Technical Papers
Sep 14, 2021

High-Temperature Rheological Characteristics of Asphalt Binder Incorporated with Graphene Oxide and Predicting Its Rutting Potential Using Response Surface Method

Publication: Journal of Materials in Civil Engineering
Volume 33, Issue 11

Abstract

Rutting is one of the most common types of asphalt pavement failures. This study has investigated the high temperature performance of asphalt binders incorporating graphene oxide (GO). To this end, frequency sweep, temperature sweep, and multiple stress creep recovery (MSCR) tests using a dynamic shear rheometer (DSR) were conducted on the control and GO-modified asphalt binders. Response surface methodology (RSM) based on a statistical model was used to investigate the interactive effects of three parameters, namely temperature, GO content, and loading frequency, on the rutting performance of the GO-modified asphalt and develop predictive mathematical models. Atomic force microscopy (AFM) was used to observe the microstructure of the binders. The results of the rheological tests showed that GO considerably enhanced the high temperature performance of the asphalt binder. The MSCR test results revealed that in comparison with the control asphalt, the GO modified binders presented lower nonrecoverable creep compliance (Jnr) and higher percent recovery (R) values, showing a significant contribution of the GO to rutting resistance. The statistical analysis showed that the selected input variables exhibited a notable impact on the complex modulus (G*) and rutting behavior (G*/sinδ) of the asphalt, and quadratic models were proposed for predicting the rutting potential. Finally, the AFM analysis demonstrated that GO was perfectly distributed in the asphalt matrix.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and codes generated or used during the study appear in the published article.

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 11925206.

References

AASHTO. 2011. Standard method of test for multiple stress creep recovery (MSCR) test of asphalt binder using a dynamic shear rheometer (DSR). AASHTO TP 70. Washington, DC: AASHTO.
Abdullah, S. I., and M. N. M. Ansari. 2015. “Mechanical properties of graphene oxide (GO)/epoxy composites.” HBRC J. 11 (2): 151–156. https://doi.org/10.1016/j.hbrcj.2014.06.001.
Adamu, M., B. S. Mohammed, and M. Shahir Liew. 2018. “Mechanical properties and performance of high volume fly ash roller compacted concrete containing crumb rubber and nano silica.” Constr. Build. Mater. 171 (May): 521–538. https://doi.org/10.1016/j.conbuildmat.2018.03.138.
Adnan, A. M., X. Luo, C. Lü, J. Wang, and Z. Huang. 2020a. “Improving mechanics behavior of hot mix asphalt using graphene-oxide.” Constr. Build. Mater. 254 (Sep): 119261. https://doi.org/10.1016/j.conbuildmat.2020.119261.
Adnan, A. M., X. Luo, C. Lü, J. Wang, and Z. Huang. 2020b. “Physical properties of graphene-oxide modified asphalt and performance analysis of its mixtures using response surface methodology.” Int. J. Pavement Eng. 1–15. https://doi.org/10.1080/10298436.2020.1804061.
Airey, G. D. 2003. “Rheological properties of styrene butadiene styrene polymer modified road bitumens.” Fuel 82 (14): 1709–1719. https://doi.org/10.1016/S0016-2361(03)00146-7.
Allen, R. G., D. N. Little, A. Bhasin, and R. L. Lytton. 2013. “Identification of the composite relaxation modulus of asphalt binder using AFM nanoindentation.” J. Mater. Civ. Eng. 25 (4): 530–539. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000615.
Ameri, M., A. Mansourian, S. S. Ashani, and G. Yadollahi. 2011. “Technical study on the Iranian Gilsonite as an additive for modification of asphalt binders used in pavement construction.” Constr. Build. Mater. 25 (3): 1379–1387. https://doi.org/10.1016/j.conbuildmat.2010.09.005.
Ameri, M., D. Mirzaiyan, and A. Amini. 2018. “Rutting resistance and fatigue behavior of Gilsonite-modified asphalt binders.” J. Mater. Civ. Eng. 30 (11): 04018292. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002468.
Amin, I., S. M. El-Badawy, T. Breakah, and M. H. Z. Ibrahim. 2016. “Laboratory evaluation of asphalt binder modified with carbon nanotubes for Egyptian climate.” Constr. Build. Mater. 121 (Sep): 361–372. https://doi.org/10.1016/j.conbuildmat.2016.05.168.
Amirkhanian, A. N., F. Xiao, and S. N. Amirkhanian. 2011. “Characterization of unaged asphalt binder modified with carbon nano particles.” Int. J. Pavement Res. Technol. 4 (5): 281–286. https://doi.org/10.6135/IJPRT.ORG.TW/2011.4(5).281.
ASTM. 2007. Standard test method for ductility of bituminous materials. ASTM D113. West Conshohocken, PA: ASTM.
ASTM. 2008. Standard method of test for determining the rheological properties of asphalt binder using a dynamic shear rheometer (DSR). ASTM D7175. West Conshohocken, PA: ASTM.
ASTM. 2013. Standard test method for penetration of bituminous materials.” ASTM D5. West Conshohocken, PA: ASTM.
ASTM. 2014. Standard test method for softening point of bitumen (ring-and-ball apparatus). ASTM D36. West Conshohocken, PA: ASTM.
ASTM. 2015a. Standard test method for multiple stress creep and recovery (MSCR) of asphalt binder using a dynamic shear rheometer. ASTM D7405-15. West Conshohocken, PA: ASTM.
ASTM. 2015b. Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. ASTM D4402. West Conshohocken, PA: ASTM.
Azarhoosh, A., and M. Koohmishi. 2020. “Investigation of the rutting potential of asphalt binder and mixture modified by styrene-ethylene/propylene-styrene nanocomposite.” Constr. Build. Mater. 255 (Sep): 119363. https://doi.org/10.1016/j.conbuildmat.2020.119363.
Bala, N., M. Napiah, and I. Kamaruddin. 2020. “Nanosilica composite asphalt mixtures performance-based design and optimisation using response surface methodology.” Int. J. Pavement Eng. 21 (1): 29–40. https://doi.org/10.1080/10298436.2018.1435881.
Bastos, J. B. S., L. F. A. L. Babadopulos, and J. B. Soares. 2017. “Relationship between multiple stress creep recovery (MSCR) binder test results and asphalt concrete rutting resistance in Brazilian roadways.” Constr. Build. Mater. 145 (Aug): 20–27. https://doi.org/10.1016/j.conbuildmat.2017.03.216.
Can, M. Y., Y. Kaya, and O. F. Algur. 2006. “Response surface optimization of the removal of nickel from aqueous solution by cone biomass of Pinus sylvestris.” Bioresour. Technol. 97 (14): 1761–1765. https://doi.org/10.1016/j.biortech.2005.07.017.
Chen, D., H. Feng, and J. Li. 2012. “Graphene oxide: Preparation, functionalization, and electrochemical applications.” Chem. Rev. 112 (11): 6027–6053. https://doi.org/10.1021/cr300115g.
Cosme, R. L., J. E. S. L. Teixeira, and J. L. Calmon. 2016. “Use of frequency sweep and MSCR tests to characterize asphalt mastics containing ornamental stone residues and LD steel slag.” Constr. Build. Mater. 122 (Sep): 556–566. https://doi.org/10.1016/j.conbuildmat.2016.06.126.
D’Angelo, J. A. 2009. “The relationship of the MSCR test to rutting.” Supplement, Road Mater. Pavement Des. 10 (S1): 61–80.
Das, P. K., H. Baaj, S. Tighe, and N. Kringos. 2016. “Atomic force microscopy to investigate asphalt binders: A state-of-the-art review.” Road Mater. Pavement Des. 17 (3): 693–718. https://doi.org/10.1080/14680629.2015.1114012.
de Melo, J. V. S., and G. Trichês. 2016. “Evaluation of rheological behavior and performance to permanent deformation of nanomodified asphalt mixtures with carbon nanotubes.” Can. J. Civ. Eng. 43 (5): 472–479. https://doi.org/10.1139/cjce-2015-0546.
De Oliveira, R. R. L., D. A. C. Albuquerque, T. G. S. Cruz, F. M. Yamaji, and F. L. Leite. 2012. “Measurement of the nanoscale roughness by atomic force microscopy: Basic principles and applications.” In Atomic force microscopy—Imaging, measuring and manipulating surfaces at the atomic scale, edited by V. Bellitto. Rijeka, Croatia: InTech.
Devi, S. C., and R. A. Khan. 2020. “Effect of graphene oxide on mechanical and durability performance of concrete.” J. Build. Eng. 27 (Jan): 101007. https://doi.org/10.1016/j.jobe.2019.101007.
Enieb, M., and A. Diab. 2017. “Characteristics of asphalt binder and mixture containing nanosilica.” Int. J. Pavement Res. Technol. 10 (2): 148–157. https://doi.org/10.1016/j.ijprt.2016.11.009.
Fang, C., R. Yu, S. Liu, and Y. Li. 2013. “Nanomaterials applied in asphalt modification: A review.” J. Mater. Sci. Technol. 29 (7): 589–594. https://doi.org/10.1016/j.jmst.2013.04.008.
Gama, D. A., J. M. R. Júnior, T. J. A. De Melo, and J. K. G. Rodrigues. 2016. “Rheological studies of asphalt modified with elastomeric polymer.” Constr. Build. Mater. 106 (Mar): 290–295. https://doi.org/10.1016/j.conbuildmat.2015.12.142.
Golalipour, A. 2011. “Modification of multiple stress creep and recovery test procedure and usage in specification.” M.S. thesis, Dept. of Civil and Environmental Engineering, Univ. of Wisconsin–Madison. https://minds.wisconsin.edu/bitstream/handle/1793/56398/Amir%20Golalipour-Master_Thesis.pdf?sequen.
Golestani, B., B. H. Nam, F. M. Nejad, and S. Fallah. 2015. “Nanoclay application to asphalt concrete: Characterization of polymer and linear nanocomposite-modified asphalt binder and mixture.” Constr. Build. Mater. 91 (Aug): 32–38. https://doi.org/10.1016/j.conbuildmat.2015.05.019.
Goli, A., H. Ziari, and A. Amini. 2017. “Influence of carbon nanotubes on performance properties and storage stability of SBS modified asphalt binders.” J. Mater. Civ. Eng. 29 (8): 04017070. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001910.
Haghshenas, H. F., A. Khodaii, M. Hossain, and D. S. Gedafa. 2015a. “Stripping potential of HMA and SMA: A study using statistical approach.” J. Mater. Civ. Eng. 27 (11): 06015002. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001266.
Haghshenas, H. F., A. Khodaii, M. Khedmati, and S. Tapkin. 2015b. “A mathematical model for predicting stripping potential of Hot Mix Asphalt.” Constr. Build. Mater. 75 (Jan): 488–495. https://doi.org/10.1016/j.conbuildmat.2014.11.041.
Hainin, M. R., M. M. A. Aziz, A. M. Adnan, N. A. Hassan, R. P. Jaya, and H. Y. Liu. 2015. “Performance of modified asphalt binder with tire rubber powder.” Jurnal Teknologi 73 (4): 55–60. https://doi.org/10.11113/jt.v73.4288.
Hamzah, M. O., L. Gungat, and B. Golchin. 2017. “Estimation of optimum binder content of recycled asphalt incorporating a wax warm additive using response surface method.” Int. J. Pavement Eng. 18 (8): 682–692. https://doi.org/10.1080/10298436.2015.1121779.
He, Z., P.-F. Zhu, and S. H. Park. 2012. “A robust desirability function method for multi-response surface optimization considering model uncertainty.” Eur. J. Oper. Res. 221 (1): 241–247. https://doi.org/10.1016/j.ejor.2012.03.009.
Hossain, Z., M. Zaman, and D. Ghosh. 2015. Creep compliance and percent recovery of Oklahoma certified binder using the multiple stress recovery (MSCR) method. Norman, OK: School of Civil Engineering and Environmental Science, College of Engineering, Univ. of Oklahoma.
Jäger, A., R. Lackner, C. Eisenmenger-Sittner, and R. Blab. 2004. “Identification of four material phases in bitumen by atomic force microscopy.” Supplement, Road Mater. Pavement Des. 5 (S1): 9–24. https://doi.org/10.1080/14680629.2004.9689985.
Jeffry, S. N. A., R. P. Jaya, N. Abdul Hassan, H. Yaacob, and M. K. I. M. Satar. 2018. “Mechanical performance of asphalt mixture containing nano-charcoal coconut shell ash.” Constr. Build. Mater. 173 (Jun): 40–48. https://doi.org/10.1016/j.conbuildmat.2018.04.024.
Korayem, A., H. Ziari, M. Hajiloo, and A. Moniri. 2018. “Rutting and fatigue performance of asphalt mixtures containing amorphous carbon as filler and binder modifier.” Constr. Build. Mater. 188 (Nov): 905–914. https://doi.org/10.1016/j.conbuildmat.2018.08.179.
Kumar, H. V., S. J. Woltornist, and D. H. Adamson. 2016. “Fractionation and characterization of graphene oxide by oxidation extent through emulsion stabilization.” Carbon 98 (Mar): 491–495. https://doi.org/10.1016/j.carbon.2015.10.083.
Lee, S.-J., C. K. Akisetty, and S. N. Amirkhanian. 2008. “The effect of crumb rubber modifier (CRM) on the performance properties of rubberized binders in HMA pavements.” Constr. Build. Mater. 22 (7): 1368–1376. https://doi.org/10.1016/j.conbuildmat.2007.04.010.
Li, Q., F. Ni, L. Gao, Q. Yuan, and Y. Xiao. 2014. “Evaluating the rutting resistance of asphalt mixtures using an advanced repeated load permanent deformation test under field conditions.” Constr. Build. Mater. 61 (Jun): 241–251. https://doi.org/10.1016/j.conbuildmat.2014.02.052.
Li, R., F. Xiao, S. Amirkhanian, Z. You, and J. Huang. 2017a. “Developments of nano materials and technologies on asphalt materials—A review.” Constr. Build. Mater. 143 (Jul): 633–648. https://doi.org/10.1016/j.conbuildmat.2017.03.158.
Li, X., Y. M. Liu, W. G. Li, C. Y. Li, J. G. Sanjayan, W. H. Duan, and Z. Li. 2017b. “Effects of graphene oxide agglomerates on workability, hydration, microstructure and compressive strength of cement paste.” Constr. Build. Mater. 145 (Aug): 402–410. https://doi.org/10.1016/j.conbuildmat.2017.04.058.
Li, Y., S. Wu, and S. Amirkhanian. 2018. “Investigation of the graphene oxide and asphalt interaction and its effect on asphalt pavement performance.” Constr. Build. Mater. 165 (Mar): 572–584. https://doi.org/10.1016/j.conbuildmat.2018.01.068.
Liang, F., L. Jian, W. Jianming, Z. Yuzhen, and W. Lin. 2014. “Viscoelastic characteristics of asphalt binders at softening point temperature.” China Pet. Process. Petrochem. Technol. 16 (3): 19–25.
Liu, K., K. Zhang, and X. Shi. 2018. “Performance evaluation and modification mechanism analysis of asphalt binders modified by graphene oxide.” Constr. Build. Mater. 163 (Feb): 880–889. https://doi.org/10.1016/j.conbuildmat.2017.12.171.
Lu, C., Z. Lu, Z. Li, and C. K. Y. Leung. 2016. “Effect of graphene oxide on the mechanical behavior of strain hardening cementitious composites.” Constr. Build. Mater. 120 (Sep): 457–464. https://doi.org/10.1016/j.conbuildmat.2016.05.122.
Lv, S., C. Xia, Q. Yang, S. Guo, L. You, Y. Guo, and J. Zheng. 2020. “Improvements on high-temperature stability, rheology, and stiffness of asphalt binder modified with waste crayfish shell powder.” J. Cleaner Prod. 264 (Aug): 121745. https://doi.org/10.1016/j.jclepro.2020.121745.
Masson, J. F., V. Leblond, and J. Margeson. 2006. “Bitumen morphologies by phase-detection atomic force microscopy.” J. Microsc. 221 (1): 17–29. https://doi.org/10.1111/j.1365-2818.2006.01540.x.
Montgomery, D. C. 2012. Design and analysis of experiments. 8th ed. New York: Wiley.
Papageorgiou, D. G., I. A. Kinloch, and R. J. Young. 2015. “Graphene/elastomer nanocomposites.” Carbon 95 (Dec): 460–484. https://doi.org/10.1016/j.carbon.2015.08.055.
Phiri, J., P. Gane, and T. C. Maloney. 2017. “General overview of graphene: Production, properties and application in polymer composites.” Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol. 215: 9–28. https://doi.org/10.1016/j.mseb.2016.10.004.
Saboo, N., and P. Kumar. 2016. “Analysis of different test methods for quantifying rutting susceptibility of asphalt binders.” J. Mater. Civ. Eng. 28 (7): 04016024. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001553.
Shafabakhsh, G., M. Motamedi, M. Firouznia, and M. Isazadeh. 2019. “Experimental investigation of the effect of asphalt binder modified with nanosilica on the rutting, fatigue and performance grade.” Pet. Sci. Technol. 37 (13): 1495–1500. https://doi.org/10.1080/10916466.2018.1476534.
Singh, D., A. Kuity, S. Girimath, A. Suchismita, and B. Showkat. 2020. “Investigation of chemical, microstructural, and rheological perspective of asphalt binder modified with graphene oxide.” J. Mater. Civ. Eng. 32 (11): 04020323. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003385.
Smith, A. T., A. M. LaChance, S. Zeng, B. Liu, and L. Sun. 2019. “Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites.” Nano Mater. Sci. 1 (1): 31–47. https://doi.org/10.1016/j.nanoms.2019.02.004.
Soltani, M., T. B. Moghaddam, M. R. Karim, and H. Baaj. 2015. “Analysis of fatigue properties of unmodified and polyethylene terephthalate modified asphalt mixtures using response surface methodology.” Eng. Fail. Anal. 58 (Dec): 238–248. https://doi.org/10.1016/j.engfailanal.2015.09.005.
Tang, N., W. Huang, M. Zheng, and J. Hu. 2017. “Investigation of Gilsonite-, polyphosphoric acid- and styrene–butadiene–styrene-modified asphalt binder using the multiple stress creep and recovery test.” Road Mater. Pavement Des. 18 (5): 1084–1097. https://doi.org/10.1080/14680629.2016.1206954.
Wang, R., J. Yue, R. Li, and Y. Sun. 2019. “Evaluation of aging resistance of asphalt binder modified with graphene oxide and carbon nanotubes.” J. Mater. Civ. Eng. 31 (11): 04019274. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002934.
Xiao, F., A. N. Amirkhanian, and S. N. Amirkhanian. 2011. “Influence of carbon nanoparticles on the rheological characteristics of short-term aged asphalt binders.” J. Mater. Civ. Eng. 23 (4): 423–431. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000184.
Yaacob, H., M. A. Mughal, R. P. Jaya, M. R. Hainin, D. S. Jayanti, and C. N. C. Wan. 2016. “Rheological properties of styrene butadiene rubber modified bitumen binder.” Jurnal Teknologi 78 (7–2): 121–126.
Yadav, O. P., G. Thambidorai, B. Nepal, and L. Monplaisir. 2014. “A robust framework for multi-response surface optimization methodology.” Qual. Reliab. Eng. Int. 30 (2): 301–311.
Yan, K., J. Chen, L. You, and S. Tian. 2020. “Characteristics of compound asphalt modified by waste tire rubber (WTR) and ethylene vinyl acetate (EVA): Conventional, rheological, and microstructural properties.” J. Cleaner Prod. 258 (Jun): 120732. https://doi.org/10.1016/j.jclepro.2020.120732.
Yang, Q., Q. Liu, J. Zhong, B. Hong, D. Wang, and M. Oeser. 2019. “Rheological and micro-structural characterization of bitumen modified with carbon nanomaterials.” Constr. Build. Mater. 201 (Mar): 580–589. https://doi.org/10.1016/j.conbuildmat.2018.12.173.
Yang, X., and Z. You. 2015. “High temperature performance evaluation of bio-oil modified asphalt binders using the DSR and MSCR tests.” Constr. Build. Mater. 76 (Feb): 380–387. https://doi.org/10.1016/j.conbuildmat.2014.11.063.
Zhang, H., J. Yu, H. Wang, and L. Xue. 2011. “Investigation of microstructures and ultraviolet aging properties of organo-montmorillonite/SBS modified bitumen.” Mater. Chem. Phys. 129 (3): 769–776. https://doi.org/10.1016/j.matchemphys.2011.04.078.
Zhang, L., C. Xing, F. Gao, T.-S. Li, and Y.-Q. Tan. 2016. “Using DSR and MSCR tests to characterize high temperature performance of different rubber modified asphalt.” Constr. Build. Mater. 127 (Nov): 466–474. https://doi.org/10.1016/j.conbuildmat.2016.10.010.
Zhong, Y. L., Z. Tian, G. P. Simon, and D. Li. 2015. “Scalable production of graphene via wet chemistry: Progress and challenges.” Mater. Today 18 (2): 73–78. https://doi.org/10.1016/j.mattod.2014.08.019.
Zhu, Y., S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff. 2010. “Graphene and graphene oxide: Synthesis, properties, and applications.” Adv. Mater. 22 (35): 3906–3924. https://doi.org/10.1002/adma.201001068.
Ziari, H., A. Amini, A. Goli, and D. Mirzaiyan. 2018. “Predicting rutting performance of carbon nano tube (CNT) asphalt binders using regression models and neural networks.” Constr. Build. Mater. 160 (Jan): 415–426. https://doi.org/10.1016/j.conbuildmat.2017.11.071.
Ziari, H., R. Babagoli, and S. E. T. Razi. 2015. “The evaluation of rheofalt as a warm mix asphalt additive on the properties of asphalt binder.” Pet. Sci. Technol. 33 (21–22): 1781–1786. https://doi.org/10.1080/10916466.2015.1091841.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 11November 2021

History

Received: Dec 10, 2020
Accepted: Mar 30, 2021
Published online: Sep 14, 2021
Published in print: Nov 1, 2021
Discussion open until: Feb 14, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Abbas Mukhtar Adnan [email protected]
Ph.D. Candidate, College of Civil Engineering and Architecture, Zhejiang Univ., 866 Yuhangtang Rd., Hangzhou 310058, PR China. Email: [email protected]
Chaofeng [email protected]
Professor, College of Civil Engineering and Architecture, Zhejiang Univ., 866 Yuhangtang Rd., Hangzhou 310058, PR China (corresponding author). Email: [email protected]
Professor, College of Civil Engineering and Architecture, Zhejiang Univ., 866 Yuhangtang Rd., Hangzhou 310058, PR China. Email: [email protected]
Jinchang Wang [email protected]
Associate Professor, College of Civil Engineering and Architecture, Zhejiang Univ., 866 Yuhangtang Rd., Hangzhou 310058, PR China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Modeling and optimization of rheological properties and aging resistance of asphalt binder incorporating palm oil mill waste using response surface methodology, Journal of Infrastructure Intelligence and Resilience, 10.1016/j.iintel.2023.100026, 2, 1, (100026), (2023).
  • Predicting the rutting parameters of nanosilica/waste denim fiber composite asphalt binders using the response surface methodology and machine learning methods, Construction and Building Materials, 10.1016/j.conbuildmat.2022.129871, 363, (129871), (2023).
  • Fracture properties and potential of asphalt mixtures containing graphene oxide at low and intermediate temperatures, International Journal of Pavement Engineering, 10.1080/10298436.2021.2020268, (1-17), (2022).
  • Response Surface–Based Approach to Quantify Variability in Recycled-Asphalt Concrete Mixtures, Journal of Materials in Civil Engineering, 10.1061/(ASCE)MT.1943-5533.0004479, 34, 11, (2022).
  • Mechanical properties and mechanism of soil treated with nano-aqueous adhesive (NAA), Scientific Reports, 10.1038/s41598-022-19108-5, 12, 1, (2022).
  • Mechanism of multilayer graphene nanoplatelets and its effects on the rheological properties and thermal stability of styrene–butadiene–styrene modified asphalt, Diamond and Related Materials, 10.1016/j.diamond.2022.109434, 130, (109434), (2022).
  • A comprehensive review on the usage of nanomaterials in asphalt mixes, Construction and Building Materials, 10.1016/j.conbuildmat.2022.129634, 361, (129634), (2022).
  • Exploration for UV Aging Characteristics of Asphalt Binders based on Response Surface Methodology: Insights from the UV Aging Influencing Factors and Their Interactions, Construction and Building Materials, 10.1016/j.conbuildmat.2022.128460, 347, (128460), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share