j.conbuildmat.2013.11.065.
Chen, C., W. Gong, W. Lutze, and I. L. Pegg. 2011. “Kinetics of fly ash geopolymerization.” J. Mater. Sci. 46 (9): 3073–3083. https://doi.org/10.1007/s10853-010-5186-9.
Chen-Tan, N. W., A. van Riessen, and D. C. Southam. 2009. “Determining the reactivity of a fly ash for production of geopolymer.” J. Am. Ceram. Soc. 92 (4): 881–887. https://doi.org/10.1111/j.1551-2916.2009.02948.x.
Chindaprasirt, P., T. Chareerat, S. Hatanaka, and T. Cao. 2011a. “High-strength geopolymer using fine high-calcium fly ash.” J. Mater. Civ. Eng. 23 (3): 264–270. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000161.
Chindaprasirt, P., C. Jaturapitakkul, W. Chalee, and U. Rattanasak. 2009. “Comparative study on the characteristics of fly ash and bottom ash geopolymers.” Waste Manage. 29 (2): 539–543. https://doi.org/10.1016/j.wasman.2008.06.023.
Chindaprasirt, P., and U. Rattanasak. 2010. “Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer.” Waste Manage. 30 (4): 667–672. https://doi.org/10.1016/j.wasman.2009.09.040.
Chindaprasirt, P., U. Rattanasak, and C. Jaturapitakkul. 2011b. “Utilization of fly ash blends from pulverized coal and fluidized bed combustions in geopolymeric materials.” Cem. Concr. Compos. 33 (1): 55–60. https://doi.org/10.1016/j.cemconcomp.2010.09.017.
Criado, M., W. Aperador, and I. Sobrados. 2016. “Microstructural and mechanical properties of alkali activated Colombian raw materials.” Materials (Basel) 9 (3): 158. https://doi.org/10.3390/ma9030158.
Criado, M., A. Fernández-Jiménez, A. G. de la Torre, M. A. G. Aranda, and A. Palomo. 2007a. “An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash.” Cem. Concr. Res. 37 (5): 671–679. https://doi.org/10.1016/j.cemconres.2007.01.013.
Criado, M., A. Fernández-Jiménez, and A. Palomo. 2007b. “Alkali activation of fly ash: Effect of the SiO2/Na2O ratio.” Microporous Mesoporous Mater. 106 (1–3): 180–191. https://doi.org/10.1016/j.micromeso.2007.02.055.
Davidovits, J., M. Izquierdo, X. Querol, D. Antennuci, H. Nugteren, V. Butselaar-Orthlieb, C. Fernandez-Pereira, and Y. Luna. 2014. “Geopolymer cement based on European coal fly ashes, Technical paper #22.” In The European research project GEOASH. Saint-Quentin, France: Institut Géopolymère.
de Silva, P. S., and F. P. Glasser. 1993. “Phase relations in the system CaOAl2O3SiO2H2O relevant to metakaolin-calcium hydroxide hydration.” Cem. Concr. Res. 23 (3): 627–639. https://doi.org/10.1016/0008-8846(93)90014-Z.
Djobo, J. N. Y., L. N. Tchadjié, H. K. Tchakoute, B. B. D. Kenne, A. Elimbi, and D. Njopwouo. 2014. “Synthesis of geopolymer composites from a mixture of volcanic scoria and metakaolin.” J. Asian Ceram. Soc. 2 (4): 387–398. https://doi.org/10.1016/j.jascer.2014.08.003.
Dombrowski, K., A. Buchwald, and M. Weil. 2007. “The influence of calcium content on the structure and thermal performance of fly ash based geopolymers.” J. Mater. Sci. 42 (9): 3033–3043. https://doi.org/10.1007/s10853-006-0532-7.
Donatello, S., A. Fernández-Jimenez, and A. Palomo. 2013. “Very high volume fly ash cements: Early age hydration study using Na2SO4 as an activator.” J. Am. Ceram. Soc. 96 (3): 900–906. https://doi.org/10.1111/jace.12178.
Dovál, M., M. Palou, and S. C. Mojumdar. 2006. “Hydration behavior of C2S and C2AS nanomaterials, synthetized by sol-gel method.” J. Therm. Anal. Calorim. 86 (3): 595–599. https://doi.org/10.1007/s10973-006-7713-0.
Duxson, P., and J. L. Provis. 2008. “Designing precursors for geopolymer cements.” J. Am. Ceram. Soc. 91 (12): 3864–3869. https://doi.org/10.1111/j.1551-2916.2008.02787.x.
European Standards. 2017. Method of testing fly ash—Part 1: Determination of free calcium oxide content. Brussels, Belgium: CEN.
Fernández-Jiménez, A., and A. Palomo. 2003. “Characterisation of fly ashes: Potential reactivity as alkaline cements.” Fuel 82 (18): 2259–2265. https://doi.org/10.1016/S0016-2361(03)00194-7.
Fernández-Jiménez, A., and A. Palomo. 2005. “Mid-infrared spectroscopic studies of alkali-activated fly ash structure.” Microporous Mesoporous Mater. 86 (1–3): 207–214. https://doi.org/10.1016/j.micromeso.2005.05.057.
Fernández-Jiménez, A., and A. Palomo. 2009. “Nanostructure/microstructure of fly ash geopolymers.” In Geopolymers: Structure, processing, properties and industrial applications, 89–117. Cambridge, MA: Woodhead.
Fernandez-Turiel, J.-L., A. Georgakopoulos, D. Gimeno, G. Papastergios, and N. Kolovos. 2004. “Ash deposition in a pulverized coal-fired power plant after high-calcium lignite combustion.” Energy Fuels 18 (1): 1512–1518. https://doi.org/10.1021/ef0400161.
Gao, X. 2017. Alkali activated slag-fly ash binders: Design, modeling and application. Eindhoven, Netherlands: Technische Universiteit Eindhoven.
Garcia-Lodeiro, I., and A. Palomo. 2015. “An overview of the chemistry of alkali activated cement based binders.” In Handbook of alkali activated cement, mortars and concretes. Cambridge, MA: Woodhead.
Garcia-Lodeiro, I., A. Palomo, A. Fernández-Jiménez, and D. E. Macphee. 2011. “Compatibility studies between N─ A─ S─ H and C─ A─ S─ H gels. Study in the ternary diagram Na2OCaOAl2O3SiO2H2O.” Cem. Concr. Res. 41 (9): 923–931. https://doi.org/10.1016/j.cemconres.2011.05.006.
Glinicki, M. A., and M. Zielinski. 2008. “The influence of CFBC fly ash addition on phase composition of air-entrained concrete.” Bull. Pol. Acad. Sci. Tech. Sci. 56 (1): 45–52.
Gören, R., B. Ersoy, C. Özgür, and T. Alp. 2012. “Colloidal stability–slip casting behavior relationship in slurry of mullite synthesized by the USP method.” Ceram. Int. 38 (1): 679–685. https://doi.org/10.1016/j.ceramint.2011.07.056.
Görhan, G., and G. Kürklü. 2014. “The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures.” Composites, Part B: Eng. 58 (Mar): 371–377. https://doi.org/10.1016/j.compositesb.2013.10.082.
Guo, X., H. Shi, and W. A. Dick. 2010. “Compressive strength and microstructural characteristics of class C fly ash geopolymer.” Cem. Concr. Compos. 32 (2): 142–147. https://doi.org/10.1016/j.cemconcomp.2009.11.003.
Hanjitsuwan, S., S. Hunpratub, P. Thongbai, S. Maensiri, V. Sata, and P. Chindaprasirt. 2014. “Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste.” Cem. Concr. Compos. 45 (Jan): 9–14. https://doi.org/10.1016/j.cemconcomp.2013.09.012.
Heidrich, C., H. Feuerborn, and A. Weir. 2013. “Coal combustion products: A global perspective.” In Proc., World of Coal Ash Conf., 17. Warsaw, Poland: Institute of Fundamental Technological Research, Polish Academy of Sciences.
IEA (International Energy Agency). 2018. Market report series: Coal 2018—Analysis. Paris: IEA.
Ismail, I., S. A. Bernal, J. L. Provis, R. San Nicolas, D. G. Brice, A. R. Kilcullen, S. Hamdan, and J. S. J. van Deventer. 2013. “Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes.” Constr. Build. Mater. 48 (Nov): 1187–1201. https://doi.org/10.1016/j.conbuildmat.2013.07.106.
Ismail, I., S. A. Bernal, J. L. Provis, R. San Nicolas, S. Hamdan, and J. S. J. van Deventer. 2014. “Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash.” Cem. Concr. Compos. 45 (Jan): 125–135. https://doi.org/10.1016/j.cemconcomp.2013.09.006.
Jaturapitakkul, C., and R. Cheerarot. 2003. “Development of bottom ash as pozzolanic material.” J. Mater. Civ. Eng. 15 (1): 48–53. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:1(48).
Kupwade-Patil, K., and E. Allouche. 2011. “Effect of alkali silica reaction (ASR) in geopolymer concrete.” In Proc., World of Coal Ash (WOCA) Conf. Denver: World of Coal Ash.
Lafuente, B., R. T. Downs, H. Yang, and N. Stone. 2015. “The power of databases: The RRUFF project.” In Highlights in mineralogical crystallography. Berlin: Walter De Gruyter.
Lee, W. K. W., and J. S. J. Van Deventer. 2003. “Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous aluminosilicates.” Langmuir 19 (21): 8726–8734. https://doi.org/10.1021/la026127e.
Li, N., C. Shi, Q. Wang, Z. Zhang, and Z. Ou. 2017. “Composition design and performance of alkali-activated cements.” Mater. Struct. 50 (3): 178. https://doi.org/10.1617/s11527-017-1048-0.
Ma, Y., J. Hu, and G. Ye. 2012. “The effect of activating solution on the mechanical strength, reaction rate, mineralogy, and microstructure of alkali-activated fly ash.” J. Mater. Sci. 47 (11): 4568–4578. https://doi.org/10.1007/s10853-012-6316-3.
Meral, C., C. J. Benmore, and P. J. M. Monteiro. 2011. “The study of disorder and nanocrystallinity in C–S–H, supplementary cementitious materials and geopolymers using pair distribution function analysis.” Cem. Concr. Res. 41 (7): 696–710. https://doi.org/10.1016/j.cemconres.2011.03.027.
Meral Akgül, Ç., and S. Yoncacı. 2021. Coal-fired thermal power plant fly ashes in Turkey. Ankara, Turkey: TÜRKÇİMENTO.
Moutsatsou, A., E. Stamatakis, K. Hatzitzotzia, and V. Protonotarios. 2006. “The utilization of Ca-rich and Ca-Si-rich fly ashes in zeolites production.” Fuel 85 (5–6): 657–663. https://doi.org/10.1016/j.fuel.2005.09.008.
Mucsi, G., Z. Molnár, and S. Kumar. 2014. “Geopolymerisation of mechanically activated lignite and brown coal fly ash.” Acta Phys. Pol. A 126 (4): 994–998. https://doi.org/10.12693/APhysPolA.126.994.
Myers, R. J., B. Lothenbach, S. A. Bernal, and J. L. Provis. 2015. “Thermodynamic modelling of alkali-activated slag cements.” Appl. Geochem. 61 (Oct): 233–247. https://doi.org/10.1016/j.apgeochem.2015.06.006.
Nie, Q., W. Hu, T. Ai, B. Huang, X. Shu, and Q. He. 2016. “Strength properties of geopolymers derived from original and desulfurized red mud cured at ambient temperature.” Constr. Build. Mater. 125 (Oct): 905–911. https://doi.org/10.1016/j.conbuildmat.2016.08.144.
Oh, J. E., Y. Jun, Y. Jeong, and P. J. M. Monteiro. 2015. “The importance of the network-modifying element content in fly ash as a simple measure to predict its strength potential for alkali-activation.” Cem. Concr. Compos. 57 (Mar): 44–54. https://doi.org/10.1016/j.cemconcomp.2014.12.001.
Oh, J. E., P. J. M. Monteiro, S. Sun, S. Choi, S. M. Clark, S. S. Jun, S. Choi, and S. M. Clark. 2010. “The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers.” Cem. Concr. Res. 40 (2): 189–196. https://doi.org/10.1016/j.cemconres.2009.10.010.
Palomo, A., P. Krivenko, I. Garcia-Lodeiro, E. Kavalerova, O. Maltseva, and A. Fernández-Jiménez. 2014. “A review on alkaline activation: New analytical perspectives.” Mater. Constr. 64 (315): e022. https://doi.org/10.3989/mc.2014.00314.
Panias, D., I. P. Giannopoulou, and T. Perraki. 2007. “Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers.” Colloids Surf. A 301 (1–3): 246–254. https://doi.org/10.1016/j.colsurfa.2006.12.064.
Provis, J. L., and S. A. Bernal. 2014. “Geopolymers and related alkali-activated materials.” Annu. Rev. Mater. Res. 44 (1): 299–327. https://doi.org/10.1146/annurev-matsci-070813-113515.
Provis, J. L., P. Duxson, E. Kavalerova, P. V. Krivenko, Z. Pan, F. Puertas, and J. S. Deventer. 2014a. “Historical aspects and overview.” In Alkali activated materials, 11–57. Berlin: Springer.
Provis, J. L., A. Fernández-Jiménez, E. Kamseu, C. Leonelli, and A. Palomo. 2014b. “Binder chemistry—Low-calcium alkali-activated materials.” In Alkali activated materials, 93–123. Berlin: Springer.
Provis, J. L., R. J. Myers, C. E. White, V. Rose, and J. S. J. van Deventer. 2012. “X-ray microtomography shows pore structure and tortuosity in alkali-activated binders.” Cem. Concr. Res. 42 (6): 855–864. https://doi.org/10.1016/j.cemconres.2012.03.004.
Provis, J. L., A. Palomo, and C. Shi. 2015. “Advances in understanding alkali-activated materials.” Cem. Concr. Res. 78 (Dec): 110–125. https://doi.org/10.1016/j.cemconres.2015.04.013.
Provis, J. L., and J. S. J. van Deventer. 2009. “Geopolymers.” In Structures, processing, properties and industrial applications. Boca Raton, FL: CRC Press.
Provis, J. L., S. L. Yong, and P. Duxson. 2009. “Nanostructure/microstructure of metakaolin geopolymers.” In Geopolymers: Structure, processing, properties and industrial applications, 72–88. Cambridge, MA: Woodhead.
Puertas, F., and A. Fernández-Jiménez. 2003. “Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes.” Cem. Concr. Compos. 25 (3): 287–292. https://doi.org/10.1016/S0958-9465(02)00059-8.
Puertas, F., S. Martínez-Ramírez, S. Alonso, and T. Vázquez. 2000. “Alkali-activated fly ash/slag cements: Strength behaviour and hydration products.” Cem. Concr. Res. 30 (10): 1625–1632. https://doi.org/10.1016/S0008-8846(00)00298-2.
Rees, C. A., J. L. Provis, G. C. Lukey, and J. S. J. van Deventer. 2007a. “Attenuated total reflectance Fourier transform infrared analysis of fly ash geopolymer gel aging.” J. Surf. Colloids 23 (15): 8170–8179. https://doi.org/10.1021/la700713g.
Rees, C. A., J. L. Provis, G. C. Lukey, and J. S. J. van Deventer. 2007b. “In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation.” J. Surf. Colloids 23 (17): 9076–9082. https://doi.org/10.1021/la701185g.
RILEM TC 67. 2005. RILEM report 7—Fly ash in concrete: Properties and performance. New York: Taylor & Francis.
Şahin, Ü., A. A. Aşıcı, S. Acar, P. Gedikkaya-Bal, A. O. Karababa, and L. Kurnaz. 2016. Coal report: Turkey’s coal policies related to climate change, economy and health. İstanbul, Turkey: Sabanci Univ.
Sakkas, K., P. Nomikos, A. Sofianos, and D. Panias. 2013. “Inorganic polymeric materials for passive fire protection of underground constructions.” Fire Mater. 37 (2): 140–150. https://doi.org/10.1002/fam.2119.
Shao, N., Z. Liu, J. Fan, Y. Zhou, and D. Wang. 2016. “Phase evolution of fly ash calcium constituent at early alkali activation reaction age.” Mater. Lett. 174 (Jul): 175–179. https://doi.org/10.1016/j.matlet.2016.03.101.
Shearer, C. R., J. L. Provis, S. A. Bernal, and K. E. Kurtis. 2016. “Alkali-activation potential of biomass-coal co-fired fly ash.” Cem. Concr. Compos. 73 (Oct): 62–74. https://doi.org/10.1016/j.cemconcomp.2016.06.014.
Somna, K., C. Jaturapitakkul, P. Kajitvichyanukul, and P. Chindaprasirt. 2011. “NaOH-activated ground fly ash geopolymer cured at ambient temperature.” Fuel 90 (6): 2118–2124. https://doi.org/10.1016/j.fuel.2011.01.018.
Swaine, D. J., and F. Goodarzi. 1995. “Environmental aspects of trace elements in coal.” In Energy & environment, edited by D. J. Swaine and F. Goodarzi. Berlin: Springer.
Topçu, İ. B., M. U. Toprak, and T. Uygunoğlu. 2014. “Durability and microstructure characteristics of alkali activated coal bottom ash geopolymer cement.” J. Cleaner Prod. 81 (Oct): 211–217. https://doi.org/10.1016/j.jclepro.2014.06.037.
TS EN 197-1. 2012. Çimeto-Bölüm 1: Genel çimentolar—Bileşim, özellikler ve uygunluk kriterleri. Ankara, Turkey: Turkish Standards Institute.
van Deventer, J. S. J., J. L. Provis, P. Duxson, and G. C. Lukey. 2007. “Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products.” J. Hazard. Mater. 139 (3): 506–513. https://doi.org/10.1016/j.jhazmat.2006.02.044.
Walkley, B., R. San Nicolas, M.-A. Sani, G. J. Rees, J. V. Hanna, J. S. J. van Deventer, and J. L. Provis. 2016. “Phase evolution of C─ (N)─ A─ S─ H/N─ A─ S─ H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors.” Cem. Concr. Res. 89 (Nov): 120–135. https://doi.org/10.1016/j.cemconres.2016.08.010.
Wang, S. 2008. “Application of solid ash based catalysts in heterogeneous catalysis.” Environ. Sci. Technol. 42 (19): 7055–7063. https://doi.org/10.1021/es801312m.
Williams, P. J., J. J. Biernacki, L. R. Walker, H. M. Meyer, C. J. Rawn, and J. Bai. 2002. “Microanalysis of alkali-activated fly ash—CH pastes.” Cem. Concr. Res. 32 (6): 963–972. https://doi.org/10.1016/S0008-8846(02)00734-2.
Winnefeld, F., A. Leemann, M. Lucuk, P. Svoboda, and M. Neuroth. 2010. “Assessment of phase formation in alkali activated low and high calcium fly ashes in building materials.” Constr. Build. Mater. 24 (6): 1086–1093. https://doi.org/10.1016/j.conbuildmat.2009.11.007.
Yao, Z. T., X. S. Ji, P. K. Sarker, J. H. Tang, L. Q. Ge, M. S. Xia, and Y. Q. Xi. 2015. “A comprehensive review on the applications of coal fly ash.” Earth Sci. Rev. 141 (5): 105–121. https://doi.org/10.1016/j.earscirev.2014.11.016.
Yip, C. K., G. C. Lukey, and J. S. J. van Deventer. 2005. “The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation.” Cem. Concr. Res. 35 (9): 1688–1697. https://doi.org/10.1016/j.cemconres.2004.10.042.
Yu, P., R. J. Kirkpatrick, B. Poe, P. F. McMillan, and X. Cong. 1999. “Structure of calcium silicate hydrate (C─ S─ H): Near-, mid-, and far-infrared spectroscopy.” J. Am. Ceram. Soc. 82 (3): 742–748. https://doi.org/10.1111/j.1151-2916.1999.tb01826.x.
Zhang, Z., H. Wang, and J. L. Provis. 2012. “Quantitative study of the reactivity of fly ash in geopolymerization by FTIR.” J. Sustainable Cem. Based Mater. 1 (4): 154–166. https://doi.org/10.1080/21650373.2012.752620.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 11November 2021

History

Received: Sep 24, 2020
Accepted: Jun 4, 2021
Published online: Aug 23, 2021
Published in print: Nov 1, 2021
Discussion open until: Jan 23, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, Dept. of Civil Engineering, Middle East Technical Univ., K1-227, Ankara 06800, Turkey. ORCID: https://orcid.org/0000-0002-0299-7858. Email: [email protected]
Assistant Professor, Dept. of Civil Engineering, Middle East Technical Univ., K1-235, Ankara 06800, Turkey (corresponding author). ORCID: https://orcid.org/0000-0001-8720-1216. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • High temperature exposure of alkali-activated coal fly ashes, Journal of Building Engineering, 10.1016/j.jobe.2022.105081, 59, (105081), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share