State-of-the-Art Reviews
May 29, 2020

Moisture Damage of Bituminous Pavements and Application of Nanotechnology in Its Prevention

Publication: Journal of Materials in Civil Engineering
Volume 32, Issue 8

Abstract

This review paper gives a brief overview of moisture damage and the materials used to prevent it. It has been observed that bituminous mixes suffer from durability issues such as moisture damage and oxidation. Even the usage of conventional antistripping materials such as lime and liquid antistripping agents (LAS) are not able to prevent the moisture damage completely. The studies supporting the effect of particle sizes of additives on the moisture resistance of bituminous mixes was the motivation behind the investigation of the use of nanomaterials for this global problem. The scope of this review is to understand the mechanism of moisture damage and the use of nanotechnology for its prevention. This study is an effort to look into the recent use of some nanomaterials in bituminous mixes for the development of mixes with better durability against moisture-induced damages. This review also focuses on the important nanocharacterization tools that are employed to understand the moisture damage of bituminous mixes at the nanoscale.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models, or code were generated or used during the study.

References

AASHTO. 2014. Standard method of test for resistance of compacted asphalt mixtures to moisture-induced damage. T283. Washington, DC: AASHTO.
Abd, D. M., H. Al-Khalid, and R. Akhtar. 2018. “An investigation into the impact of warm mix asphalt additives on asphalt mixture phases through a nano-mechanical approach.” Constr. Build. Mater. 189 (Nov): 296–306. https://doi.org/10.1016/j.conbuildmat.2018.08.165.
Abdullah, M. E., K. A. Zamhari, R. Buhari, N. H. Mohd Kamaruddin, N. Nayan, M. R. Hainin, and N. I. M. Yusoff. 2015. “A review on the exploration of nanomaterials application in pavement engineering.” Jurnal Teknologi 73 (4): 69–76. https://doi.org/10.11113/jt.v73.4291.
Abo-Qudais, S., and M. Walid Mulqi. 2005. “New chemical antistripping additives for bituminous mixtures.” J. ASTM Int. 2 (8): 13292. https://doi.org/10.1520/JAI13292.
Alexandre, M., and P. Dubois. 2000. “Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials.” Mater. Sci. Eng.: R: Rep. 28 (1–2): 1–63. https://doi.org/10.1016/S0927-796X(00)00012-7.
Allen, R. G., D. N. Little, A. Bhasin, and C. J. Glover. 2014. “The effects of chemical composition on asphalt micro-structure and their association to pavement performance.” Int. J. Pavement Eng. 15 (1): 9–22. https://doi.org/10.1080/10298436.2013.836192.
Al-Swailmi, S., and R. L. Terrel. 1992. “Evaluation of water damage of asphalt concrete mixtures using the environmental conditioning system (ECS).” J. Assoc. Asphalt Paving Technol. (AAPT). 61: 405–445.
Al-Swailmi, S. H. 1992. “Development of a test procedure for water sensitivity of asphalt concrete mixtures.” Accessed January 09, 2017. https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/qf85ng654?locale=en.
Ameri, M., S. Kouchaki, and H. Roshani. 2013. “Laboratory evaluation of the effect of nano-organosilane anti-stripping additive on the moisture susceptibility of HMA mixtures under freeze–thaw cycles.” Constr. Build. Mater. 48 (Nov): 1009–1016. https://doi.org/10.1016/j.conbuildmat.2013.07.030.
Ameri, M., M. Vamegh, S. Farhad, C. Naeni, and M. Molayem. 2018. “Moisture susceptibility evaluation of asphalt mixtures containing Evonik, Zycotherm and hydrated lime.” Constr. Build. Mater. 165 (Mar): 958–965. https://doi.org/10.1016/j.conbuildmat.2017.12.113.
Anastasio, S. 2015. “Evaluation of the effect of aggregate mineralogy on the durability of asphalt pavements.” Accessed November 5, 2019. https://www.researchgate.net/publication/303768037_Evaluation_of_the_effect_of_aggregate_mineralogy_on_the_durability_of_asphalt_pavements.
Arabani, M., H. Roshani, and G. H. Hamedi. 2012. “Estimating moisture sensitivity of warm mix asphalt modified with Zycosoil as an antistrip agent using surface free energy method.” J. Mater. Civ. Eng. 24 (7): 889–897. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000455.
Arambula, E., E. Masad, and A. E. Martin. 2007. “Influence of air void distribution on the moisture susceptibility of asphalt mixes.” J. Mater. Civ. Eng. 19 (8): 655–664. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:8(655).
Arifuzzaman, M., M. S. Islam, and M. I. Hossain. 2017. Moisture damage evaluation in SBS and lime modified asphalt using AFM and artificial intelligence. London: Springer. https://doi.org/10.1007/s00521-015-2041-6.
Aschenbrener, T., and G. Currier. 1993. Influence of testing variables on the results from the Hamburg wheel-tracking device. Denver: Colorado DOT.
Aschenbrener, T., and N. Far. 1994. Influence of compaction temperature and anti-stripping treatment on the results from the Hamburg wheel- tracking device. CDOT-DTD-R-94-9. Denver: Colorado DOT.
Ashish, P. K., D. Singh, and S. Bohm. 2016. “Investigation on influence of nanoclay addition on rheological performance of asphalt binder.” 18 (5): 1007–1026. https://doi.org/10.1080/14680629.2016.1201522.
ASTM. 2011. Standard test method for effect of water on compressive strength of compacted bituminous mixtures (withdrawn 2019). D1075. West Conshohocken, PA: ASTM International.
ASTM. 2014. Standard test method for effect of moisture on asphalt concrete paving mixtures. D4867. West Conshohocken, PA: ASTM International.
Bhasin, A. 2006. “Development of methods to quantify bitumen-aggregate adhesion and loss of adhesion due to water.” Accessed November 3, 2015. http://oaktrust.library.tamu.edu/bitstream/handle/1969.1/5934/etd-tamu-2006A-CVEN-Bhasin.pdf.
Bhurke, A., E. Shin, and L. Drzal. 1997. “Fracture morphology and fracture toughness measurement of polymer-modified asphalt concrete.” Transp. Res. Rec. 1590 (1): 23–33. https://doi.org/10.3141/1590-04.
Bolte, G. 2009. “Innovative building material—Reduction of air pollution through TiCem.” In Proc., Nanotechnology in Construction 3, 55–61. Berlin: Springer.
Brown, E. R., R. Collins, and J. R. Brownfield. 1989. “Investigation of segregation of asphalt mixtures in the state of Georgia.” Transp. Res. Rec. 1217 (1): 1–8.
Busching, H. W., J. L. Jr. Burati, and S. N. Amirkanian. 1986. An investigation of stripping in asphalt concrete in South Carolina. Clemson, SC: Clemson University.
Cai, L., X. Shi, and J. Xue. 2018. “Laboratory evaluation of composed modified asphalt binder and mixture containing nano-silica/rock asphalt/SBS.” Constr. Build. Mater. 172 (May): 204–211. https://doi.org/10.1016/j.conbuildmat.2018.03.187.
Castan, M. 1968. “Rising of binder to the surface of an open-graded bituminous mix.” Bulletin de liaison des laboratoires routiers (33): 77–84.
Cement Manufacturers’ Association. 2006. Cement concrete roads vs. bituminous road cost analysis. New Delhi, India: Ministry of Rural Development, Government of India.
Chaudhary, H. K., and P. Aggarwal. 2017. “Application of Zycosoil in bituminous mix.” Int. J. Adv. Technol. Eng. Sci. 5 (6): 83–91.
Chen, S., S. Adhikari, and Z. You. 2019. “Relationship of coefficient of permeability, porosity, and air voids in fine-graded HMA.” J. Mater. Civ. Eng. 31 (1): 04018359. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002573.
Chen, X., and B. Huang. 2008. “Evaluation of moisture damage in hot mix asphalt using simple performance and Superpave indirect tensile tests.” Constr. Build. 22 (9): 1950–1962. https://doi.org/10.1016/j.conbuildmat.2007.07.014.
Cheng, D., D. N. Little, R. L. Lytton, and J. C. Holste. 2002. “Use of surface free energy properties of the asphalt-aggregate system to predict moisture damage potential.” Asphalt Paving Technol. 71: 59–88.
Cheng, J., J. Shen, and F. Xiao. 2011. “Moisture susceptibility of warm-mix asphalt mixtures containing nanosized hydrated lime.” J. Mater. Civ. Eng. 23 (11): 1552–1559. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000308.
Collop, A. C., Y. K. Choi, G. D. Airey, and R. C. Elliott. 2004. “Development of the saturation ageing tensile stiffness (SATS) test.” Proc. Inst. Civ. Eng. Transp. 157 (3): 163–171. https://doi.org/10.1680/tran.2004.157.3.163.
Crucho, J., L. Picado-Santos, J. Neves, and S. Capitao. 2019. “A review of nanomaterials effect on mechanical performance and aging of asphalt mixtures.” Appl. Sci. 9 (18): 3657. https://doi.org/10.3390/app9183657.
CTM (California Test Methods). 2005. Method of test for resistance of compacted bituminous mixture to moisture induced damage. 371. Sacramento, CA: CTM.
Cui, S., B. R. K. Blackman, A. J. Kinlock, and A. C. Taylor. 2014. “Durability of asphalt mixtures: Effect of aggregate type and adhesion promoters.” Int. J. Adhes. Adhes. 54 (Oct): 100–111. https://doi.org/10.1016/j.ijadhadh.2014.05.009.
Curtis, C. W., R. L. Terrel, L. M. Perry, S. Al-Swailmi, and C. J. Braanan. 1991. “Importance of asphalt-aggregate interactions in adhesion.” J. Assoc. Asphalt Pavement Technol. 60: 476–532.
Dam, T., V. Khambhayta, D. Makwana, S. K. Jadav, B. R. Teppala, and P. C. B. Mishra. 2014. “Performance of Zycosoil—A nano material as an additive with bituminous concrete mix.” J. Mech. Civ. Eng. 11 (6): 10–15. https://doi.org/10.9790/1684-11611015.
D’Angelo, J., and R. M. Anderson. 2003. “Material production, mix design & pavement design effects on moisture damage.” In Moisture Sensitivity of Asphalt Pavements: A National Seminar. Washington, DC: Transportation Research Board.
Diab, A., Z. You, and H. Wang. 2013. “Rheological evaluation of foamed WMA modified with nano hydrated lime.” Procedia Soc. Behav. Sci. 96 (Nov): 2858–2866. https://doi.org/10.1016/j.sbspro.2013.08.318.
Diab, A., M. Y. Yousef Mohassab, M. Ahmed, K. Prisbrey, Q. Dai, Z. You, and A. M. Wahaballa. 2015. “Do regular- and nano-sized hydrated lime have different mechanisms in asphalt?” Int. J. Pavement Res. Technol. 8 (5): 363–369.
Dong, Z., Y. Tan, L. Cao, and Y. Zhong. 2007. “Research on pore pressure within asphalt pavement under the coupled moisture-loading action.” J. Harbin Inst. Technol. 39 (10): 1614–1617.
Dos Santos, S., M. N. Partl, and D. P. Lily. 2014. “Newly observed effects of water on the microstructures of bitumen surface.” Constr. Build. Mater. 71 (Nov): 618–627. https://doi.org/10.1016/j.conbuildmat.2014.08.076.
Dourado, E. R., R. A. Simao, and L. F. M. Leite. 2012. “Mechanical properties of asphalt binders evaluated by atomic force microscopy.” J. Microsc. 245 (2): 119–128. https://doi.org/10.1111/j.1365-2818.2011.03552.x.
Drexler, K. E. 1981. “Molecular engineering: An approach to the development of general capabilities for molecular manipulation. Proc. Natl. Acad. Sci. U.S.A. 78 (9): 5275–5278. https://doi.org/10.1073/pnas.78.9.5275.
EAPA. 2015. “Advantages of asphalt.” Accessed December 24, 2015. https://eapa.org/advantages-of-asphalt.
EN. 2018. Bituminous mixtures—Test methods—Part 12: Determination of the water sensitivity of bituminous specimens. 12697-12. Belgium: Comite Europeen de Normalisation.
European Commission. 2010. “Definition of nanomaterial.” Accessed March 1, 2017. https://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm.
European Lime Association. 2010. “Hydrated lime: A proven additive for durable asphalt pavements: Critical literature review.” Accessed August 20, 2018. https://www.eula.eu/hydrated-lime-proven-additive-durable-asphalt-pavements-critical-literature-review-paper/.
Faisal, H., R. Tarefder, and M. Weldegiorgis. 2015. “Nanoindentation characterization of moisture damage in different phases of asphalt concrete.” Adv. Civ. Eng. Mater. 4 (1): 20140035. https://doi.org/10.1520/ACEM20140035.
Faramarzi, M., B. Golestani, and K. W. Lee. 2017. “Improving moisture sensitivity and mechanical properties of sulfur extended asphalt mixture by nano-antistripping agent.” Constr. Build. Mater. 133 (Feb): 534–542. https://doi.org/10.1016/j.conbuildmat.2016.12.038.
Faruki, M., L. Castillo, and J. Sai. 2015. “State-of-art review of the applications of nanotechnology in pavement materials.” J. Civ. Eng. Res. 5 (2): 21–27. https://doi.org/10.5923/j.jce.20150502.01.
FHWA. 2008. User guidelines for waste and byproduct materials in pavement construction. FHWA-RD-97-148. Washington, DC: FHWA.
Fromm, H. J. 1974. “The mechanisms of asphalt stripping from aggregate surfaces.” J. Assoc. Asphalt Paving Technol. 43: 191–223.
Goetz, W. H. 1958. “Methods of testing for water resistance of bituminous paving mixtures.” In Symp. on Effect of Water on Bituminous Paving Mixtures. Boston: ASTM.
Gong, M., Z. Yao, Z. Xiong, J. Yang, and J. Hong. 2018. “Investigation on the influences of moisture on asphalts’ micro properties by using atomic force microscopy and Fourier transform infrared spectroscopy.” Constr. Build. Mater. 183 (Sep): 171–179. https://doi.org/10.1016/j.conbuildmat.2018.05.189.
Gopalakrishnan, K., B. Birgisson, P. Taylor, and N. O. Attoh-Okine. 2011. Nanotechnology in civil infrastructure: A paradigm shift. New York: Springer. https://doi.org/10.1007/978-3-642-16657-0.
Guo, M., and Y. Tan. 2019. “Interaction between asphalt and mineral fillers and its correlation to mastics’ viscoelasticity.” Int. J. Pavement Eng. 1–10. https://doi.org/10.1080/10298436.2019.1575379.
Guo, Y., and A. Shen. 2018. The preventive maintenance of fiber reinforced chip seal, 269–272. Beijing: China Communication Press.
Gzemski, F. C., D. W. McGlashan, and W. L. Dolch. 1968. Thermodynamic aspects of the stripping problem. Washington, DC: Highway Research Board.
Hamedi, G. H., F. M. Nejad, and K. Oveisi. 2015. “Estimating the moisture damage of asphalt mixture modified with nano zinc oxide.” Mater. Struct. 49 (4): 1165–1174. https://doi.org/10.1617/s11527-015-0566-x.
Hefer, A., D. N. Little, and R. L. Lytton. 2005. “A synthesis of theories and mechanisms of bitumen-aggregate adhesion including recent advances in quantifying the effects of water.” Proc. Assoc. Asphalt Paving Technol. 74: 139–196.
Hicks, R. G. 1991. Moisture damage of asphalt concrete. Washington, DC: National Research Council.
Hossain, M. I., H. M. Faisal, and R. A. Tarefder. 2016. “Determining effects of moisture in mastic materials using nanoindentation.” Mater. Struct. 49 (3): 1079–1092. https://doi.org/10.1617/s11527-015-0559-9.
Huang, B., X. Shu, Q. Dong, and J. Shen. 2010. “Laboratory evaluation of moisture susceptibility of hot-mix asphalt containing cementitious fillers.” J. Mater. Civ. Eng. 22 (7): 667–673. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000064.
Hveem, F. 1943. “Quality test for asphalt: A progress report.” In Proc., Association of Asphalt Paving Technologists, 111–152. Washington, DC: Transportation Research Board.
Ishai, I., and J. Craus. 1977. “Effect of the filler on aggregate-bitumen adhesion properties in bituminous mixtures.” Asphalt Paving Technol. 46: 228–259.
Iskender, E. 2016. “Evaluation of mechanical properties of nano-clay modified asphalt mixtures.” Measurement 93 (Nov): 359–371. https://doi.org/10.1016/j.measurement.2016.07.045.
Jäger, A., R. Lackner, C. H. Eisenmenger-Sittner, and R. Blad. 2004. “Identification of four material phases in bitumen by atomic force microscopy.” Road Mater. Pavement Des. 5 (Sup. 1): 9–24. https://doi.org/10.1080/14680629.2004.9689985.
Jahromi, S. G., and A. Khodaii. 2009. “Properties of asphalt mixtures.” Amirkabir Int. J. Model. Ident. Simul. Control 41 (1): 49–57.
Jiang, W., X. Zhang, and Z. Li. 2011. “Mechanical mechanism of moisture induced damage of asphalt mixture based on simulation test of dynamic water pressure.” China J. Highway Transp. 24 (4): 21–25.
Kakar, M. R., M. O. Hamzah, and J. Valentin. 2015. “A review on moisture damages of hot and warm mix asphalt and related investigations.” J. Cleaner Prod. 99 (Jul): 39–58. https://doi.org/10.1016/j.jclepro.2015.03.028.
Kaur, S., and M. K. Purohit. 2016. Rainfall statistics of India—2015. New Delhi, India: Indian Metrological Dept.
Kaushik, B. K., and M. K. Majumder. 2015. Vol. 1 of Carbon nanotube based VLSI interconnects: Analysis and design, 86. New Delhi, India: Springer.
Kavussi, A., and P. Barghabani. 2014. “The influence of nano materials on moisture resistance of asphalt mixes.” Study Civ. Eng. Archit. 3: 36–40.
Kavussi, A., and P. Barghabany. 2015. “Investigating fatigue behavior of nanoclay and nano hydrated lime modified bitumen using LAS test.” J. Mater. Civ. Eng. 28 (3): 1–7. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001376.
Khodaii, A., V. Khalifeh, M. H. Dehnad, and G. H. Hamedi. 2014. “Evaluating the effect of Zycosoil on moisture damage of hot-mix asphalt using the surface energy method.” J. Mater. Civ. Eng. 26 (2): 259–266. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000819.
Kiggundu, B. M., and F. L. Roberts. 1988. Stripping in HMA mixtures: State of the art and critical review of test methods. Auburn, AL: National Centre for Asphalt Technology.
Kim, Y. R., D. N. Little, and R. L. Lytton. 2004. “Effect of moisture damage on material properties and fatigue resistance of asphalt mixtures.” J. Transp. Res. Rec. 1891 (1): 48–54. https://doi.org/10.3141/1891-07.
Kringos, N. 2007. “Modeling of combined physical-mechanical moisture induced damage in asphaltic mixes.” Accessed November 3, 2015. https://repository.tudelft.nl/islandora/object/uuid:7d56c1e6-af8c-4a88-b7dc-2543b86279a2/?collection=research.
Lazzara, G., and S. Milioto. 2010. “Dispersions of nanosilica in biocompatible copolymers.” Polym. Degrad. Stab. 95 (4): 610–617. https://doi.org/10.1016/j.polymdegradstab.2009.12.007.
Lesueur, D., J. Petit, and H. Ritter. 2013. “The mechanisms of hydrated lime modification of asphalt mixtures: A state-of-the-art review.” Road Mater. Pavement Des. 14 (1): 1–16. https://doi.org/10.1080/14680629.2012.743669.
Liddle, G., and Y. Choi. 2007. Case study and test method review on moisture damage. Sydney, NSW, Australia: Austroads Incorporated.
Little, D. N., and J. A. Epps. 2001. “The benefits of hydrated lime in hot mix asphalt.” Accessed September 1, 2017. https://www.lime.org/ABenefit.pdf.
Little, D. N., and D. R. Jones. 2003. “Chemical and mechanical processes of moisture damage in hot-mix asphalt pavements.” Accessed December 26, 2015. http://onlinepubs.trb.org/onlinepubs/conf/reports/moisture/00_FRONT.pdf.
Logaraj, S. 2002. “Chemistry of asphalt−aggregate interaction—Influence of additives.” In Proc., Moisture Damage Symp. Laramie, WY: Western Research Institute.
Lottman, R. P. 1978. Predicting moisture-induced damage to asphaltic concrete. Washington, DC: Transportation Research Board, National Research Council.
Lottman, R. P. 1982. Predicting moisture-induced damage to asphaltic concrete field evaluation. Washington, DC: Transportation Research Board, National Research Council.
Lu, Q. 2005. “Investigation of conditions for moisture damage in asphalt concrete and appropriate laboratory test methods.” Accessed December 26, 2015. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.367.594&rep=rep1&type=pdf.
Lyne, Å. L., V. Wallqvist, and B. Birgisson. 2013. “Adhesive surface characteristics of bitumen binders investigated by atomic force microscopy.” Fuel 113 (Nov): 248–256. https://doi.org/10.1016/j.fuel.2013.05.042.
Majidzadeh, K., and F. N. Brovold. 1968. State of the art: Effect of water on bitumen-aggregate mixtures. Washington, DC: Highway Research Board.
Mamun, A. A., and M. Arifuzzaman. 2018. “Nano-scale moisture damage evaluation of carbon nanotube-modified asphalt.” Constr. Build. Mater. 193 (Dec): 268–275. https://doi.org/10.1016/j.conbuildmat.2018.10.155.
Mann, S. 2006. “Nanotechnology in construction.” Accessed January 7, 2008. www.innovationsgesellschaft.ch.
Mansourkhaki, A., and A. Aghasi. 2019. “Performance of rubberized asphalt containing liquid nanomaterial anti-strip agent.” Constr. Build. Mater. 214 (Jul): 468–474. https://doi.org/10.1016/j.conbuildmat.2019.03.071.
Masson, J. F., V. Leblond, and J. Margeson. 2006. “Bitumen morphologies by phase-detection atomic force microscopy.” J. Microsc. 221 (1): 17–29. https://doi.org/10.1111/j.1365-2818.2006.01540.x.
Mathews D. H. 1957. Bibliography on adhesion in bituminous materials. London: Dept. of Scientific and Industrial Research, Road Research Laboratory.
Mittal, A., P. K. Jain, J. B. Sengupta, and V. Ganvir Di. 2012. “New and emerging road technologies for future: New building materials and construction world NBM & CW.” Accessed June 1, 2018. https://search.proquest.com.proxy.lib.uwaterloo.ca/docview/1038935755.
NAPA (National Asphalt Pavement Association) and EAPA (European Asphalt Pavement Association). 2011. “The asphalt paving industry a global perspective.” Accessed August 20, 2018. https://eapa.org/wp-content/uploads/2018/07/global_perspective.pdf.
Nazzal, M. D., L. Abu-Qtaish, S. Kaya, and D. Powers. 2015. “Using atomic force microscopy to evaluate the nanostructure and nanomechanics of warm mix asphalt.” J. Mater. Civ. Eng. 27 (10): 04015005. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001254.
Nejad, F. M., E. Geraee, and A. R. Azarhoosh. 2018. “The effect of nano calcium carbonate on the dynamic behavior of asphalt concrete mixtures.” Eur. J. Environ. Civ. Eng. 1–10. https://doi.org/10.1080/19648189.2018.1456486.
Nguyen, T., and E. Byrd. 1996. Development of a method for measuring water-stripping resistance of asphalt/siliceous aggregate mixtures. Washington, DC: National Institute of Standards.
Nicholson, V. 1932. “Adhesion tension in asphalt pavements, its significance and methods applicable in its determination.” In Vol. 3 of Proc., Assn. Asphalt Paving Technologists, 29–49. Washington, DC: Transportation Research Board.
Omar, H. A., N. Izzi, H. Ceylan, I. Abdul, Z. Sajuri, F. Mohd, and A. Ismail. 2018. “Determining the water damage resistance of nano-clay modified bitumens using the indirect tensile strength and surface free energy methods.” Constr. Build. Mater. 167 (Apr): 391–402. https://doi.org/10.1016/j.conbuildmat.2018.02.011.
Packham, D. E. 1996. “Work of adhesion: Contact angles and contact mechanics.” Int. J. Adhes. Adhes. 16 (2): 121–128. https://doi.org/10.1016/0143-7496(95)00034-8.
Pan, C., and T. D. White. 1999. Conditions for stripping using accelerated testing. West Lafayette, IN: Purdue Univ.
Partl, M. N., R. Gubler, and M. Hugener. 2004. “Nanoscience and technology for asphalt pavements.” In Vol. 292 of Proc., 1st Int. Symp. on Nanotechnology in Construction, 343–355. Edinburgh, Scotland: Royal Society of Chemistry.
Parviz, A. 2011. “Nano materials in asphalt and tar.” Aust. J. Basic Appl. Sci. 5 (12): 3270–3273.
Pauli, A. T., R. W. Grimes, A. G. Beemer, T. F. Turner, and J. F. Branthaver. 2011. “Morphology of asphalts, asphalt fractions and model wax-doped asphalts studied by atomic force microscopy.” Int. J. Pavement Eng. 12 (4): 291–309. https://doi.org/10.1080/10298436.2011.575942.
Pauli, T., W. Grimes, A. Cookman, and S. Huang. 2014. “Adherence energy of asphalt thin films measured by force-displacement atomic force microscopy.” J. Mater. Civ. Eng. 26 (12): 04014089. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001003.
Petersen, J. C. 1988. “Lime-treated pavements offer increased durability—Transport research international documentation—TRID.” Roads Bridges 26 (1): 85–87.
Petersen, J. C., C. H. Plancher, E. K. Ensley, R. L. Venable, and G. Miyake. 1982. “Chemistry of asphalt-aggregate interaction: relationship with pavement moisture-damage prediction test.” Transp. Res. Rec. 843 (1): 95–104.
Phan, T. N. 2012. “Measurement of bitumen relaxation modulus with instrumented indentation.” Accessed August 20, 2018. http://kth.diva-portal.org/smash/record.jsf?pid=diva2:531988.
Plancher, H., S. M. Dorrence, and S. M. Petersen. 1977. “Identification of chemical types in asphalts strongly adsorbed at the asphalt-aggregate interface and their relative displacement by water.” In Vol. 46 of Proc., Association of Asphalt Paving Technologists (AAPT), 151–175. Washington, DC: Transportation Research Board.
Riedel, W., and H. Weber. 1933. “On the question of adhesion of bituminous binders to various stones.” Asphalt und Teerstrassenbautechnik 33: 677, 693, 713, 729, 749, 793, 809.
Roy, S., and Z. Hossain. 2019. “Nanoscale quantification of moisture susceptibility of paving asphalts.” In Proc., ATEC Web of Conf., 271. Les Ulis, France: EDP Sciences. https://doi.org/10.1051/matecconf/201927103005.
RRL (Road Research Laboratory). 1962. Bituminous materials in road construction. Richmond: Dept. of Scientific and Industrial Research, Her Majesty’s Stationery Office (HMSO).
Saltan, M., S. Terzi, and S. Karahancer. 2017. “Examination of hot mix asphalt and binder performance modified with nano silica.” Constr. Build. Mater. 156 (Dec): 976–984. https://doi.org/10.1016/j.conbuildmat.2017.09.069.
Saltan, M., S. Terzi, and S. Karahancer. 2018. “Performance analysis of nano modified bitumen and hot mix asphalt.” Constr. Build. Mater. 173 (Jun): 228–237. https://doi.org/10.1016/j.conbuildmat.2018.04.014.
Santagata, E., O. Baglieri, L. Tsantilis, and D. Dalmazzo. 2012. “Rheological characterization of bituminous binders modified with carbon nanotubes.” Procedia Soc. Behav. Sci. 53 (Oct): 546–555. https://doi.org/10.1016/j.sbspro.2012.09.905.
Saville, V. B., and E. O. Axon. 1937. “Adhesion of asphaltic binders to mineral aggregates.” In Vol. 9 of Proc., Assn. Asphalt Paving Technologists, 87–101. Washington, DC: Transportation Research Board.
Scott, J. A. N. 1978. “Adhesion and disbonding mechanisms of asphalt used in highway construction and maintenance.” J. Assoc. Asphalt Paving Technol. 47: 19–44.
Sezavar, R., G. Shafabakhsh, and S. M. Mirabdolazimi. 2019. “New model of moisture susceptibility of nano silica-modified asphalt concrete using GMDH algorithm.” Constr. Build. Mater. 211 (Jun): 528–538. https://doi.org/10.1016/j.conbuildmat.2019.03.114.
Shen, J., B. Huang, X. Shu, and B. Tang. 2011. “Size effect of sub nano-scaled hydrated lime on selected properties of HMA.” Int. J. Pavement Res. Technol. 4 (4): 252–257.
Shin, E. E., A. Bhurke, E. Scott, S. Rozeveld, and L. T. Drzal. 1996. “Microstructure, morphology, and failure modes of polymer-modified asphalt.” Transp. Res. Rec. 1535 (1): 61–73. https://doi.org/10.1177/0361198196153500109.
Solaimanian, M., J. Harvey, M. Tahmoressi, and V. Tandon. 2003. “Test methods to predict moisture sensitivity of hot-mix asphalt pavements.” Accessed December 26, 2015. http://onlinepubs.trb.org/onlinepubs/conf/reports/moisture/00_FRONT.pdf.
Steyn, W. J. 2009. “Potential application of nanotechnology in pavement engineering.” J. Transp. Eng. 135 (10): 764–772. https://doi.org/10.1061/(ASCE)0733-947X(2009)135:10(764).
Stuart, K. 1990. Moisture damage in asphalt mixtures—A state-of-the-art report. McLean, VA: Federal Highway Administration.
Taherkhani, H., S. Afroozi, and S. Javanmard. 2017. “Comparative study of the effects of nanosilica and zyco-soil nanomaterials on the properties of asphalt concrete.” J. Mater. Civ. Eng. 29 (8): 04017054. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001889.
Taherkhani, H., and M. Tajdini. 2019. “Comparing the effects of nano-silica and hydrated lime on the properties of asphalt concrete.” Constr. Build. Mater. 218 (Sep): 308–315. https://doi.org/10.1016/j.conbuildmat.2019.05.116.
Tan, Y., and M. Guo. 2013. “Using surface free energy method to study the cohesion and adhesion of asphalt mastic.” Constr. Build. Mater. 47 (2013): 254–260. https://doi.org/10.1016/j.conbuildmat.2013.05.067.
Tarefder, R. A., and S. Ahsan. 2014. “Neural network modelling of asphalt adhesion determined by AFM.” J. Microsc. 254 (1): 31–41. https://doi.org/10.1111/jmi.12113.
Tarefder, R. A., A. M. Zaman, and W. Uddin. 2010. “Determining hardness and elastic modulus of asphalt by nanoindentation.” Int. J. Geomech. 10 (3): 106–116. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000048.
Tarrer, A. R., and V. Wagh. 1991. The effect of the physical and chemical characteristics of the aggregates on bonding. Washington, DC: Strategic Highway Research Program, National Research Council.
Tayebali, A. A., D. R. U. Knappe, and V. L. Mandapaka. 2008. Effect of prolonged heating on the asphalt-aggregate bond strength of HMA containing liquid anti-strip additives. Raleigh, NC: North Carolina Department of Transportation Research & Analysis Wing.
Taylor, M. A., and N. P. Khosla. 1983. “Stripping of asphalt pavements: State of the art.” In Asphalt Materials, Mixtures, Construction, Moisture Effects, and Sulfur, 150–158. Washington, DC: Transportation Research Board.
Teizer, J., M. Venugopal, W. Teizer, and J. Felkl. 2012. “Nanotechnology and its impact on construction: Bridging the gap between researchers and industry professionals.” J. Constr. Eng. Manage. 138 (5): 594–604. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000467.
Terrel, R. L., and S. Al-Swailmi. 1994. Water sensitivity of asphalt–aggregate mixes: Test selection. Washington, DC: Strategic Highway Research Program.
Terrel, R. L., and J. W. Shute. 1989. Summary report on water sensitivity. Washington, DC: Strategic Highway Research Program, National Research Council.
TRB (Transportation Research Board). 2003. “Moisture sensitivity of asphalt pavements.” Accessed December 26, 2015. http://onlinepubs.trb.org/onlinepubs/conf/reports/moisture/00_Front.pdf.
Tunnicliff, D. G., and R. E. Root. 1995. Use of antistripping additives in asphalt concrete mixtures: Field evaluation. Washington, DC: Transportation Research Board, National Research Council.
Uwins, P. J. R., J. C. Baker, and I. D. R. Mackinnon. 1993. “Imaging fluid/solid interactions in hydrocarbon reservoir rocks.” Microscopy Res. Tech. 25 (5–6): 465–473. https://doi.org/10.1002/jemt.1070250518.
Varveri, A., S. Avgerinopoulos, A. Scarpas, A. Collop, and S. Erkens. 2014. “On the combined effect of moisture diffusion and cyclic pore pressure generation in asphalt concrete.” In Proc., Transportation Research Board 93rd Annual Meeting. Washington, DC: Transportation Research Board.
Vasconcelos, K. L., A. Bhasin, and D. N. Little. 2011. “History dependence of water diffusion in asphalt binders.” Int. J. Pavement Eng. 12 (5): 497–506. https://doi.org/10.1080/10298436.2010.535536.
Veytskin, Y., C. Bobko, C. Castorena, and Y. R. Kim. 2015. “Nanoindentation investigation of asphalt binder and mastic cohesion.” Constr. Build. Mater. 100 (Dec): 163–171. https://doi.org/10.1016/j.conbuildmat.2015.09.053.
Virginia Asphalt Association. 2016. “Pavement drainage.” Accessed December 11, 2016. https://vaasphalt.org/pavement-guide/asphalt-pavement-drainage.
Wang, W., L. Wang, H. Xiong, and R. Luo. 2019. “A review and perspective for research on moisture damage in asphalt pavement induced by dynamic pore water pressure.” Constr. Build. Mater. 204 (Apr): 631–642. https://doi.org/10.1016/j.conbuildmat.2019.01.167.
Williams, M. T., and F. P. Miknis. 1998. “Use of environmental SEM to study asphalt-water interactions.” J. Mater. Civ. Eng. 10 (2): 121–124. https://doi.org/10.1061/(ASCE)0899-1561(1998)10:2(121).
Winterkorn, H. F. 1937. “The present state of the adhesion problem in bituminous road construction.” In Proc., Montana National Bituminous Conf. 190–214. Helena, MT: Montana State Highway Department.
World Highways. 2016. “The role of anti-stripping agents in asphalt performance.” Accessed December 4, 2017. http://www.worldhighways.com/categories/materials-production-supply/features/the-role-of-anti-stripping-agents-in-asphalt-performance/.
Xu, H. N., F. Chen, X. Yao, and Y. Q. Tan. 2018. “Micro-scale moisture distribution and hydrologically active pores in partially saturated asphalt mixtures by X-ray computed tomography.” Constr. Build. Mater. 160 (Jan): 653–667. https://doi.org/10.1016/j.conbuildmat.2017.11.107.
Yao, H., Q. Dai, and Z. You. 2015. “Chemo-physical analysis and molecular dynamics (MD) simulation of moisture susceptibility of nano hydrated lime modified asphalt mixtures.” Constr. Build. Mater. 101 (Dec): 536–547. https://doi.org/10.1016/j.conbuildmat.2015.10.087.
Yao, H., Z. You, L. Li, C. H. Lee, D. Wingard, Y. K. Yap, and S. W. Goh. 2013. “Rheological properties and chemical bonding of asphalt modified with nanosilica.” J. Mater. Civ. Eng. 25 (11): 1619–1630. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000690.
Yao, Z., H. Zhu, M. Gong, J. Yang, G. Xu, and Y. Zhong. 2017. “Characterization of asphalt materials’ moisture susceptibility using multiple methods.” Constr. Build. Mater. 155 (Nov): 286–295. https://doi.org/10.1016/j.conbuildmat.2017.08.032.
Yoon, H. H., and A. R. Tarrer. 1988. “Effect of aggregate properties on stripping.” Transp. Res. Rec. 1171 (1): 37–43.
Yoon, H. J. 1987. “Interface phenomenon and surfactants in asphalt paving materials.” Ph.D. thesis, Dept. of Chemical Engineering, Auburn Univ.
You, Z., J. Mills-Beale, J. M. Foley, S. Roy, G. M. Odegard, Q. Dai, and S. Wei. 2011. “Nanoclay-modified asphalt materials: Preparation and characterization.” Constr. Build. Mater. 25 (2): 1072–1078. https://doi.org/10.1016/j.conbuildmat.2010.06.070.
Yusoff, N. M., A. S. Breem, H. N. M. Alattug, A. Hamim, and J. Ahmad. 2014. “The effects of moisture susceptibility and ageing conditions on nano-silica/polymer-modified asphalt mixtures.” Constr. Build. Mater. 72 (Dec): 139–147. https://doi.org/10.1016/j.conbuildmat.2014.09.014.
Zhang, H., J. Yu, H. Wang, and L. Xue. 2011. “Investigation of microstructures and ultraviolet aging properties of organo-montmorillonite/SBS modified bitumen.” Mater. Chem. Phys. 129 (3): 769–776. https://doi.org/10.1016/j.matchemphys.2011.04.078.
Zhu, J., K. Zhang, K. Liu, and X. Shi. 2019. “Performance of hot and warm mix asphalt mixtures enhanced by nano-sized graphene oxide.” Constr. Build. Mater. 217 (Aug): 273–282. https://doi.org/10.1016/j.conbuildmat.2019.05.054.
Zhu, W., P. J. M. Bartos, and A. Porro. 2004. “Application of nanotechnology in construction: Summary of a state-of-the-art report.” Mater. Struct. 37 (9): 649–658. https://doi.org/10.1007/BF02483294.
Zofka, A., and D. Nener-Plante. 2011. “Determination of asphalt binder creep compliance using depth-sensing indentation.” Exp. Mech. 51 (8): 1365–1377. https://doi.org/10.1007/s11340-011-9464-5.
Zou, J., R. Roque, G. Lopp, M. Isola, and M. Bekoe. 2016. “Impact of hydrated lime on cracking performance of asphalt mixtures with oxidation and cyclic pore pressure.” Transp. Res. Rec. 2576 (1): 51–59. https://doi.org/10.3141/2576-06.
Zydex. 2012. “Nanotechnology for PMGSY roads.” Accessed March 18, 2015. http://www.pmgsy.nic.in/nano.pdf.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 32Issue 8August 2020

History

Published online: May 29, 2020
Published in print: Aug 1, 2020
Discussion open until: Oct 29, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Hillol Chakravarty [email protected]
Research Scholar, Dept. of Civil Engineering, National Institute of Technology Patna, Patna, Bihar 800005, India (corresponding author). Email: [email protected]
Sanjeev Sinha [email protected]
Professor, Dept. of Civil Engineering, National Institute of Technology Patna, Patna, Bihar 800005, India. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share