Abstract

Sugarcane agriculture contributes to the greenhouse effect by the polluting action of residue disposal, given that most sugarcane bagasse (SB) is burned. Because it is a low-cost fiber and ecofriendly material, SB can be an alternative to the construction of permeable friction course (PFC) pavement layers. Due to SB-specific properties, its effects on PFC mixtures are unknown. This study aims to evaluate for the first time the feasibility of incorporating SB fibers in a PFC mixture. For this purpose, a PFC mixture that included SB fibers (PFC-SB) was compared to a control PFC mixture fabricated using synthetic cellulose fibers (PFC-CEL), which are currently the most used fibers for fabricating these mixtures. The results suggest that the SB fibers can be successfully added to PFC mixtures to control binder draindown without compromising their volumetric properties. Additionally, the PFC-SB mixture presented an increase in stiffness and resistance to both cracking and raveling compared to the PFC-CEL. However, the mix design should be optimized to ensure proper mixture permeability. These findings suggest that the incorporation of SB fibers in PFC mixtures can be further explored, which encourages additional research.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

Funding: this work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001; and by the Brazilian National Council for Scientific and Technological Development (CNPq).

References

ADOT (Arizona Department of Transportation). 2008. ADOT standard specifications for road and bridge construction. Phoenix, AZ: ADOT.
Alavéz-Ramírez, R., P. Montes-García, J. Martínez-Reyes, D. C. Altamirano-Juárez, and Y. Gochi-Ponce. 2012. “The use of sugarcane bagasse ash and lime to improve the durability and mechanical properties of compacted soil blocks.” Constr. Build. Mater. 34 (Sep): 296–305. https://doi.org/10.1016/j.conbuildmat.2012.02.072.
Alvarez, A. E., A. Epps Martin, and C. Estakhri. 2009. “Connected air voids content in permeable friction course mixtures.” J. Test. Eval. 37 (3): 254–263. https://doi.org/10.1520/JTE102056.
Alvarez, A. E., A. Epps Martin, C. Estakhri, and R. Izzo. 2010. “Evaluation of durability tests for permeable friction course mixtures.” Int. J. Pavement Eng. 11 (1): 49–60. https://doi.org/10.1080/10298430902730539.
Alvarez, A. E., J. C. Mora, and L. V. Espinosa. 2018. “Quantification of stone-on-stone contact in permeable friction course mixtures based on image analysis.” Constr. Build. Mater. 165 (Mar): 462–471. https://doi.org/10.1016/j.conbuildmat.2017.12.189.
Alvarez, A. E., O. J. Reyes, and R. Miró. 2014. “A review of the characterization and evaluation of permeable friction course mixtures.” Ingeniare Rev. Chil. Ing. 22 (4): 469–482. https://doi.org/10.4067/S0718-33052014000400003.
ASTM. 2011. Standard test method for determination of draindown characteristics in uncompacted asphalt mixtures. ASTM D6390-11. West Conshohocken, PA: ASTM.
ASTM. 2013. Standard practice for open-graded friction course (OGFC) mix design. ASTM D7064. West Conshohocken, PA: ASTM.
ASTM. 2014. Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine. ASTM C131/C131M-14. West Conshohocken, PA: ASTM.
ASTM. 2015a. Standard test method for relative density (specific gravity) and absorption of coarse aggregate. ASTM C127-15. West Conshohocken, PA: ASTM.
ASTM. 2015b. Standard test method for relative density (specific gravity) and absorption of fine aggregate. ASTM C128-15. West Conshohocken, PA: ASTM.
ASTM. 2015c. Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. ASTM D4402/D4402M-15. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard test method for measurement of hydraulic conductivity of saturated porous material using a flexible wall permeameter. ASTM D5084-16a. West Conshohocken, PA: ASTM.
ASTM. 2017a. Standard test method for indirect tensile (IDT) strength of asphalt mixtures. ASTM D6931-17. West Conshohocken, PA: ASTM.
ASTM. 2017b. Standard test method for percent air voids in compacted asphalt mixtures. ASTM D3203-17. West Conshohocken, PA: ASTM.
ASTM. 2018. Standard test method for density of semi-solid asphalt binder (pycnometer method). ASTM D70-18. West Conshohocken, PA: ASTM.
ASTM. 2020. Standard test method for softening point of bitumen (ring-and-ball apparatus). ASTM D36/D36M-14(2020). West Conshohocken, PA: ASTM.
Bezerra, T. L., and A. J. Ragauskas. 2016. “A review of sugarcane bagasse for second-generation bioethanol and biopower production.” Biofuels, Bioprod. Biorefin. 10 (5): 634–647. https://doi.org/10.1002/bbb.1662.
Chen, J.-S., Y.-C. Sun, M.-C. Liao, and C.-C. Huang. 2012. “Effect of binder types on engineering properties and performance of porous asphalt concrete.” Transp. Res. Rec. 2293 (1): 55–62. https://doi.org/10.3141/2293-07.
Chen, J.-S., Y.-C. Sun, M.-C. Liao, C.-C. Huang, and K.-W. Tsou. 2013. “Evaluation of permeable friction course mixes with various binders and additives.” J. Mater. Civ. Eng. 25 (5): 573–579. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000631.
Chindaprasirt, P., P. Sujumnongtokul, and P. Posi. 2019. “Durability and mechanical properties of pavement concrete containing bagasse ash.” Mater. Today: Proc. 17 (4): 1612–1626. https://doi.org/10.1016/j.matpr.2019.06.191.
CONAB (Companhia Nacional de Abastecimento). 2020. Cana-de-açúcar—Análise Mensal—Maio-Junho—2020. Brasilia, DF: CONAB.
Cooley, L. A., Jr., J. W. Brumfield, R. B. Mallick, W. S. Mogawer, M. Partl, L. D. Poulikakos, and G. Hicks. 2009. Construction and maintenance practices for permeable friction courses. Washington, DC: NCHRP.
DNER (Departamento Nacional de Estradas de Rodagem). 1995. Agregado miúdo—determinação da densidade real—Método de Ensaio. DNER-ME 084-95. Rio de Janeiro, Brazil: DNER.
DNIT (Departamento Nacional de Infraestrutura de Transportes). 2018. Pavimentação Asfáltica—Misturas Asfálticas. Determinação do módulo de resiliência—Método de Ensaio. Rio de Janeiro, Brazil: DNIT.
Edeh, J. E., M. Joel, and A. Abubakar. 2019. “Sugarcane bagasse ash stabilization of reclaimed asphalt pavement as highway material.” Int. J. Pavement Eng. 20 (12): 1385–1391. https://doi.org/10.1080/10298436.2018.1429609.
FAO (Food and Agriculture Organization of the United Nations). 2020. “FAOSTAT.” Accessed August 1, 2020. http://www.fao.org/faostat/en/#data/QC.
Gupta, A., J. Rodriguez-Hernandez, and D. Castro-Fresno. 2019. “Incorporation of additives and fibers in porous asphalt mixtures: A review.” Materials 12 (19): 3156. https://doi.org/10.3390/ma12193156.
Hamzah, M. O., M. R. M. Hasan, and M. van De Ven. 2012. “Permeability loss in porous asphalt due to binder creep.” Constr. Build. Mater. 30 (May): 10–15. https://doi.org/10.1016/j.conbuildmat.2011.11.038.
Hassan, H. F., and K. S. Al-Jabri. 2005. “Effect of organic fibers on open-graded friction course mixture properties.” Int. J. Pavement Eng. 6 (1): 67–75. https://doi.org/10.1080/10298430500087936.
Hassan, H. F., S. Al-Oraimi, and R. Taha. 2005. “Evaluation of open-graded friction course mixtures containing cellulose fibers and styrene butadiene rubber polymer.” J. Mater. Civ. Eng. 17 (4): 416–422. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:4(416).
Hernandez-Saenz, M. A., S. Caro, E. Arámbula-Mercado, and A. Epps Martin. 2016. “Mix design, performance, and maintenance of permeable friction courses (PFC) in the United States: State of the art.” Constr. Build. Mater. 111 (May): 358–367. https://doi.org/10.1016/j.conbuildmat.2016.02.053.
Hofsetz, K., and M. A. Silva. 2012. “Brazilian sugarcane bagasse: Energy and non-energy consumption.” Biomass Bioenergy 46 (Nov): 564–573. https://doi.org/10.1016/j.biombioe.2012.06.038.
Kanitpong, K., C. H. Benson, and H. U. Bahia. 2001. “Hydraulic conductivity (permeability) of laboratory-compacted asphalt mixtures.” Transp. Res. Rec. 1767 (1): 25–32. https://doi.org/10.3141/1767-04.
Leal, C. 2013. “Aproveitamento do Bagaço de Cana-de-Açúcar em Misturas Asfálticas.” Ph.D. dissertation, Dept. of Civil Engineering, Fluminense Federal Univ.
Li, Z., X. Zhang, C. Fa, Y. Zhang, J. Xiong, and H. Chen. 2020. “Investigation on characteristics and properties of bagasse fibers: Performances of asphalt mixtures with bagasse fibers.” Constr. Build. Mater. 248 (Jul): 118648. https://doi.org/10.1016/j.conbuildmat.2020.118648.
Lima-Cavalcante, R., J. R. Franco-Marques, J. L. Fernandes, Jr., and D. A. Arancibia-Suarez. 2016. SMA asphalt mix produced with the addition of fiber of bagasse sugarcane. Rio de Janeiro, Brazil: Associação Brasileira de Pavimentação.
Lyons, K. R., and B. J. Putman. 2013. “Laboratory evaluation of stabilizing methods for porous asphalt mixtures.” Constr. Build. Mater. 49 (Dec): 772–780. https://doi.org/10.1016/j.conbuildmat.2013.08.076.
Ma, X., Q. Li, Y. Cui, and A. Ni. 2018. “Performance of porous asphalt mixture with various additives.” Int. J. Pavement Eng. 19 (4): 355–361. https://doi.org/10.1080/10298436.2016.1175560.
Mallick, R. B., P. Kandhal, L. A. Cooley, Jr., and D. E. Watson. 2000. Design, construction, and performance of new generation open-graded friction courses. Auburn, AL: National Center for Asphalt Technology.
Manrique-Sanchez, L., and S. Caro. 2019. “Numerical assessment of the structural contribution of porous friction courses (PFC).” Constr. Build. Mater. 225 (Nov): 754–764. https://doi.org/10.1016/j.conbuildmat.2019.07.200.
Mansor, S., N. I. Zainuddin, N. A. Aziz, M. Razali, and M. I. Joohari. 2018. “Sugarcane bagasse fiber—An eco-friendly pavement of SMA.” In Proc., AIP Conf. Proc. 2020. Melville, NY: AIP Publishing. https://doi.org/10.1063/1.5062658.
Martirena-Hernández, J. F., B. Middendorf, M. Gehrke, and H. Budelmann. 1998. “Use of wastes of the sugar industry as pozzolana in lime-pozzolana binders: Study of the reaction.” Cem. Concr. Res. 28 (11): 1525–1536. https://doi.org/10.1016/S0008-8846(98)00130-6.
Middendorf, B., J. Mickley, F. Martirena, and R. L. Day. 2002. Masonry wall materials prepared by using agriculture waste, lime, and burnt clay. Edited by D. Throop and R. E. Klingner, 273–283. West Conshohocken, PA: ASTM.
Mo, L., M. Huurman, S. Wu, and A. A. A. Molennar. 2014. “Mortar fatigue model for meso-mechanistic mixture design of ravelling resistant porous asphalt concrete.” Mater. Struct. 47 (6): 947–961. https://doi.org/10.1617/s11527-013-0105-6.
Mugica-Alvarez, V., F. Hernandez-Rosas, M. Magaña-Reyes, J. Herrera-Murillo, N. Santiago-De La Rosa, M. Gutiérrez-Arzaluz, J. J. Figueroa-Lara, and G. González-Cardoso. 2018. “Sugarcane burning emissions: Characterization and emission factors.” Atmos. Environ. 193 (Nov): 262–272. https://doi.org/10.1016/j.atmosenv.2018.09.013.
Pattanaik, M. L., R. Choudhary, B. Kumar, and A. Kumar. 2021. “Mechanical properties of open graded friction course mixtures with different contents of electric arc furnace steel slag as an alternative aggregate from steel industries.” Road Mater. Pavement Des. 22 (2): 268–292. https://doi.org/10.1080/14680629.2019.1620120.
Poulikakos, L. D., and M. N. Partl. 2009. “Evaluation of moisture susceptibility of porous asphalt concrete using water submersion fatigue tests.” Constr. Build. Mater. 23 (12): 3475–3484. https://doi.org/10.1016/j.conbuildmat.2009.08.016.
Punith, V. S., S. N. Suresha, S. Raju, S. Bose, and A. Veeraragavan. 2012. “Laboratory investigation of open-graded friction-course mixtures containing polymers and cellulose fibers.” J. Transp. Eng. 138 (1): 67–74. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000304.
Punith, V. S., and A. Veeraragavan. 2011. “Characterization of OGFC mixtures containing reclaimed polyethylene fibers.” J. Mater. Civ. Eng. 23 (3): 335–341. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000162.
Putman, B. J., and K. R. Lyons. 2015. “Laboratory evaluation of long-term draindown of porous asphalt mixtures.” J. Mater. Civ. Eng. 27 (10): 04015009. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001260.
Rainey, T. J., and G. Covey. 2016. Pulp and Paper production from sugarcane bagasse sugarcane-based biofuels and bioproducts. 1st ed. New York: Wiley.
Shirini, B., and R. Imaninasab. 2016. “Performance evaluation of rubberized and SBS modified porous asphalt mixtures.” Constr. Build. Mater. 107: 165–171. https://doi.org/10.1016/j.conbuildmat.2016.01.006.
Tanzadeh, J., and R. Shahrezagamasaei. 2017. “Laboratory assessment of hybrid fiber and nano-silica on reinforced porous asphalt mixtures.” Constr. Build. Mater. 144 (Jul): 260–270. https://doi.org/10.1016/j.conbuildmat.2017.03.184.
Tanzadeh, R., J. Tanzadeh, and S. A. Tahami. 2019. “Experimental study on the effect of basalt and glass fibers on behavior of open-graded friction course asphalt modified with nano-silica.” Constr. Build. Mater. 212 (Jul): 467–475. https://doi.org/10.1016/j.conbuildmat.2019.04.010.
Wang, X., X. Gu, J. Jiang, and H. Deng. 2018. “Experimental analysis of skeleton strength of porous asphalt mixtures.” Constr. Build. Mater. 171 (May): 13–21. https://doi.org/10.1016/j.conbuildmat.2018.03.116.
Wu, H., J. Yu, W. Song, J. Zou, Q. Song, and L. Zhou. 2020. “A critical state-of-the-art review of durability and functionality of open-graded friction course mixtures.” Constr. Build. Mater. 237 (Mar): 117759. https://doi.org/10.1016/j.conbuildmat.2019.117759.
Wu, S., G. Liu, L. Mo, Z. Chen, and Q. Ye. 2006. “Effect of fiber types on relevant properties of porous asphalt.” Supplement, Trans. Nonferrous Met. Soc. China 16 (S2): s791–s795. https://doi.org/10.1016/S1003-6326(06)60302-6.
Wurst, J. E., and B. J. Putman. 2013. “Laboratory evaluation of warm-mix open graded friction course mixtures.” J. Mater. Civ. Eng. 25 (3): 403–410. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000611.
Xu, B., J. Chen, C. Zhou, and W. Wang. 2016. “Study on Marshall design parameters of porous asphalt mixture using limestone as coarse aggregate.” Constr. Build. Mater. 124 (Oct): 846–854. https://doi.org/10.1016/j.conbuildmat.2016.08.005.
Yu, T., H. Zhang, and Y. Wang. 2020. “Interaction of asphalt and water between porous asphalt pavement voids with different aging stage and its significance to drainage.” Constr. Build. Mater. 252 (Aug): 119085. https://doi.org/10.1016/j.conbuildmat.2020.119085.
Zainudin, M. Z. M., F. H. Khairuddin, C. P. Ng, S. K. Che Osmi, N. A. Misnon, and S. Murniati. 2016. “Effect of sugarcane bagasse ash as filler in hot mix asphalt.” Mater. Sci. Forum 846: 683–689. https://doi.org/10.4028/www.scientific.net/MSF.846.683.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 9September 2021

History

Received: Oct 2, 2020
Accepted: Jan 20, 2021
Published online: Jul 12, 2021
Published in print: Sep 1, 2021
Discussion open until: Dec 12, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Research Assistant, Civil Engineering Graduate Program, Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Espírito Santo, Ave. Fernando Ferrari, 514, Vitória, ES 29060-970, Brazil. ORCID: https://orcid.org/0000-0002-6934-1757. Email: [email protected]
Jamilla Emi Sudo Lutif Teixeira, Ph.D. https://orcid.org/0000-0001-7805-4218 [email protected]
Associate Professor, Civil Engineering Graduate Program, Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Espírito Santo, Ave. Fernando Ferrari, 514-CT VI Sala 204, Vitória, ES 29060-970, Brazil (corresponding author). ORCID: https://orcid.org/0000-0001-7805-4218. Email: [email protected]
Allex E. Alvarez, Ph.D. [email protected]
Full Professor, School of Civil Engineering, Universidad Industrial de Santander, Carrera 27-calle 9, Edificio Alvaro Beltran, Office 202-6, Bucaramanga 680002, Colombia. Email: [email protected]
Francisco Thiago Sacramento Aragão, Ph.D. https://orcid.org/0000-0003-4957-9474 [email protected]
Associate Professor, Civil Engineering Graduate Program, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, Universidade Federal do Rio de Janeiro, Ave. Pedro Calmon, s/n, Laboratório de Geotecnia/Pavimentos, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ 21941-596, Brazil. ORCID: https://orcid.org/0000-0003-4957-9474. Email: [email protected]
Marcos A. Fritzen [email protected]
Researcher, Civil Engineering Graduate Program, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, Universidade Federal do Rio de Janeiro, Ave. Pedro Calmon, s/n, Laboratório de Geotecnia/Pavimentos, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ 21941-596, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Possibilities for the application of agro-industrial wastes in cementitious materials: A brief review of the Brazilian perspective, Cleaner Materials, 10.1016/j.clema.2021.100040, 3, (100040), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share