Technical Papers
Sep 30, 2019

Experimental and Modeling Explanations for Enhancing Mechanisms of Colloidal Nanoalumina in Calcite-Containing Cementitious Materials

Publication: Journal of Materials in Civil Engineering
Volume 31, Issue 12

Abstract

This study investigated the properties of colloidal nanoalumina (CNA)-blended cementitious mixtures in the presence of calcite to promote better understanding of the enhancing mechanisms of nanoalumina in cementitious materials through experimental investigation and thermodynamic calculation. The rate of heat evolution, compressive strength, connected pore structure, and chloride binding capacity were investigated. The results show that CNA can accelerate cement hydration at early age, and therefore improve the 1-day strength of blended mixtures. The strength at 28 and 56 days can be maximized with 1% by weight CNA addition, but considerably reduced with 5% by weight CNA. Different from the mechanical properties, the connected pore structure and chloride binding capacity are improved straightforwardly with CNA addition, which benefits the ability to resist chloride attack. The experimental and modeling results demonstrate that CNA addition benefits the generation of carboaluminate, which has high efficiency to fill voids due to its higher volume, thus densifying the microstructure as well as improving the chloride resistance. However, these aluminate-ferrite-monosubstituent (AFm) phases demonstrate little cementing capacity relative to calcium silicate hydrate (C─ S─ H) gels, thus resulting in an obvious decrease of strength with a high amount of CNA addition even though the microstructure is further densified.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work was financially supported by the National Key Research and Development Program of China (No. 2017YFB0310905), the Nature Science Foundation Project of China (No. 51679179), and the Yang Fan Innovative & Entrepreneurial Research Team Project (No. 201312C12).

References

Ali, N., S. Riahi, S. Riahi, S. F. Shamekhi, and A. Khademno. 2010. “Influence of Al2O3 nanoparticles on the compressive strength and workability of blended concrete.” J. Am. Sci. 6 (5): 6–9.
Antoni, M., J. Rossen, F. Martirena, and K. Scrivener. 2012. “Cement substitution by a combination of metakaolin and limestone.” Cem. Concr. Res. 42 (12): 1579–1589. https://doi.org/10.1016/j.cemconres.2012.09.006.
ASTM. 2010. Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration. ASTM C1202. West Conshohocken, PA: ASTM.
Balapour, M., A. Joshaghani, and F. Althoey. 2018. “Nano-SiO2 contribution to mechanical, durability, fresh and microstructural characteristics of concrete: A review.” Constr. Build. Mater. 181 (Aug): 27–41. https://doi.org/10.1016/j.conbuildmat.2018.05.266.
Balonis, M., and F. P. Glasser. 2009. “The density of cement phases.” Cem. Concr. Res. 39 (9): 733–739. https://doi.org/10.1016/j.cemconres.2009.06.005.
Baquerizo, L. G., T. Matschei, K. L. Scrivener, M. Saeidpour, and L. Wadsö. 2015. “Hydration states of AFm cement phases.” Cem. Concr. Res. 73 (Jul): 143–157. https://doi.org/10.1016/j.cemconres.2015.02.011.
Behfarnia, K., and N. Salemi. 2013. “The effects of nano-silica and nano-alumina on frost resistance of normal concrete.” Constr. Build. Mater. 48 (Nov): 580–584. https://doi.org/10.1016/j.conbuildmat.2013.07.088.
Bonavetti, V. L., V. F. Rahhal, and E. F. Irasser. 2001. “Studies on the carboaluminate formation in limestone filler-blended cements.” Cem. Concr. Res. 31 (6): 853–859. https://doi.org/10.1016/S0008-8846(01)00491-4.
Bougara, A., C. Lynsdale, and N. B. Milestone. 2018. “The influence of slag properties, mix parameters and curing temperature on hydration and strength development of slag/cement blends.” Constr. Build. Mater. 187 (Oct): 339–347. https://doi.org/10.1016/j.conbuildmat.2018.07.166.
Bullard, J. W., H. M. Jennings, R. A. Livingston, A. Nonat, G. W. Scherer, J. S. Schweitzer, K. L. Scrivener, and J. J. Thomas. 2011. “Mechanisms of cement hydration.” Cem. Concr. Res. 41 (12): 1208–1223. https://doi.org/10.1016/j.cemconres.2010.09.011.
Carmona-Quiroga, P. M., M. T. Blanco-Varela, S. Martinez-Ramirez, and B. Lothenbach. 2013. Thermodynamic modeling of sulfate-resistant cements with addition of barium compounds. Boca Raton, FL: CRC Press and Taylor & Francis.
Code of China. 1999. Method of testing cements: Determination of strength. [In Chinese.] GB/T17671. Beijing: Code of China.
Code of China. 2005. Test method for fluidity of cement mortar. [In Chinese.] GB/T2419. Beijing: Code of China.
De Weerdt, K., M. Haha Ben, G. Le Saout, K. O. Kjellsen, H. Justnes, and B. Lothenbach. 2011. “Hydration mechanisms of ternary portland cements containing limestone powder and fly ash.” Cem. Concr. Res. 41 (3): 279–291. https://doi.org/10.1016/j.cemconres.2010.11.014.
El-Gamal, S. M. A., S. A. Abo-El-Enein, F. I. El-Hosiny, M. S. Amin, and M. Ramadan. 2018. “Thermal resistance, microstructure and mechanical properties of type I portland cement pastes containing low-cost nanoparticles.” J. Therm. Anal. Calorim. 131 (2): 949–968. https://doi.org/10.1007/s10973-017-6629-1.
Farzadnia, N., A. A. A. Ali, and R. Demirboga. 2013. “Characterization of high strength mortars with nano alumina at elevated temperatures.” Cem. Concr. Res. 54 (Dec): 43–54. https://doi.org/10.1016/j.cemconres.2013.08.003.
Gowda, R., H. Narendra, B. M. Nagabushan, D. Rangappa, and R. Prabhakara. 2017. “Investigation of nano-alumina on the effect of durability and microstructural properties of the cement mortar.” Mater. Today:. Proc. 4 (11): 12191–12197. https://doi.org/10.1016/j.matpr.2017.09.149.
Guo, Y., T. Zhang, W. Tian, J. Wei, and Q. Yu. 2019. “Physically and chemically bound chlorides in hydrated cement pastes: A comparison study of the effects of silica fume and metakaolin.” J. Mater. Sci. 54 (3): 2152–2169. https://doi.org/10.1007/s10853-018-2953-5.
Jalal, M., M. Fathi, and M. Farzad. 2013. “Effects of fly ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength self compacting concrete.” Mech. Mater. 61 (Jul): 11–27. https://doi.org/10.1016/j.mechmat.2013.01.010.
Ji, T. 2005. “Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2.” Cem. Concr. Res. 35 (10): 1943–1947. https://doi.org/10.1016/j.cemconres.2005.07.004.
Kadri, E., S. Kenai, K. Ezziane, R. Siddique, and G. De Schutter. 2011. “Influence of metakaolin and silica fume on the heat of hydration and compressive strength development of mortar.” Appl. Clay Sci. 53 (4): 704–708. https://doi.org/10.1016/j.clay.2011.06.008.
Kulik, D. A., T. Wagner, S. V. Dmytrieva, G. Kosakowski, F. F. Hingerl, K. V. Chudnenko, and U. Berner. 2012. “GEM-Selektor geochemical modeling package: Revised algorithm and GEMS3K numerical kernel for coupled simulation codes.” Comput. Geosci. 17 (1): 1–24. https://doi.org/10.1007/s10596-012-9310-6.
Kuzel, H. J., and H. Pöllmann. 1991. “Hydration of C3A in the presence of Ca(OH)2, CaSO4·2H2O and CaCO3.” Cem. Concr. Res. 21 (5): 885–895. https://doi.org/10.1016/0008-8846(91)90183-I.
Lam, L., Y. L. Wong, and C. S. Poon. 2000. “Degree of hydration and gel/space ratio of high-volume fly ash/cement systems.” Cem. Concr. Res. 30 (5): 747–756. https://doi.org/10.1016/S0008-8846(00)00213-1.
Li, H., H.-G. Xiao, J. Yuan, and J. Ou. 2004. “Microstructure of cement mortar with nano-particles.” Composites Part B 35 (2): 185–189. https://doi.org/10.1016/S1359-8368(03)00052-0.
Li, Q., H. N. Geng, Y. Huang, and Z. H. Shui. 2015. “Chloride resistance of concrete with metakaolin addition and seawater mixing: A comparative study.” Constr. Build. Mater. 101 (Part 1): 184–192. https://doi.org/10.1016/j.conbuildmat.2015.10.076.
Li, W., X. Li, S. J. Chen, G. Long, Y. M. Liu, and W. H. Duan. 2017. “Effects of nanoalumina and graphene oxide on early-age hydration and mechanical properties of cement paste.” J. Mater. Civ. Eng. 29 (9): 04017087. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001926.
Li, Z., H. Wang, S. He, Y. Lu, and M. Wang. 2006. “Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite.” Mater. Lett. 60 (3): 356–359. https://doi.org/10.1016/j.matlet.2005.08.061.
Liu, J., Q. Li, and S. Xu. 2015. “Influence of nanoparticles on fluidity and mechanical properties of cement mortar.” Constr. Build. Mater. 101 (Part 1): 892–901. https://doi.org/10.1016/j.conbuildmat.2015.10.149.
Long, W. J., J. J. Wei, H. Ma, and F. Xing. 2017. “Dynamic mechanical properties and microstructure of graphene oxide nanosheets reinforced cement composites.” Nanomaterials 7 (12): 407. https://doi.org/10.3390/nano7120407.
Lothenbach, B. 2014. “Thermodynamic data.” EMPA Materials Science and Technology. Accessed December 1, 2017. https://www.empa.ch/web/s308/thermodynamic-data.
Lothenbach, B., G. Le Saout, E. Gallucci, and K. Scrivener. 2008a. “Influence of limestone on the hydration of portland cements.” Cem. Concr. Res. 38 (6): 848–860. https://doi.org/10.1016/j.cemconres.2008.01.002.
Lothenbach, B., T. Matschei, G. Moschner, and F. P. Glasser. 2008b. “Thermodynamic modelling of the effect of temperature on the hydration and porosity of portland cement.” Cem. Concr. Res. 38 (1): 1–18. https://doi.org/10.1016/j.cemconres.2007.08.017.
Luping, T., and L. Nilsson. 1993. “Chloride binding capacity and binding isotherms of OPC pastes and mortars.” Cem. Concr. Res. 23 (2): 247–253. https://doi.org/10.1016/0008-8846(93)90089-R.
Martin-Perez, B., H. Zibara, R. D. Hooton, and M. D. A. Thomas. 2000. “A study of the effect of chloride binding on service life predictions.” Cem. Concr. Res. 30 (8): 1215–1223.
Matschei, T., B. Lothenbach, and F. P. Glasser. 2007. “Thermodynamic properties of portland cement hydrates in the system CaOAl2O3SiO2CaSO4CaCO3H2O.” Cem. Concr. Res. 37 (10): 1379–1410. https://doi.org/10.1016/j.cemconres.2007.06.002.
Naji Givi, A., S. Abdul Rashid, F. N. A. Aziz, and M. A. M. Salleh. 2010. “Experimental investigation of the size effects of SiO2 nano-particles on the mechanical properties of binary blended concrete.” Composites Part B 41 (8): 673–677. https://doi.org/10.1016/j.compositesb.2010.08.003.
Nazari, A., and S. Riahi. 2011. “Improvement compressive strength of concrete in different curing media by Al2O3 nanoparticles.” Mater. Sci. Eng., A 528 (3): 1183–1191. https://doi.org/10.1016/j.msea.2010.09.098.
Nicoleau, L., E. Schreiner, and A. Nonat. 2014. “Ion-specific effects influencing the dissolution of tricalcium silicate.” Cem. Concr. Res. 59 (May): 118–138. https://doi.org/10.1016/j.cemconres.2014.02.006.
Nielsen, E. P., D. Herfort, and M. R. Geiker. 2005. “Phase equilibria of hydrated portland cement.” Cem. Concr. Res. 35 (1): 109–115. https://doi.org/10.1016/j.cemconres.2004.05.025.
Nordtest. 1999. Concrete, mortar and cement-based repair materials: Chloride migration coefficient from non-steady-state migration experiments. Taastrup, Denmark: Nordtest.
Pane, I., and W. Hansen. 2005. “Investigation of blended cement hydration by isothermal calorimetry and thermal analysis.” Cem. Concr. Res. 35 (6): 1155–1164. https://doi.org/10.1016/j.cemconres.2004.10.027.
Paul, S. C., A. S. van Rooyen, G. P. A. G. van Zijl, and L. F. Petrik. 2018. “Properties of cement-based composites using nanoparticles: A comprehensive review.” Constr. Build. Mater. 189 (Nov): 1019–1034. https://doi.org/10.1016/j.conbuildmat.2018.09.062.
Péra, J., S. Husson, and B. Guilhot. 1999. “Influence of finely ground limestone on cement hydration.” Cem. Concr. Compos. 21 (2): 99–105. https://doi.org/10.1016/S0958-9465(98)00020-1.
Poon, C. S., S. C. Kou, and L. Lam. 2006. “Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete.” Constr. Build. Mater. 20 (10): 858–865. https://doi.org/10.1016/j.conbuildmat.2005.07.001.
Qing, Y., Z. Zenan, K. Deyu, and C. Rongshen. 2007. “Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume.” Constr. Build. Mater. 21 (3): 539–545. https://doi.org/10.1016/j.conbuildmat.2005.09.001.
Quercia, G., G. Hüsken, and H. J. H. Brouwers. 2012. “Water demand of amorphous nano silica and its impact on the workability of cement paste.” Cem. Concr. Res. 42 (2): 344–357. https://doi.org/10.1016/j.cemconres.2011.10.008.
Rashad, A. M. 2013. “Effects of ZnO2, ZrO2, Cu2O3, CuO, CaCO3, SF, FA, cement and geothermal silica waste nanoparticles on properties of cementitious materials—A short guide for Civil Engineer.” Constr. Build. Mater. 48 (Nov): 1120–1133. https://doi.org/10.1016/j.conbuildmat.2013.06.083.
Saillio, M., V. Baroghel-Bouny, and F. Barberon. 2014. “Chloride binding in sound and carbonated cementitious materials with various types of binder.” Constr. Build. Mater. 68 (Oct): 82–91. https://doi.org/10.1016/j.conbuildmat.2014.05.049.
Salemi, N., and K. Behfarnia. 2013. “Effect of nano-particles on durability of fiber-reinforced concrete pavement.” Constr. Build. Mater. 48 (Nov): 934–941. https://doi.org/10.1016/j.conbuildmat.2013.07.037.
Schmidt, T., B. Lothenbach, M. Romer, K. Scrivener, D. Rentsch, and R. Figi. 2008. “A thermodynamic and experimental study of the conditions of thaumasite formation.” Cem. Concr. Res. 38 (3): 337–349. https://doi.org/10.1016/j.cemconres.2007.11.003.
Scrivener, K. L., P. Juilland, and P. J. M. Monteiro. 2015. “Advances in understanding hydration of portland cement.” Cem. Concr. Res. 78 (Part A): 38–56. https://doi.org/10.1016/j.cemconres.2015.05.025.
Shi, Z. G., M. R. Geiker, B. Lothenbach, K. De Weerdt, S. F. Garzon, K. Enemark-Rasmussen, and J. Skibsted. 2017. “Friedel’s salt profiles from thermogravimetric analysis and thermodynamic modelling of portland cement-based mortars exposed to sodium chloride solution.” Cem. Concr. Compos. 78: 73–83. https://doi.org/10.1016/j.cemconcomp.2017.01.002.
Stefanidou, M., and I. Papayianni. 2012. “Influence of nano-SiO2 on the portland cement pastes.” Composites Part B 43 (6): 2706–2710. https://doi.org/10.1016/j.compositesb.2011.12.015.
Supit, S. W. M., and F. U. A. Shaikh. 2015. “Durability properties of high volume fly ash concrete containing nano-silica.” Mater. Struct. 48 (8): 2431–2445. https://doi.org/10.1617/s11527-014-0329-0.
Thomas, M. D. A., R. D. Hooton, A. Scott, and H. Zibara. 2012. “The effect of supplementary cementitious materials on chloride binding in hardened cement paste.” Cem. Concr. Res. 42 (1): 1–7. https://doi.org/10.1016/j.cemconres.2011.01.001.
Thongsanitgarn, P., W. Wongkeo, A. Chaipanich, and C. S. Poon. 2014. “Heat of hydration of portland high-calcium fly ash cement incorporating limestone powder: Effect of limestone particle size.” Constr. Build. Mater. 66 (Sep): 410–417. https://doi.org/10.1016/j.conbuildmat.2014.05.060.
Vance, K., M. Aguayo, T. Oey, G. Sant, and N. Neithalath. 2013. “Hydration and strength development in ternary portland cement blends containing limestone and fly ash or metakaolin.” Cem. Concr. Compos. 39 (May): 93–103. https://doi.org/10.1016/j.cemconcomp.2013.03.028.
Wagner, T., D. A. Kulik, F. F. Hingerl, and S. V. Dmytrieva. 2012. “GEM-Selektor geochemical modeling package: TSolMod library and data interface for multicomponent phase models.” Can. Mineral. 50 (5): 1173–1195. https://doi.org/10.3749/canmin.50.5.1173.
Wang, D., W. Zhang, Y. Ruan, X. Yu, and B. Han. 2018a. “Enhancements and mechanisms of nanoparticles on wear resistance and chloride penetration resistance of reactive powder concrete.” Constr. Build. Mater. 189 (Nov): 487–497. https://doi.org/10.1016/j.conbuildmat.2018.09.041.
Wang, G. M., Y. Kong, Z. H. Shui, Q. Li, and J. L. Han. 2014. “Experimental investigation on chloride diffusion and binding in concrete containing metakaolin.” Corros. Eng. Sci. Technol. 49 (4): 282–286. https://doi.org/10.1179/1743278213Y.0000000134.
Wang, L., D. Zheng, S. Zhang, H. Cui, and D. Li. 2016. “Effect of Nano-SiO2 on the hydration and microstructure of portland cement.” Nanomaterials 6 (12): 241. https://doi.org/10.3390/nano6120241.
Wang, Q., J. Yang, and H. Chen. 2017. “Long-term properties of concrete containing limestone powder.” Mater. Struct. 50 (3): 168. https://doi.org/10.1617/s11527-017-1040-8.
Wang, Y., Y. Shui, Z. Huang, Y. Sun, and T. Duan. 2018b. “Properties of coral waste-based mortar incorporating metakaolin: Part II. Chloride migration and binding behaviors.” Constr. Build. Mater. 174 (Jun): 433–442. https://doi.org/10.1016/j.conbuildmat.2018.04.076.
Wang, Y., Z. Shui, X. Gao, Y. Huang, R. Yu, and G. Ling. 2019. “Chloride binding behaviors of metakaolin-lime hydrated blends: Influence of gypsum and atmospheric carbonation.” Constr. Build. Mater. 201 (Mar): 380–390. https://doi.org/10.1016/j.conbuildmat.2018.12.162.
Wang, Y., Z. Shui, T. Sun, Y. Huang, and G. Wang. 2018c. “Effect of fly ash, sinking beads and metakaolin on the workability, strength, free shrinkage and chloride resistance of concretes: A comparative study.” Arabian J. Sci. Eng. 43 (10): 5243–5254. https://doi.org/10.1007/s13369-018-3068-7.
Wang, Y., Z. Shui, R. Yu, and Y. Huang. 2018d. “Chloride ingress and binding of coral waste filler-coral waste sand marine mortar incorporating metakaolin.” Constr. Build. Mater. 190 (Nov): 1069–1080. https://doi.org/10.1016/j.conbuildmat.2018.09.189.
Yang, C., Y. Yan, and Z. Ou. 2010. “Capability of cement paste binding chloride ions with metakaolin as admixture.” [In Chinese.] Concrete 10: 1–7.
Ye, G., X. Liu, G. De Schutter, A. M. Poppe, and L. Taerwe. 2007. “Influence of limestone powder used as filler in SCC on hydration and microstructure of cement pastes.” Cem. Concr. Compos. 29 (2): 94–102. https://doi.org/10.1016/j.cemconcomp.2006.09.003.
Zajac, M., A. Rossberg, G. Le Saout, and B. Lothenbach. 2014. “Influence of limestone and anhydrite on the hydration of portland cements.” Cem. Concr. Compos. 46: 99–108. https://doi.org/10.1016/j.cemconcomp.2013.11.007.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 31Issue 12December 2019

History

Received: Feb 15, 2019
Accepted: Jun 14, 2019
Published online: Sep 30, 2019
Published in print: Dec 1, 2019
Discussion open until: Feb 29, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Yunyao Wang [email protected]
Ph.D. Student, School of Materials Science and Engineering, Wuhan Univ. of Technology, Wuhan 430070, China. Email: [email protected]
Zhonghe Shui [email protected]
Professor, State Key Laboratory of Silicate Materials for Architectures, Wuhan Univ. of Technology, Wuhan 430070, China. Email: [email protected]
Professor, School of Materials Science and Engineering, Wuhan Univ. of Technology, Wuhan 430070, China (corresponding author). ORCID: https://orcid.org/0000-0002-3440-3591. Email: [email protected]
Professor, School of Civil Engineering and Architecture, Wuhan Univ. of Technology, Wuhan 430070, China. Email: [email protected]
Qiulei Song [email protected]
Ph.D. Student, School of Materials Science and Engineering, Wuhan Univ. of Technology, Wuhan 430070, China. Email: [email protected]
Master Candidate, School of Materials Science and Engineering, Wuhan Univ. of Technology, Wuhan 430070, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share