Technical Papers
Nov 27, 2020

Effect of Layered Double Hydroxide on Rheological and Flame-Retardant Properties of Styrene-Butadiene-Styrene–Modified Asphalt

Publication: Journal of Materials in Civil Engineering
Volume 33, Issue 2

Abstract

In this study, we evaluate the flame-retardant properties of styrene-butadiene-styrene (SBS)/layered double hydroxide (LDH-) –modified asphalt. We performed physical tests, dynamic shear rheological tests, and limit oxygen index measurements to evaluate basic physical properties as well as rheological and flame-retardant properties of SBS/LDH-modified asphalt samples. Fourier transform infrared spectrometry and fluorescence microscopy were performed to elucidate the mechanism reaction between LDH and SBS-modified asphalt. In addition, a novel flame-retardant analyzer was developed and used to analyze the changes in mass and temperature during asphalt combustion. Kinetics analysis and thermogravimetry measurements were performed to determine the most probable mechanism and activation energy. The microstructure of the combustion residue was analyzed using scanning electron microscopy. The results indicate that LDH increases the viscosity of SBS-modified asphalt and its resistance to deformation at high temperatures. However, when added in high concentrations, it has a negative effect on asphalt ductility. The |G*|, G, and G values for the SBS-modified asphalt increase with the addition of LDH. However, the effect is not statistically significant over the entire investigated frequency range. Moreover, the addition of 5% LDH reduces the phase angle of SBS-modified asphalt for frequencies greater than 30 Hz. Also, its effect is not statistically significant over the entire investigated temperature range. LDH increases the nonflammable grade and activation energy of SBS-modified asphalt and results in the formation of denser char, which significantly improves its flame-retardant properties.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors would like to acknowledge the financial support from the Natural Science Foundation for Youth of Shaanxi Provincial (No. S2017-ZRJJ-QN-0944) and the Science and Technology Project of the Shaanxi Transportation and Transportation Department (10-26K).

References

Bao, S., Q. Liu, J. Norambuena-Contreras, Z. Wang, and S. Wu. 2019. “Effect of layered double hydroxides addition on the ageing and self-healing properties of asphalt binder.” Mater. Res. Express 6 (7): 075704. https://doi.org/10.1088/2053-1591/ab13c5.
Benbouzid, M., and S. Hafsi. 2008. “Thermal and kinetic analyses of pure and oxidized bitumens.” Fuel 87 (8–9): 1585–1590. https://doi.org/10.1016/j.fuel.2007.08.016.
Camino, G., L. Costa, and G. Martinasso. 1989. “Intumescent fire-retardant systems.” Polym. Degrad. Stab. 23 (4): 359–376. https://doi.org/10.1016/0141-3910(89)90058-X.
De Wit, C. A. 2002. “An overview of brominated flame retardants in the environment.” Chemosphere 46 (5): 583–624. https://doi.org/10.1016/S0045-6535(01)00225-9.
Dittrich, B., K. A. Wartig, D. Hofmann, R. Mülhaupt, and B. Schartel. 2013. “Flame retardancy through carbon nanomaterials: Carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene.” Polym. Degrad. Stab. 98 (8): 1495–1505. https://doi.org/10.1016/j.polymdegradstab.2013.04.009.
Dong, Q., C. Gao, Y. Ding, F. Wang, B. Wen, S. Zhang, T. Wang, and M. Yang. 2012. “A polycarbonate/magnesium oxide nanocomposite with high flame retardancy.” J. Appl. Polym. Sci. 123 (2): 1085–1093. https://doi.org/10.1002/app.34574.
Fan, A., X. Huang, and Y. Ren. 2008. “Test and evaluation of low temperature performances of asphalt binders with additives.” Highway Eng. 2294 (1): 81–88. https://doi.org/10.3141/2294-09.
Gao, F., L. Tong, and Z. Fang. 2006. “Effect of a novel phosphorous–nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly (butylene terephthalate).” Polym. Degrad. Stab. 91 (6): 1295–1299. https://doi.org/10.1016/j.polymdegradstab.2005.08.013.
Gao, Y., J. Wu, Q. Wang, C. A. Wilkie, and D. O’Hare. 2014. “Flame retardant polymer/layered double hydroxide nanocomposites.” J. Mater. Chem. A 2 (29): 10996–11016. https://doi.org/10.1039/c4ta01030b.
Ghanadpour, M., F. Carosio, P. T. Larsson, and L. Wågberg. 2015. “Phosphorylated cellulose nanofibrils: A renewable nanomaterial for the preparation of intrinsically flame-retardant materials.” Biomacromolecules 16 (10): 3399–3410. https://doi.org/10.1021/acs.biomac.5b01117.
Green, J. 1996. “Mechanisms for flame retardancy and smoke suppression—A review.” J. Fire Sci. 14 (6): 426–442. https://doi.org/10.1177/073490419601400602.
Gu, J. W., G. C. Zhang, S. L. Dong, Q. Y. Zhang, and J. Kong. 2007. “Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings.” Surf. Coat. Technol. 201 (18): 7835–7841. https://doi.org/10.1016/j.surfcoat.2007.03.020.
Harper, C. 2000. Modern plastics handbook. New York: Mcgraw-Hill.
JTG. 2011. Standard test methods of bitumen and bituminous mixtures for highway engineering. JTG E20-2011. Beijing: People’s Traffic Press.
Laoutid, F., L. Bonnaud, M. Alexandre, J.-M. Lopez-Cuesta, and P. Dubois. 2009. “New prospects in flame retardant polymer materials: From fundamentals to nanocomposites.” Mater. Sci. Eng. R: Rep. 63 (3): 100–125. https://doi.org/10.1016/j.mser.2008.09.002.
Le Bras, M., S. Bourbigot, G. Camino, and R. Delobel. 1998. Fire retardancy of polymers: The use of intumescence. Amsterdam, Netherlands: Elsevier.
Leroux, F., and J.-P. Besse. 2001. “Polymer interleaved layered double hydroxide: A new emerging class of nanocomposites.” Chem. Mater. 13 (10): 3507–3515. https://doi.org/10.1021/cm0110268.
Li, C., S. Wu, Z. Chen, B. Shu, Y. Li, Y. Xiao, and Q. Liu. 2019a. “Synthesis of Fe3O4-decorated Mg-Al layered double hydroxides magnetic nanosheets to improve anti-ultraviolet aging and microwave absorption properties used in asphalt materials.” Constr. Build. Mater. 220 (Sep): 320–328. https://doi.org/10.1016/j.conbuildmat.2019.06.032.
Li, C., S. Wu, B. Shu, Y. Li, and Z. Chen. 2019b. “Microwave absorption and anti-aging properties of modified bitumen contained SiC attached layered double hydroxides.” Constr. Build. Mater. 227 (Dec): 116714. https://doi.org/10.1016/j.conbuildmat.2019.116714.
Li, X. J., S. Han, Y. Li, and B. Li. 2010. “Experimental study on index of low-temperature crack resistance of asphalt binder.” J. Wuhan Univ. Technol. 32 (7): 81–84. https://doi.org/10.3963/j.issn.1671-4431.2010.07.021.
Li, Y., S. Wu, L. Pang, Q. Liu, Z. Wang, and A. Zhang. 2018. “Investigation of the effect of Mg-Al-LDH on pavement performance and aging resistance of styrene-butadiene-styrene modified asphalt.” Constr. Build. Mater. 172 (May): 584–596. https://doi.org/10.1016/j.conbuildmat.2018.03.280.
Liu, D. L., Y. Z. Yan, Y. Y. Huang, J. L. Yao, and J. B. Yuan. 2013. “Study on flame-retardant properties of flame retardant asphalt mixture.” Appl. Mech. Mater. 438: 387–390. https://doi.org/10.4028/www.scientific.net/AMM.438-439.387.
Liu, Y., Y. Gao, Q. Wang, and W. Lin. 2018. “The synergistic effect of layered double hydroxides with other flame retardant additives for polymer nanocomposites: A critical review.” Dalton Trans. 47 (42): 14827–14840. https://doi.org/10.1039/C8DT02949K.
Lu, H., L. Song, and Y. Hu. 2011. “A review on flame retardant technology in China. Part II: Flame retardant polymeric nanocomposites and coatings.” Polym. Adv. Technol. 22 (4): 379–394. https://doi.org/10.1002/pat.1891.
Lu, S. Y., and I. Hamerton. 2002. “Recent developments in the chemistry of halogen-free flame retardant polymers.” Prog. Polym. Sci. 27 (8): 1661–1712. https://doi.org/10.1016/S0079-6700(02)00018-7.
Morgan, A. B., and J. W. Gilman. 2013. “An overview of flame retardancy of polymeric materials: Application, technology, and future directions.” Fire Mater. 37 (4): 259–279. https://doi.org/10.1002/fam.2128.
NB/SH/T. 2010. Flame retardant modified asphalt for pavement. NB/SH/T 0821-2010. Beijing: People’s Traffic Press.
Nobakht, M., and M. S. Sakhaeifar. 2018. “Dynamic modulus and phase angle prediction of laboratory aged asphalt mixtures.” Constr. Build. Mater. 190 (Nov): 740–751. https://doi.org/10.1016/j.conbuildmat.2018.09.160.
Nyambo, C., D. Chen, S. Su, and C. A. Wilkie. 2009. “Does organic modification of layered double hydroxides improve the fire performance of PMMA?” Polym. Degrad. Stab. 94 (8): 1298–1306. https://doi.org/10.1016/j.polymdegradstab.2009.03.023.
Pamplona, T. F., B. D. C. Amoni, A. E. V. D. Alencar, A. P. D. Lima, N. M. P. S. Ricardo, J. B. Soares, and S. D. A. Soares. 2012. “Asphalt binders modified by SBS and SBS/nanoclays: Effect on rheological properties.” J. Braz. Chem. Soc. 23 (4): 639–647. https://doi.org/10.1590/S0103-50532012000400008.
Pereira, C., M. Herrero, F. Labajos, A. Marques, and V. Rives. 2009. “Preparation and properties of new flame retardant unsaturated polyester nanocomposites based on layered double hydroxides.” Polym. Degrad. Stab. 94 (6): 939–946. https://doi.org/10.1016/j.polymdegradstab.2009.03.009.
Praticò, F. G., A. Moro, and R. Ammendola. 2010. “Potential of fire extinguisher powder as a filler in bituminous mixes.” J. Hazard. Mater. 173 (1): 605–613. https://doi.org/10.1016/j.jhazmat.2009.08.136.
Qian, L. J., L. J. Ye, G. Z. Xu, J. Liu, and J. Q. Guo. 2011. “The non-halogen flame retardant epoxy resin based on a novel compound with phosphaphenanthrene and cyclotriphosphazene double functional groups.” Polym. Degrad. Stab. 96 (6): 1118–1124. https://doi.org/10.1016/j.polymdegradstab.2011.03.001.
Riva, A., G. Camino, L. Fomperie, and P. Amigouet. 2003. “Fire retardant mechanism in intumescent ethylene vinyl acetate compositions.” Polym. Degrad. Stab. 82 (2): 341–346. https://doi.org/10.1016/S0141-3910(03)00191-5.
Sain, M., S. Park, F. Suhara, and S. Law. 2004. “Flame retardant and mechanical properties of natural fibre—PP composites containing magnesium hydroxide.” Polym. Degrad. Stab. 83 (2): 363–367. https://doi.org/10.1016/S0141-3910(03)00280-5.
Tian, B., R. Li, and D. Wang. 2011. “Preparation of flame-retardant asphalt for tunnels.” Adv. Mater. Res. (Switzerland) 391: 189–194. https://doi.org/10.4028/www.scientific.net/AMR.391-392.189.
Wang, L., X. He, H. Lu, J. Feng, X. Xie, S. Su, and C. A. Wilkie. 2011. “Flame retardancy of polypropylene (nano) composites containing LDH and zinc borate.” Polym. Adv. Technol. 22 (7): 1131–1138. https://doi.org/10.1002/pat.1927.
Wu, S., P. Cong, J. Yu, X. Luo, and L. Mo. 2006. “Experimental investigation of related properties of asphalt binders containing various flame retardants.” Fuel 85 (9): 1298–1304. https://doi.org/10.1016/j.fuel.2005.10.014.
Xiao, F., R. Guo, and J. Wang. 2019. “Flame retardant and its influence on the performance of asphalt—A review.” Constr Build Mater. 212 (Jul): 841–861. https://doi.org/10.1016/j.conbuildmat.2019.03.118.
Xu, S., J. Yu, C. Hu, L. Jia, and L. Xue. 2017. “Performance evaluation of asphalt containing layered double hydroxides with different zinc ratio in the host layer.” Petrol Sci. Technol. 35 (2): 127–133. https://doi.org/10.1080/10916466.2016.1248774.
Xu, S., J. Yu, W. Wu, L. Xue, and Y. Sun. 2015a. “Synthesis and characterization of layered double hydroxides intercalated by UV absorbents and their application in improving UV aging resistance of bitumen.” Appl. Clay Sci. 114 (Sep): 112–119. https://doi.org/10.1016/j.clay.2015.05.016.
Xu, S., J. Yu, L. Xue, Y. Sun, and D. Xie. 2015b. “Effect of layered double hydroxides on ultraviolet aging resistance of SBS modified bitumen membrane.” J. Wuhan Univ. Technol. Mater. Sci. Ed. 30 (3): 494–499. https://doi.org/10.1007/s11595-015-1178-6.
Xu, S., J. Yu, C. Zhang, and Y. Sun. 2015c. “Effect of ultraviolet aging on rheological properties of organic intercalated layered double hydroxides modified asphalt.” Constr. Build. Mater. 75 (30): 421–428. https://doi.org/10.1016/j.conbuildmat.2014.11.046.
Xu, T., and X. Huang. 2010. “Study on combustion mechanism of asphalt binder by using TG–FTIR technique.” Fuel 89 (9): 2185–2190. https://doi.org/10.1016/j.fuel.2010.01.012.
Xu, T., and X. Huang. 2011. “Combustion properties and multistage kinetics models of asphalt binder filled with flame retardant.” Combust. Sci. Technol. 183 (10): 1027–1038. https://doi.org/10.1080/00102202.2011.580803.
Yang, X., A. Shen, Y. Su, and W. Zhao. 2020. “Effects of alumina trihydrate (ATH) and organic montmorillonite (OMMT) on asphalt fume emission and flame retardancy properties of SBS-modified asphalt.” Constr. Build. Mater. 236 (Mar): 117576. https://doi.org/10.1016/j.conbuildmat.2019.117576.
Ye, L., and B. Qu. 2008. “Flammability characteristics and flame retardant mechanism of phosphate-intercalated hydrotalcite in halogen-free flame retardant EVA blends.” Polym. Degrad. Stab. 93 (5): 918–924. https://doi.org/10.1016/j.polymdegradstab.2008.02.002.
Ye, L., and Q. Wu. 2012. “Effects of an intercalating agent on the morphology and thermal and flame-retardant properties of low-density polyethylene/layered double hydroxide nanocomposites prepared by melt intercalation.” J. Appl. Polym. Sci. 123 (1): 316–323. https://doi.org/10.1002/app.33770.
Yen, Y. Y., H. T. Wang, and W. J. Guo. 2012. “Synergistic flame retardant effect of metal hydroxide and nanoclay in EVA composites.” Polym. Degrad. Stab. 97 (6): 863–869. https://doi.org/10.1016/j.polymdegradstab.2012.03.043.
Yuan, L., G. Yanshan, W. Qiang, and L. Weiran. 2018. “Synergistic effect of layered double hydroxides with other flame retardant additives for polymer nanocomposites: A critical review.” Dalton Trans. 47 (42): 14827–14840. https://doi.org/10.1039.C1038DT02949K.
Zhang, C., J. Yu, S. Xu, L. Xue, and Z. Cao. 2016. “Influence of UV aging on the rheological properties of bitumen modified with surface organic layered double hydroxides.” Constr. Build. Mater. 123 (Oct): 574–580. https://doi.org/10.1016/j.conbuildmat.2016.07.048.
Zhang, F., J. Yu, and J. Han. 2011. “Effects of thermal oxidative ageing on dynamic viscosity, TG/DTG, DTA and FTIR of SBS- and SBS/sulfur-modified asphalts.” Constr. Build. Mater. 25 (1): 129–137. https://doi.org/10.1016/j.conbuildmat.2010.06.048.
Zhang, H., X. Jia, J. Yu, and L. Xue. 2013. “Effect of expanded vermiculite on microstructures and aging properties of styrene-butadiene-styrene copolymer modified bitumen.” Constr. Build. Mater. 40 (Mar): 224–230. https://doi.org/10.1016/j.conbuildmat.2012.09.103.
Zhang, H., J. Yu, and S. Wu. 2012. “Effect of montmorillonite organic modification on ultraviolet aging properties of SBS modified bitumen.” Constr. Build. Mater. 27 (1): 553–559. https://doi.org/10.1016/j.conbuildmat.2011.07.008.
Zhang, H., C. Zhu, B. Tan, and C. Shi. 2014a. “Effect of organic layered silicate on microstructures and aging properties of styrene-butadiene-styrene copolymer modified bitumen.” Constr. Build. Mater. 68 (Oct): 31–38. https://doi.org/10.1016/j.conbuildmat.2014.06.038.
Zhang, X., F. Ren, L. Zhang, D. Dong, K. Jiang, and Y. Lu. 2014b. “Effects of the loading levels of organically modified montmorillonite on the flame-retardant properties of asphalt.” J. Appl. Polym. Sci. 131 (21). https://doi.org/10.1002/app.40972.
Zhao, C. X., Y. Liu, D. Y. Wang, D. L. Wang, and Y. Z. Wang. 2008. “Synergistic effect of ammonium polyphosphate and layered double hydroxide on flame retardant properties of poly(vinyl alcohol).” Polym. Degrad. Stab. 93 (7): 1323–1331. https://doi.org/10.1016/j.polymdegradstab.2008.04.002.
Zhao, Z., S. Wu, and Q. Liu. 2015. “Investigation of the effect of layer double hydroxides on comprehensive properties of SBS-modified asphalt mixture.” Mater. Res. Innov. 19 (5): 765–768. https://doi.org/10.1179/1432891714Z.0000000001190.
Zhu, K., Y. Wang, D. Tang, Q. Wang, H. Li, Y. Huang, Z. Huang, and K. Wu. 2019. “Flame-retardant mechanism of layered double hydroxides in asphalt binder.” Materials 12 (5): 801. https://doi.org/10.3390/ma12050801.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 2February 2021

History

Received: Mar 14, 2020
Accepted: Jul 6, 2020
Published online: Nov 27, 2020
Published in print: Feb 1, 2021
Discussion open until: Apr 27, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, School of Highway, Chang’an Univ., Xi’an 710064, Shaanxi, China. Email: [email protected]
Hansong Wu, Ph.D. [email protected]
School of Highway, Chang’an Univ., Xi’an 710064, Shaanxi, China (corresponding author). Email: [email protected]
Professor, School of Highway, Chang’an Univ., Xi’an 710064, Shaanxi, China. ORCID: https://orcid.org/0000-0003-2994-9896. Email: [email protected]
Xiaolong Yang, Ph.D. [email protected]
School of Highway, Chang’an Univ., Xi’an 710064, Shaanxi, China. Email: [email protected]
Ziming He, Ph.D. [email protected]
School of Highway, Chang’an Univ., Xi’an 710064, Shaanxi, China. Email: [email protected]
Yue Li, Ph.D. [email protected]
School of Highway, Chang’an Univ., Xi’an 710064, Shaanxi, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share