Abstract

The process of obtaining chemically bonded phosphate ceramics generally involves the use of metallic oxides, the preparation of which consumes high quantities of energy. The present study proposes a method to recycle slags generated by a steel production process that is widely used across the world—the electric arc furnace. A chemically bonded phosphate ceramic is produced by exploiting the high content of metals present in the slag, realizing the conditions to mitigate the environmental impact of the industrial by-product. In situ infrared spectroscopy, isothermal conduction calorimetry, and X-ray diffraction revealed that the setting reaction involves the formation of amorphous products in the form of metallic phosphate hydrates and a fraction of calcium silicate hydrates similar to those found in portland cement. This phosphate matrix allows the effective immobilization of heavy metals in the slag, such as Cr and As. According to the results of mechanical tests, which showed compression resistance of 1525  MPa, and leaching tests, slag-based phosphate cement can be used without restrictions as a construction material for applications such as mortars or bricks.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This study was supported by the Czech Science Foundation GA ČR (Grant No. 20-01280S); the Czech Academy of Sciences, Institute of Theoretical and Applied Mechanics (RVO 68378297); and Government of Boyacá, Colombia, (Colciencias Invitation 733).

References

Al-Sanabani, J. S., A. A. Madfa, and F. A. Al-Sanabani. 2013. “Application of calcium phosphate materials in dentistry.” Int. J. Biomater. 2013 (Jun): 26. https://doi.org/10.1155/2013/876132.
Alshaaer, M., H. Cuypers, G. Mosselmans, H. Rahier, and J. Wastiels. 2011a. “Evaluation of a low temperature hardening inorganic phosphate cement for high-temperature applications.” Cem. Concr. Res. 41 (1): 38–45. https://doi.org/10.1016/j.cemconres.2010.09.003.
Alshaaer, M., H. Cuypers, H. Rahier, and J. Wastiels. 2011b. “Production of monetite-based inorganic phosphate cement (M-IPC) using hydrothermal post curing (HTPC).” Cem. Concr. Res. 41 (1): 30–37. https://doi.org/10.1016/j.cemconres.2010.09.002.
Amin, M.S, S. M. A. El-Gamal, S. A. Abo-El-Enein, F. I. El-Hosiny, and M. Ramadan. 2015. “Physico-chemical characteristics of blended cement pastes containing electric arc furnace slag with and without silica fume.” HBRC J. 11 (3): 321–327. https://doi.org/10.1016/j.hbrcj.2014.07.002.
ASTM. 2007. Standard specification for mortar for unit masonry. West Conshohocken, PA: ASTM.
ASTM. 2017. Standard specification for building brick. West Conshohocken, PA: ASTM.
Baril, J., J. J. Max, and C. Chapados. 2000. “Titrage Infrarouge de l’acide Phosphorique.” Can. J. Chem. 78 (4): 490–507. https://doi.org/10.1139/v00-038.
Branca, T. A., C. Pistocchi, V. Colla, G. Ragaglini, A. Amato, C. Tozzini, D. Mudersbach, A. Morillon, M. Rex, and L. Romaniello. 2014. “Investigation of (BOF) converter slag use for agriculture in Europe.” Metall. Res. Technol. 111 (3): 155–167. https://doi.org/10.1051/metal/2014022.
Branca, T. A., and C. Valentina. 2012. “Possible uses of steelmaking slag in agriculture: An overview.” Mater. Recycl. Trends Perspect. 336. https://doi.org/10.5772/31804.
Cárdenas, C. A., and A. G. Maryory. 2020. “Characterization of steel slag for the production of chemically bonded phosphate ceramics (CBPCs).” Constr. Build. Mater. 241 (Apr): 118138. https://doi.org/10.1016/j.conbuildmat.2020.118138.
Chong, L., C. Shi, J. Yang, and H. Jia. 2017a. “Effect of limestone powder on the water stability of magnesium phosphate cement-based materials.” Constr. Build. Mater. 148 (Sep): 590–598. https://doi.org/10.1016/j.conbuildmat.2017.04.207.
Chong, L., J. Yang, and C. Shi. 2017b. “Effect of curing regime on water resistance of magnesium–potassium phosphate cement.” Constr. Build. Mater. 151 (Oct): 43–51. https://doi.org/10.1016/j.conbuildmat.2017.06.056.
Chow, L. C. 1999. “Calcium phosphate cements: Chemistry, properties, and applications.” MRS Proc. 599: 27–37. https://doi.org/10.1557/PROC-599-27.
De la Torre, A. G., and M. A. G. Aranda. 2003. “Accuracy in Rietveld quantitative phase analysis of portland cements.” J. Appl. Cryst. 36 (5): 1169–1176. https://doi.org/10.1107/S002188980301375X.
De La Torre, A. G., S. Bruque, and M. A. G. Aranda. 2001. “Applied crystallography Rietveld quantitative amorphous content analysis.” J. Appl. Cryst. 34 (2): 196–202. https://doi.org/10.1107/S0021889801002485.
Eikelboom, R. T., E. Ruwiel, and J. J. J. M. Goumans. 2000. “The building materials decree: An example of a Dutch regulation based on the potential impact of materials on the environment.” Waste Manage. Series 1 (3): 963–974. https://doi.org/10.1016/S0956-053X(00)00103-3.
Engström, F, D. Adolfsson, C. Samuelsson, Å. Sandström, and B. Björkman. 2013. “A study of the solubility of pure slag minerals.” Miner. Eng. 41 (Feb): 46–52. https://doi.org/10.1016/j.mineng.2012.10.004.
Eubank, W. 1951. “Calcination studies of magnesium oxides.” J. Am. Ceram. Soc. 34 (8): 225–229. https://doi.org/10.1111/j.1151-2916.1951.tb11644.x.
Girão, A. V., G. Caputo, and M. C. Ferro. 2017. “Application of scanning electron microscopy—Energy dispersive X-ray spectroscopy (SEM-EDS).” Compr. Anal. Chem. 75 (Jan): 153–168.
Gualtieri, A. F., et al. 2014. “Accuracy in quantitative phase analysis of mixtures with large amorphous contents: The case of stoneware ceramics and bricks.” J. Appl. Crystallogr. 47 (3): 835–846. https://doi.org/10.1107/S160057671400627X.
Guo, J., Y. Bao, and M. Wang. 2018. “Steel slag in China: Treatment, recycling, and management.” Waste Manage. 78 (Aug): 318–330. https://doi.org/10.1016/j.wasman.2018.04.045.
Iacobescu, R. I, D. Koumpouri, Y. Pontikes, R. Saban, and G. N. Angelopoulos. 2011. “Valorisation of electric arc furnace steel slag as raw material for low energy belite cements.” J. Hazard. Mater. 196 (Nov): 287–294. https://doi.org/10.1016/j.jhazmat.2011.09.024.
Ibáñez, J, O. Font, N. Moreno, J. J. Elvira, S. Alvarez, and X. Querol. 2013. “Quantitative Rietveld analysis of the crystalline and amorphous phases in coal fly ashes.” Fuel 105 (Mar): 314–317. https://doi.org/10.1016/j.fuel.2012.06.090.
Jiang, Y., M. R. Ahmad, and B. Chen. 2019. “Properties of magnesium phosphate cement containing steel slag powder.” Constr. Build. Mater. 195 (Jan): 140–147. https://doi.org/10.1016/j.conbuildmat.2018.11.085.
Jiang, Y., T. C. Ling, C. Shi, and S. Y. Pan. 2018. “Characteristics of steel slags and their use in cement and concrete—A review.” Resour. Conserv. Recycl. 136 (Apr): 187–197. https://doi.org/10.1016/j.resconrec.2018.04.023.
Juel, M. A. I., A. Mizan, and T. Ahmed. 2017. “Sustainable use of tannery sludge in brick manufacturing in Bangladesh.” Waste Manage. 60 (Oct): 259–269. https://doi.org/10.1016/j.wasman.2016.12.041.
Kurdowski, W. 2014. Cement and concrete chemistry. Berlin: Springer.
Leiva, C, C. García Arenas, L. F. Vilches, J. Vale, A. Gimenez, J. C. Ballesteros, and C. Fernández-Pereira. 2010. “Use of FGD gypsum in fire resistant panels.” Waste Manage. 30 (6): 1123–1129. https://doi.org/10.1016/j.wasman.2010.01.028.
Li, Y., T. Shi, and J. Li. 2016. “Effects of fly ash and quartz sand on water-resistance and salt-resistance of magnesium phosphate cement.” Constr. Build. Mater. 105 (Feb): 384–390. https://doi.org/10.1016/j.conbuildmat.2015.12.154.
Liu, J., B. Yu, and Q. Wang. 2020a. “Application of steel slag in cement treated aggregate base course.” J. Cleaner Prod. 269 (Oct): 121733. https://doi.org/10.1016/j.jclepro.2020.121733.
Liu, Y., and C. Bing. 2019. “Research on the preparation and properties of a novel grouting material based on magnesium phosphate cement.” Constr. Build. Mater. 214 (Jul): 516–526. https://doi.org/10.1016/j.conbuildmat.2019.04.158.
Liu, Y., B. Chen, Z. Qin, D. Pen, and M. A. Haque. 2020b. “Experimental research on properties and microstructures of magnesium-iron phosphate cement.” Constr. Build. Mater. 257 (Oct): 119570. https://doi.org/10.1016/j.conbuildmat.2020.119570.
Liu, Y., Z. Qin, and B. Chen. 2020c. “Experimental research on magnesium phosphate cements modified by red mud.” Constr. Build. Mater. 231 (Jan): 117131. https://doi.org/10.1016/j.conbuildmat.2019.117131.
Lobato, N. C. C., E. A. Villegas, and M. B. Mansur. 2015. “Management of solid wastes from steelmaking and galvanizing processes: A brief review.” Resour. Conserv. Recycl. 102 (Sep): 49–57. https://doi.org/10.1016/j.resconrec.2015.05.025.
Lutz, H. D., and H. Haeuseler. 1999. “Infrared and Raman spectroscopy in inorganic solids research.” J. Mol. Struct. 511 (Nov): 69–75. https://doi.org/10.1016/S0022-2860(98)00630-9.
Lynn, A. K., and W. Bonfield. 2005. “A novel method for the simultaneous, titrant-free control of PH and calcium phosphate mass yield.” Acc. Chem. Res. 38 (3): 202–207. https://doi.org/10.1021/ar040234d.
Ma, H., et al. 2014. “Effects of water content, magnesia-to-phosphate molar ratio and age on pore structure, strength and permeability of magnesium potassium phosphate cement paste.” Mater. Des. 64 (Dec): 497–502. https://doi.org/10.1016/j.matdes.2014.07.073.
Mácová, P., and A. Viani. 2017. “Investigation of setting reaction in magnesium potassium phosphate ceramics with time resolved infrared spectroscopy.” Mater. Lett. 205 (Oct): 62–66. https://doi.org/10.1016/j.matlet.2017.06.063.
Nederlands Normalisatie Instituut. 1995. Leaching characteristics of solid earthy and stony building and waste materials. Delft, Netherlands: Nederlands Normalisatie Instituut.
Piatak, N. M., M. B. Parsons, and R. R. Seal. 2015. 57 applied geochemistry characteristics and environmental aspects of slag: A review. Amsterdam: Elsevier.
Proctor, D., et al. 2000. “Physical and chemical characteristics of blast furnace, basic oxygen furnace and electric arc furnace steel industry slags.” Environ. Sci. Technol. 34 (8): 1576–1582. https://doi.org/10.1021/es9906002.
Puertas, F., M. Palacios, H. Manzano, J. S. Dolado, A. Rico, and J. Rodríguez. 2011. “A model for the C─ A─ S─ H gel formed in alkali-activated slag cements.” J. Eur. Ceram. Soc. 31 (12): 2043–2056. https://doi.org/10.1016/j.jeurceramsoc.2011.04.036.
Qin, Z., S. Zhou, C. Ma, G. Long, Y. Xie, and B. Chen. 2019. “Roles of metakaolin in magnesium phosphate cement: Effect of the replacement ratio of magnesia by metakaolin with different particle sizes.” Constr. Build. Mater. 227 (Dec): 116675. https://doi.org/10.1016/j.conbuildmat.2019.116675.
Rastovčan-Mioč, A., T. Sofilić, and B. Mioč. 2009. “Application of electric arc furnace slag.” Proc. Matrib 16 (6): 436–444.
Rijkswaterstaat Environment. 2007. Soil quality decree. Amsterdam: Ministry of Infrastructure and the Environment.
San-José, J. T., I. Vegas, I. Arribas, and I. Marcos. 2014. “The performance of steel-making slag concretes in the hardened state.” Mater. Des. 60 (Aug): 612–619. https://doi.org/10.1016/j.matdes.2014.04.030.
Serjun, V. Z., A. Mladenovič, B. Mirtič, A. Meden, J. Ščančar, and R. Milačič. 2015. “Recycling of ladle slag in cement composites: Environmental impacts.” Waste Manage. 43 (Sep): 376–385. https://doi.org/10.1016/j.wasman.2015.05.006.
Shen, H., and E. Forssberg. 2003. “An overview of recovery of metals from slags.” Waste Manage. 23 (10): 933–949. https://doi.org/10.1016/S0956-053X(02)00164-2.
Sotiriadis, K., et al. 2018. “A solid state NMR and in-situ infrared spectroscopy study on the setting reaction of magnesium sodium phosphate cement.” J. Non-Cryst. Solids 498 (May): 49–59. https://doi.org/10.1016/j.jnoncrysol.2018.06.006.
Števula, L., J. Madej, J. Kozánková, and J. Madejová. 1994. “Hydration products at the blast furnace slag aggregate–cement paste interface.” Cem. Concr. Res. 24 (3): 413–423. https://doi.org/10.1016/0008-8846(94)90128-7.
Sun, C., D. Xu, and D. Xue. 2014. “In situ FTIR-ATR observation of structural dynamics of H2PO4 in precrystallisation solution.” Mater. Res. Innovation 18 (5): 370–375. https://doi.org/10.1179/1433075X13Y.0000000155.
Sun, D., et al. 2020. “Characterisation of water stability of magnesium phosphate cement blended with steel slag and fly ash.” Adv. Cem. Res. 32 (6): 251–261. https://doi.org/10.1680/jadcr.18.00067.
Taylor, H. F. W. 1986. “Proposed structure for calcium silicate hydrate gel.” J. Am. Ceram. Soc. 69 (6): 464–467. https://doi.org/10.1111/j.1151-2916.1986.tb07446.x.
Tsakiridis, P. E., G. D. Papadimitriou, S. Tsivilis, and C. Koroneos. 2008. “Utilization of steel slag for portland cement clinker production.” J. Hazard. Mater. 152 (2): 805–811. https://doi.org/10.1016/j.jhazmat.2007.07.093.
Viani, A., et al. 2020. “Microstructural evolution and texture analysis of magnesium phosphate cement.” J. Am. Ceram. Soc. 103 (2): 1414–1424. https://doi.org/10.1111/jace.16782.
Viani, A., and M. Petra. 2018. “Polyamorphism and frustrated crystallization in the acid-base reaction of magnesium potassium phosphate cements.” Cryst. Eng. Comm. 20 (32): 4600–4613. https://doi.org/10.1039/C8CE00670A.
Viani, A., K. Sotiriadis, G. Lanzafame, and L. Mancini. 2019. “3D microstructure of magnesium potassium phosphate ceramics from X-ray tomography: New insights into the reaction mechanisms.” J. Mater. Sci. 54 (5): 3748–3760. https://doi.org/10.1007/s10853-018-3113-7.
Wagh, A. 2016. Five chemically bonded phosphate ceramics: Twenty-first century materials with diverse applications, edited by C. Gifford and I. L. Naperville, 2nd ed. Amsterdam: Elsevier.
Wagh, A. S. 2013. “Recent progress in chemically bonded phosphate ceramics.” ISRN Ceram. 2013 (1): 1–20. https://doi.org/10.1155/2013/983731.
Wagh, A. S., and Y. J. Seung. 2003. “Chemically bonded phosphate ceramics: I, A dissolution model of formation.” J. Am. Ceram. Soc. 86 (11): 1838–1844. https://doi.org/10.1111/j.1151-2916.2003.tb03569.x.
Wang, A.-J., Z.-L. Yuan, J. Zhang, L.-T. Liu, J.-M. Li, and Z. Liu. 2013. “Effect of raw material ratios on the compressive strength of magnesium potassium phosphate chemically bonded ceramics.” Mater. Sci. Eng. 33 (8): 5058–5063. https://doi.org/10.1016/j.msec.2013.08.031.
Wang, Q., and Y. Peiyu. 2010. “Hydration properties of basic oxygen furnace steel slag.” Constr. Build. Mater. 24 (7): 1134–1140. https://doi.org/10.1016/j.conbuildmat.2009.12.028.
Wang, Q., P. Yan, and J. Feng. 2011. “A discussion on improving hydration activity of steel slag by altering its mineral compositions.” J. Hazard. Mater. 186 (2–3): 1070–1075. https://doi.org/10.1016/j.jhazmat.2010.11.109.
Wang, Q., C. Yu, J. Yang, L. Chong, X. Xu, and Q. Wu. 2019. “Influence of nickel slag powders on properties of magnesium potassium phosphate cement paste.” Constr. Build. Mater. 205 (Apr): 668–678. https://doi.org/10.1016/j.conbuildmat.2019.02.014.
Wang, S., et al. 2014. “Influence of inorganic admixtures on the 11 Å-tobermorite formation prepared from steel slags: XRD and FTIR analysis.” Constr. Build. Mater. 60 (Jun): 42–47. https://doi.org/10.1016/j.conbuildmat.2014.03.002.
World Steel Association. 2019. Steel statistical yearbook 2019 concise version, 1–6. Brussels: World Steel Association.
Xu, B., B. Lothenbach, and F. Winnefeld. 2020. “Influence of wollastonite on hydration and properties of magnesium potassium phosphate cements.” Cem. Concr. Res. 131 (Dec): 106012. https://doi.org/10.1016/j.cemconres.2020.106012.
Yang, J., J. Lu, Q. Wu, M. F. Xia, and X. Li. 2018. “Influence of steel slag powders on the properties of MKPC paste.” Constr. Build. Mater. 159 (Jan): 137–146. https://doi.org/10.1016/j.conbuildmat.2017.10.081.
Yang, Q., and W. Xueli. 1999. “Factors influencing properties of phosphate cement-based binder for rapid repair of concrete.” Cem. Concr. Res. 29 (3): 389–396. https://doi.org/10.1016/S0008-8846(98)00230-0.
Yi, H., G. Xu, H. Cheng, J. Wang, Y. Wan, and H. Chen. 2012. “An overview of utilization of steel slag.” Procedia Environ. Sci. 16 (Jan): 791–801. https://doi.org/10.1016/j.proenv.2012.10.108.
Yu, P. et al. 2004. “Structure of calcium silicate hydrate (C─ S─ H): Near-, mid-, and far-infrared spectroscopy.” J. Am. Ceram. Soc. 82 (3): 742–748. https://doi.org/10.1111/j.1151-2916.1999.tb01826.x.
Yu, P., R. J. Kirkpatrick, B. Poe, P. F. McMillan, and X. Cong. 2015. “Effect of carbonic acid water on the degradation of portland cement paste: Corrosion process and kinetics.” Constr. Build. Mater. 91 (Aug): 39–46. https://doi.org/10.1016/j.conbuildmat.2015.05.046.
Zhang, G., G. Li, and T. He. 2017. “Effects of sulphoaluminate cement on the strength and water stability of magnesium potassium phosphate cement.” Constr. Build. Mater. 132 (Feb): 335–342. https://doi.org/10.1016/j.conbuildmat.2016.12.011.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 11November 2021

History

Received: Oct 23, 2020
Accepted: Mar 30, 2021
Published online: Sep 14, 2021
Published in print: Nov 1, 2021
Discussion open until: Feb 14, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Centro de Investigación, Innovación y Desarrollo de Materiales, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Researcher, Diseño, Innovación y Asistencia Técnica en Materiales Avanzados, Universidad Pedagógica y Tecnológica de Colombia UPTC, Avenida Central del Norte 39-115, Tunja 150003, Colombia (corresponding author). ORCID: https://orcid.org/0000-0003-1483-2222. Email: [email protected]
Petra Mácová, Ph.D. [email protected]
Researcher, Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, Prosecká 809/76, 190 00 Praha 9, Czech Republic. Email: [email protected]
Professor, Centro de Investigación, Innovación y Desarrollo de Materiales, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia. ORCID: https://orcid.org/0000-0001-9685-3080. Email: [email protected]
Lucie Zárybnická, Ph.D. [email protected]
Researcher, Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, Prosecká 809/76, 190 00 Praha 9, Czech Republic. Email: [email protected]
Radek Ševčík, Ph.D. [email protected]
Researcher, Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, Prosecká 809/76, 190 00 Praha 9, Czech Republic. Email: [email protected]
Researcher, Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, Prosecká 809/76, 190 00 Praha 9, Czech Republic. ORCID: https://orcid.org/0000-0002-6019-1094. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Organic-inorganic composites based on magnesium phosphate cement and acrylic latexes: Role of functional groups, Ceramics International, 10.1016/j.ceramint.2022.09.338, 49, 3, (4523-4530), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share