Technical Papers
Sep 30, 2019

Evaluation of Existing Stress–Strain Models and Modeling of PET FRP–Confined Concrete

Publication: Journal of Materials in Civil Engineering
Volume 31, Issue 12

Abstract

The compressive response of confined concrete greatly depends on the mechanical properties of the confining material. Based on these materials, various stress–strain models have been proposed in the past. Among these materials, the use of fiber reinforced–polymer (FRP) composites is now considered a promising solution to improve the overall behavior of confined concrete. New materials are being developed and used in seismic strengthening/retrofitting applications. Without experimental evidence, applicability of existing stress–strain models to new confining materials with different mechanical properties remains questionable. In this paper, existing stress–strain models which were mostly developed for steel and other FRPs with high elastic modulus and low rupture strain were assessed in predicting the ultimate condition of concrete confined by polyethylene terephthalate (PET) FRP, which is a newly developed material with low elastic modulus and large rupture strain (LRS). The ultimate strength was predicted well by some of these models; however, the ultimate strain could not be well predicted. Regarding the prediction of ultimate strain, some of those models which considered the axial strain capacity of FRP performed relatively better. Considering this discrepancy, a new simple stress–strain model is proposed for PET FRP–confined concrete, which not only considers the ultimate conditions but also the control points in the course of stress–strain path. Based on these control and ultimate points, stress–strain curves were generated using a well-known base curve. Finally, the proposed model was verified in predicting the ultimate condition of existing test data of PET FRP–confined concrete.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors gratefully acknowledge the partial financial support from the Thailand Research Fund (TRF) under Grant No. BRG5680015. Partial financial support from the National Research University Project of the Thailand Office of the Higher Education Commission is also acknowledged.

References

Afifi, M. Z., H. M. Mohamed, O. Chaallal, and B. Benmokrane. 2015. “Confinement model for concrete columns internally confined with carbon FRP spirals and hoops.” J. Struct. Eng. 141 (9): 04014219. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001197.
Ahmad, S. H., and S. P. Shah. 1982. “Complete triaxial stress-strain curves for concrete.” J. Struct. Eng. 108 (ST4): 728–742.
Akiyama, M., M. Suzuki, and D. M. Frangopol. 2010. “Stress-averaged strain model for confined high-strength concrete.” ACI Struct. J. 107 (2): 179–188.
Alecci, V., S. B. Bati, and G. Ranocchiai. 2014. “Concrete columns confined with CFRP wraps.” Mater. Struct. 47 (3): 397–410. https://doi.org/10.1617/s11527-013-0068-7.
Al-Rousan, R. Z., and M. A. Issa. 2016. “Stress–strain model and design guidelines for CFRP-confined circular reinforced concrete columns.” Poly. Compos. 39 (8): 2722–2733. https://doi.org/10.1002/pc.24262.
Al-Salloum, Y., and N. Siddiqui. 2009. “Compressive strength prediction model for FRP-confined concrete.” In Proc., 9th Int. Symp. on Fiber Reinforced Polymer Reinforcement for Concrete Structures, 97–106. Adelaide, Australia: Univ. of Adelaide.
Al-Salloum, Y. A. 2007a. “Compressive strength models of FRP-confined concrete.” In Proc., Asia-Pacific Conf. of FRP in Structures (APFIS 2007), edited by S. T. Smith, 175–180. Hong Kong: Univ. of Hong Kong.
Al-Salloum, Y. A. 2007b. “Influence of edge sharpness on the strength of square concrete columns confined with FRP composite laminates.” Composites Part B 38 (5): 640–650. https://doi.org/10.1016/j.compositesb.2006.06.019.
Al-Tersawy, S. H., O. A. Hodhod, and A. A. Hefnawy. 2007. “Reliability and code calibration of RC short columns confined with CFRP wraps.” In Proc., 8th Int. Symp. on Fiber Reinforced Polymer Reinforcement for Concrete Structures. Patras, Greece: Univ. of Patras.
Ates, A. O., E. Tore, S. Khoshkholghi, and A. Ilki. 2017. “Sprayed textile reinforced GFRC for retrofitting of sub- standard non-circular concrete columns.” In Proc., 16th World Conf. on Earthquake Engineering, 16WCEE 2017. Santiago, Chile: Asociación Chilena de Sismología e Ingeniería Antisísmica.
Attard, M. M., and S. Setunge. 1996. “Stress-strain relationship of confined and unconfined concrete.” ACI Mater. J. 93 (5): 432–442.
Bai, Y. L., J. G. Dai, and T. Ozbakkaloglu. 2017a. “Cyclic stress-strain model incorporating buckling effect for steel reinforcing bars embedded in FRP-confined concrete.” Compos. Struct. 182 (Dec): 54–66. https://doi.org/10.1016/j.compstruct.2017.09.007.
Bai, Y. L., J. G. Dai, and J. G. Teng. 2014. “Cyclic compressive behavior of concrete confined with large rupture strain FRP composites.” J. Compos. Constr. 18 (1): 04013025. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000386.
Bai, Y. L., J. G. Dai, and J. G. Teng. 2017b. “Buckling of steel reinforcing bars in FRP-confined RC columns: An experimental study.” Constr. Build. Mater. 140 (Jun): 403–415. https://doi.org/10.1016/j.conbuildmat.2017.02.149.
Bai, Y. L., J. G. Dai, and J. G. Teng. 2017c. “Monotonic stress–strain behavior of steel rebars embedded in FRP-confined concrete including buckling.” J. Compos. Constr. 21 (5): 04017043. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000823.
Baji, H., H. R. Ronagh, and C. Q. Li. 2016. “Probabilistic design models for ultimate strength and strain of FRP-confined concrete.” J. Compos. Constr. 20 (6): 04016051. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000704.
Benzaid, R., H. Mesbah, and N. E. Chikh. 2010. “FRP-confined concrete cylinders: Axial compression experiments and strength model.” J. Reinf. Plast. Compos. 29 (16): 2469–2488. https://doi.org/10.1177/0731684409355199.
Berthet, J. F., E. Ferrier, and P. Hamelin. 2006. “Compressive behavior of concrete externally confined by composite jackets: Part B: Modeling.” Constr. Build. Mater. 20 (5): 338–347. https://doi.org/10.1016/j.conbuildmat.2005.01.029.
Binici, B. 2005. “An analytical model for stress–strain behavior of confined concrete.” Eng. Struct. 27 (7): 1040–1051. https://doi.org/10.1016/j.engstruct.2005.03.002.
Binici, B. 2008. “Design of FRPs in circular bridge column retrofits for ductility enhancement.” Eng. Struct. 30 (3): 766–776. https://doi.org/10.1016/j.engstruct.2007.05.012.
Bisby, L. A., J. F. Chen, S. Q. Li, T. J. Stratford, N. Cueva, and K. Crossling. 2011. “Strengthening fire-damaged concrete by confinement with fibre-reinforced polymer wraps.” Eng. Struct. 33 (12): 3381–3391. https://doi.org/10.1016/j.engstruct.2011.07.002.
Bisby, L. A., A. J. Dent, and M. F. Green. 2005. “Comparison of confinement models for fiber-reinforced polymer-wrapped concrete.” ACI Struct. J. 102 (1): 62–72.
Campione, G., L. La Mendola, A. Monaco, A. Valenza, and V. Fiore. 2015. “Behavior in compression of concrete cylinders externally wrapped with basalt fibers.” Composites Part B 69 (Feb): 576–586. https://doi.org/10.1016/j.compositesb.2014.10.008.
Campione, G., and N. Miraglia. 2003. “Strength and strain capacities of concrete compression members reinforced with FRP.” Cem. Concr. Compos. 25 (1): 31–41. https://doi.org/10.1016/S0958-9465(01)00048-8.
Candappa, D. C., J. G. Sanjayan, and S. Setunge. 2001. “Complete triaxial stress-strain curves of high-strength concrete.” J. Mater. Civ. Eng. 13 (3): 209–215. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:3(209).
Cao, Y. G., C. Jiang, and Y. F. Wu. 2016. “Cross-sectional unification on the stress-strain model of concrete subjected to high passive confinement by fiber-reinforced polymer.” Polymers 8 (5): 186. https://doi.org/10.3390/polym8050186.
Cevik, A. 2011. “Modeling strength enhancement of FRP confined concrete cylinders using soft computing.” Expert Syst. Appl. 38 (5): 5662–5673. https://doi.org/10.1016/j.eswa.2010.10.069.
Chaallal, O., M. Hassan, and M. Shahawy. 2003. “Confinement model for axially loaded short rectangular columns strengthened with fiber-reinforced polymer wrapping.” ACI Struct. J. 100 (2): 215–221.
Chastre, C., and M. A. Silva. 2010. “Monotonic axial behavior and modelling of RC circular columns confined with CFRP.” Eng. Struct. 32 (8): 2268–2277. https://doi.org/10.1016/j.engstruct.2010.04.001.
Cheng, H. L., E. D. Sotelino, and W. F. Chen. 2002. “Strength estimation for FRP wrapped reinforced concrete columns.” Steel Compos. Struct. 2 (1): 1–20. https://doi.org/10.12989/scs.2002.2.1.001.
Choi, E., J. S. Jeon, B. S. Cho, and K. Park. 2013. “External jacket of FRP wire for confining concrete and its advantages.” Eng. Struct. 56 (Nov): 555–566. https://doi.org/10.1016/j.engstruct.2013.05.019.
Ciupala, M. A., K. Pilakoutas, and A. A. Mortazavi. 2007. “Effectiveness of FRP composites in confined concrete.” In Proc., 8th Int. Symp. on Fiber Reinforced Polymer Reinforcement for Concrete Structures. Patras, Greece: Univ. of Patras.
Cui, C., and S. A. Sheikh. 2010. “Analytical model for circular normal-and high-strength concrete columns confined with FRP.” J. Compos. Constr. 14 (5): 562–572. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000115.
Cusson, D., and P. Paultre. 1995. “Stress-strain model for confined high-strength concrete.” J. Struct. Eng. 121 (3): 468–477. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:3(468).
Dai, J. G., Y. L. Bai, and J. G. Teng. 2011. “Behavior and modeling of concrete confined with FRP composites of large deformability.” J. Compos. Constr. 15 (6): 963–973. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000230.
Dalgic, K. D., M. Ispir, and A. Ilki. 2016. “Cyclic and monotonic compression behavior of CFRP-jacketed damaged noncircular concrete prisms.” J. Compos. Constr. 20 (1): 04015040. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000603.
De Lorenzis, L., and R. Tepfers. 2003. “Comparative study of models on confinement of concrete cylinders with fiber-reinforced polymer composites.” J. Compos. Constr. 7 (3): 219–237. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:3(219).
Di Ludovico, M., A. Prota, and G. Manfredi. 2010. “Structural upgrade using basalt fibers for concrete confinement.” J. Compos. Constr. 14 (5): 541–552. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000114.
Dong, C. X., A. K. H. Kwan, and J. C. M. Ho. 2015. “Effects of confining stiffness and rupture strain on performance of FRP confined concrete.” Eng. Struct. 97 (Aug): 1–14. https://doi.org/10.1016/j.engstruct.2015.03.037.
Eid, R., and P. Paultre. 2017. “Compressive behavior of FRP-confined reinforced concrete columns.” Eng. Struct. 132 (Feb): 518–530. https://doi.org/10.1016/j.engstruct.2016.11.052.
Fafitis, A., and S. P. Shah. 1985. “Predictions of ultimate behavior of confined concrete columns subjected to large deformations.” ACI J. Proc. 82 (4): 423–433.
Fahmy, M. F., and Z. Wu. 2010. “Evaluating and proposing models of circular concrete columns confined with different FRP composites.” Composites Part B 41 (3): 199–213. https://doi.org/10.1016/j.compositesb.2009.12.001.
Fam, A. Z., and S. H. Rizkalla. 2001. “Confinement model for axially loaded concrete confined by circular fiber-reinforced polymer tubes.” ACI Struct. J. 98 (4): 451–461.
Fardis, M. N., and H. Khalili. 1981. “Concrete encased in fiberglass reinforced plastic.” ACI J. 78 (6): 440–446.
Fardis, M. N., and H. H. Khalili. 1982. “FRP-encased concrete as a structural material.” Mag. Concr. Res. 34 (121): 191–202. https://doi.org/10.1680/macr.1982.34.121.191.
Faustino, P., C. Chastre, and R. Paula. 2014. “Design model for square RC columns under compression confined with CFRP.” Composites Part B 57 (Feb): 187–198. https://doi.org/10.1016/j.compositesb.2013.09.052.
Fossetti, M., G. Alotta, F. Basone, and G. Macaluso. 2017. “Simplified analytical models for compressed concrete columns confined by FRP and FRCM system.” Mater. Struct. 50 (6): 240. https://doi.org/10.1617/s11527-017-1110-y.
Frangou, M., K. Pilakoutas, and S. Dritsos. 1995. “Structural repair/strengthening of RC columns.” Constr. Build. Mater. 9 (5): 259–266. https://doi.org/10.1016/0950-0618(95)00013-6.
Gao, C., L. Huang, L. Yan, G. Ma, and L. Xu. 2015. “Compressive behavior of CFFT with inner steel wire mesh.” Compos. Struct. 133 (Dec): 322–330. https://doi.org/10.1016/j.compstruct.2015.07.075.
Ghernouti, Y., A. Li, and B. Rabehi. 2012. “Effectiveness of repair on damaged concrete columns by using fiber-reinforced polymer composite and increasing concrete section.” J. Reinf. Plast. Compos. 31 (23): 1616–1629. https://doi.org/10.1177/0731684412458552.
Ghernouti, Y., and B. Rabehi. 2011. “FRP-confined short concrete columns under compressive loading: Experimental and modeling investigation.” J. Reinf. Plast. Compos. 30 (3): 241–255. https://doi.org/10.1177/0731684410393054.
Girgin, Z. C. 2009. “Modified failure criterion to predict ultimate strength of circular columns confined by different materials.” ACI Struct. J. 106 (6): 800–809.
Girgin, Z. C. 2014. “Modified Johnston failure criterion from rock mechanics to predict the ultimate strength of fiber reinforced polymer (FRP) confined columns.” Polymers 6 (1): 59–75. https://doi.org/10.3390/polym6010059.
Girgin, Z. C., and K. Girgin. 2015. “A design-oriented combined model (7 MPa to 190 MPa) for FRP-confined circular short columns.” Polymers 7 (10): 1905–1917. https://doi.org/10.3390/polym7101489.
Guralnick, S. A., and L. Gunawan. 2006. “Strengthening of reinforced concrete bridge columns with FRP wrap.” Pract. Period. Struct. Des. Constr. 11 (4): 218–228. https://doi.org/10.1061/(ASCE)1084-0680(2006)11:4(218).
Hany, N. F., E. G. Hantouche, and M. H. Harajli. 2015. “Axial stress-strain model of CFRP-confined concrete under monotonic and cyclic loading.” J. Compos. Constr. 19 (6): 04015004. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000557.
Hany, N. F., E. G. Hantouche, and M. H. Harajli. 2017. “Generalized axial stress-strain response of rectangular columns confined using CFRP jackets and anchors.” J. Compos. Constr. 21 (1): 04016063. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000724.
Harajli, M. H., E. Hantouche, and K. Soudki. 2006. “Stress-strain model for fiber-reinforced polymer jacketed concrete columns.” ACI Struct. J. 103 (5): 672–680.
Harries, K. A., and G. Kharel. 2002. “Behavior and modeling of concrete subject to variable confining pressure.” ACI Mater. J. 99 (2): 180–189.
Hoshikuma, J., K. Kawashima, K. Nagaya, and A. W. Taylor. 1997. “Stress-strain model for confined reinforced concrete in bridge piers.” J. Struct. Eng. 123 (5): 624–633. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(624).
Hu, B., and J. G. Wang. 2010. “Unified model for calculating stress-strain relationship of circular and rectangular concrete columns confined with FRP.” [In Chinese.] J. Xi’an Univ. Arch. Tech. 4: 394–406.
Huang, L., C. Gao, L. Yan, B. Kasal, and G. Ma. 2016a. “Reliability assessment of confinement models of carbon fiber reinforced polymer-confined concrete.” J. Reinf. Plast. Compos. 35 (12): 996–1026. https://doi.org/10.1177/0731684416633899.
Huang, L., C. Gao, L. Yan, B. Kasal, G. Ma, and H. Tan. 2016b. “Confinement models of GFRP-confined concrete: Statistical analysis and unified stress–strain models.” J. Reinf. Plast. Compos. 35 (11): 867–891. https://doi.org/10.1177/0731684416630609.
Ilki, A., and N. Kumbasar. 2003. “Compressive behaviour of carbon fibre composite jacketed concrete with circular and non-circular cross-sections.” J. Earthquake Eng. 7 (3): 381–406. https://doi.org/10.1080/13632460309350455.
Ilki, A., N. Kumbasar, and V. Koc. 2002. “Strength and deformability of low strength concrete confined by carbon fiber composite sheets.” In Proc., 15th ASCE Engineering Mechanics Conf. New York: Columbia Univ.
Ilki, A., N. Kumbasar, and V. Koc. 2004. “Low strength concrete members externally confined with FRP sheets.” Struct. Eng. Mech. 18 (2): 167–194. https://doi.org/10.12989/sem.2004.18.2.167.
Ilki, A., O. Peker, E. Karamuk, C. Demir, and N. Kumbasar. 2008. “FRP retrofit of low and medium strength circular and rectangular reinforced concrete columns.” J. Mater. Civ. Eng. 20 (2): 169–188. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:2(169).
Islam, M. M., M. S. I. Choudhury, and A. F. M. S. Amin. 2016. “Dilation effects in FRP-confined square concrete columns using stone, brick, and recycled coarse aggregates.” J. Compos. Constr. 20 (1): 04015017. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000574.
Isleem, H. F., D. Wang, and Z. Wang. 2018. “Modeling the axial compressive stress-strain behavior of CFRP-confined rectangular RC columns under monotonic and cyclic loading.” Compos. Struct. 185 (Feb): 229–240. https://doi.org/10.1016/j.compstruct.2017.11.023.
Isleem, H. F., D. Wang, and Z. Wang. 2019. “A new numerical model for polymer-confined rectangular concrete columns.” Proc. Inst. Civ. Eng.-Struct. Build. 172 (7): 528–544. https://doi.org/10.1680/jstbu.17.00103.
Ispir, M. 2015. “Monotonic and cyclic compression tests on concrete confined with PET-FRP.” J. Compos. Constr. 19 (1): 04014034. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000490.
Ispir, M., K. D. Dalgic, and A. Ilki. 2018. “Hybrid confinement of concrete through use of low and high rupture strain FRP.” Composites Part B 153 (Nov): 243–255. https://doi.org/10.1016/j.compositesb.2018.07.026.
Issa, M. A., R. Z. Alrousan, and M. A. Issa. 2009. “Experimental and parametric study of circular short columns confined with CFRP composites.” J. Compos. Constr. 13 (2): 135–147. https://doi.org/10.1061/(ASCE)1090-0268(2009)13:2(135).
Jiang, T., and J. G. Teng. 2006. “Strengthening of short circular RC columns with FRP jackets: A design proposal.” In Proc., 3rd Int. Conf. on FRP Composites in Civil Engineering (CICE 2006). Miami: Florida International Univ.
Jiang, T., and J. G. Teng. 2007. “Analysis-oriented stress–strain models for FRP–confined concrete.” Eng. Struct. 29 (11): 2968–2986. https://doi.org/10.1016/j.engstruct.2007.01.010.
Jolly, C. K., and D. Lilistone. 1998. “The stress–strain behavior of concrete confined by advanced fibre composites.” In Proc., 8th BCA Conf. Higher Education and the Concrete Industry, 117–135. Berkshire, UK: British Cement Association.
Karabinis, A. I., and T. C. Rousakis. 2001. “Carbon FRP confined concrete elements under axial load.” In Proc., Int. Conf. on FRP Composites in Civil Engineering, edited by J. G. Teng, 309–316. Amsterdam, Netherlands: Elsevier.
Karbhari, V. M., and Y. Gao. 1997. “Composite jacketed concrete under uniaxial compression—Verification of simple design equations.” J. Mater. Civ. Eng. 9 (4): 185–193. https://doi.org/10.1061/(ASCE)0899-1561(1997)9:4(185).
Khan, Q., M. N. Sheikh, and M. N. Hadi. 2016. “Axial compressive behaviour of circular CFFT: Experimental database and design-oriented model.” Steel Compos. Struct. 21 (4): 921–947. https://doi.org/10.12989/scs.2016.21.4.921.
Kono, S., M. Inazumi, and T. Kaku. 1998. “Evaluation of confining effects of CFRP sheets on reinforced concrete members.” In Proc., 2nd Int. Conf. on Composites in Infrastructure ICCI’ 98, edited by H. Saadatmanesh, and M. R. Ehsani, 343–355. Tucson, AZ: Univ. of Arizona.
Kumutha, R., R. Vaidyanathan, and M. S. Palanichamy. 2007. “Behaviour of reinforced concrete rectangular columns strengthened using GFRP.” Cem. Concr. Compos. 29 (8): 609–615. https://doi.org/10.1016/j.cemconcomp.2007.03.009.
Lam, L., and J. G. Teng. 2002. “Strength models for fiber-reinforced plastic-confined concrete.” J. Struct. Eng. 128 (5): 612–623. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:5(612).
Lam, L., and J. G. Teng. 2003a. “Design-oriented stress–strain model for FRP-confined concrete.” Constr. Build. Mater. 17 (6–7): 471–489. https://doi.org/10.1016/S0950-0618(03)00045-X.
Lam, L., and J. G. Teng. 2003b. “Design-oriented stress–strain model for FRP-confined concrete in rectangular columns.” J. Reinf. Plast. Compos. 22 (13): 1149–1186. https://doi.org/10.1177/0731684403035429.
Legeron, F., and P. Paultre. 2003. “Uniaxial confinement model for normal-and high-strength concrete columns.” J. Struct. Eng. 129 (2): 241–252. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:2(241).
Li, Y. F., C. T. Lin, and Y. Y. Sung. 2003. “A constitutive model for concrete confined with carbon fiber reinforced plastics.” Mech. Mater. 35 (3): 603–619. https://doi.org/10.1016/S0167-6636(02)00288-0.
Liang, M., Z. M. Wu, T. Ueda, J. J. Zheng, and R. Akogbe. 2012. “Experiment and modeling on axial behavior of carbon fiber reinforced polymer confined concrete cylinders with different sizes.” J. Reinf. Plast. Compos. 31 (6): 389–403. https://doi.org/10.1177/0731684412439347.
Lillistone, D., and C. K. Jolly. 2000. “An innovative form of reinforcement for concrete columns using advanced composites.” Struct. Eng. 78 (23/24): 20–29.
Lim, J. C., and T. Ozbakkaloglu. 2014. “Design model for FRP-confined normal-and high-strength concrete square and rectangular columns.” Mag. Concr. Res. 66 (20): 1020–1035. https://doi.org/10.1680/macr.14.00059.
Lin, C. T., and Y. F. Li. 2003. “An effective peak stress formula for concrete confined with carbon fiber reinforced plastics.” Can. J. Civ. Eng. 30 (5): 882–889. https://doi.org/10.1139/l03-047.
Lin, H. J., and C. T. Chen. 2001. “Strength of concrete cylinder confined by composite materials.” J. Reinf. Plast. Compos. 20 (18): 1577–1600. https://doi.org/10.1177/073168401772679066.
Liu, H. X., G. J. Liu, X. Z. Wang, and X. Q. Kong. 2015. “Effect of cross-sectional aspect ratio and basalt fiber-reinforced polymer-confined number on axial compression behavior of short columns.” J. Reinf. Plast. Compos. 34 (10): 782–794. https://doi.org/10.1177/0731684415580330.
Lu, X., and C. T. T. Hsu. 2006. “Behavior of high strength concrete with and without steel fiber reinforcement in triaxial compression.” Cem. Concr. Res. 36 (9): 1679–1685. https://doi.org/10.1016/j.cemconres.2006.05.021.
Mandal, S., A. Hoskin, and A. Fam. 2005. “Influence of concrete strength on confinement effectiveness of fiber-reinforced polymer circular jackets.” ACI Struct. J. 102 (3): 383–392.
Mander, J. B., M. J. Priestley, and R. Park. 1988. “Theoretical stress-strain model for confined concrete.” J. Struct. Eng. 114 (8): 1804–1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
Marques, S. P. C., D. C. D. S. C. Marques, J. Lins da Silva, and M. A. A. Cavalcante. 2004. “Model for analysis of short columns of concrete confined by fiber-reinforced polymer.” J. Compos. Constr. 8 (4): 332–340. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:4(332).
Matthys, S., H. Toutanji, and L. Taerwe. 2006. “Stress–strain behavior of large-scale circular columns confined with FRP composites.” J. Struct. Eng. 132 (1): 123–133. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:1(123).
Mirmiran, A. 1996. Analytical and experimental investigation of reinforced concrete columns encased in fiberglass tubular jackets and use of fiber jacket for pile splicing. Tallahassee, FL: Florida Dept. of Transportation.
Mirmiran, A., and M. Shahawy. 1997. “Behavior of concrete columns confined by fiber composites.” J. Struct. Eng. 123 (5): 583–590. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(583).
Mirmiran, A., M. Shahawy, M. Samaan, H. E. Echary, J. C. Mastrapa, and O. Pico. 1998. “Effect of column parameters on FRP-confined concrete.” J. Compos. Constr. 2 (4): 175–185. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(175).
Miyauchi, K., S. Inoue, T. Kuroda, and A. Kobayashi. 1999. “Strengthening effects with carbon fiber sheet for concrete column.” [In Japanese.] Proc. Jpn. Concr. Inst., 21 (3), 1453–1458.
Miyauchi, K., S. Nishibayashi, and S. Inoue. 1997. “Estimation of strengthening effects with carbon fiber sheet for concrete column.” In Proc., 3rd Int. Symp. of Non-Metallic (FRP) Reinforcement for Concrete Structures, 217–224. Tokyo: Japan Concrete Institute.
Mohamed, H. M., and R. Masmoudi. 2010. “Axial load capacity of concrete-filled FRP tube columns: Experimental versus theoretical predictions.” J. Compos. Constr. 14 (2): 231–243. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000066.
Moran, D. A., and C. P. Pantelides. 2002. “Variable strain ductility ratio for fiber-reinforced polymer-confined concrete.” J. Compos. Constr. 6 (4): 224–232. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:4(224).
Nakatsuka, T., K. Kenichi, and T. Kinya. 1998. “Stress–strain characteristics of confined concrete with carbon fiber sheet.” Concr. Res. Tech. 9 (2): 65–78. https://doi.org/10.3151/crt1990.9.2_65.
Newman, K., and J. B. Newman. 1971. “Failure theories and design criteria for plain concrete.” In Proc., Int. Civil Engineering Materials Conf. on Structure, Solid Mechanics and Engineering Design, 936–995. New York: Wiley.
Nisticò, N., and G. Monti. 2013. “RC square sections confined by FRP: Analytical prediction of peak strength.” Composites Part B 45 (1): 127–137. https://doi.org/10.1016/j.compositesb.2012.09.041.
Ozbakkaloglu, T. 2013. “Behavior of square and rectangular ultra high-strength concrete-filled FRP tubes under axial compression.” Composites Part B 54 (Nov): 97–111. https://doi.org/10.1016/j.compositesb.2013.05.007.
Ozbakkaloglu, T., and J. C. Lim. 2013. “Axial compressive behavior of FRP-confined concrete: Experimental test database and a new design-oriented model.” Composites Part B 55 (Dec): 607–634. https://doi.org/10.1016/j.compositesb.2013.07.025.
Ozbakkaloglu, T., J. C. Lim, and T. Vincent. 2013. “FRP-confined concrete in circular sections: Review and assessment of stress–strain models.” Eng. Struct. 49 (Apr): 1068–1088. https://doi.org/10.1016/j.engstruct.2012.06.010.
Pantazopoulou, S. J. 1995. “Role of expansion on mechanical behavior of concrete.” J. Struct. Eng. 121 (12): 1795–1805. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:12(1795).
Pantelides, C. P., and Z. Yan. 2007. “Confinement model of concrete with externally bonded FRP jackets or posttensioned FRP shells.” J. Struct. Eng. 133 (9): 1288–1296. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:9(1288).
Park, J. H., B. W. Jo, S. J. Yoon, and S. K. Park. 2011. “Experimental investigation on the structural behavior of concrete filled FRP tubes with/without steel re-bar.” KSCE J. Civ. Eng. 15 (2): 337–345. https://doi.org/10.1007/s12205-011-1040-0.
Pellegrino, C., and C. Modena. 2010. “Analytical model for FRP confinement of concrete columns with and without internal steel reinforcement.” J. Compos. Constr. 14 (6): 693–705. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000127.
Pham, T. M., and M. N. Hadi. 2014. “Stress prediction model for FRP confined rectangular concrete columns with rounded corners.” J. Compos. Constr. 18 (1): 04013019. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000407.
Pilakoutas, K., and A. A. Mortazavi. 1997. “Ductility through external confinement of RC members with FRP.” In Vol. 1 of Proc., Non-Metallic (FRP) Reinforcement for Concrete Structures, 225–232. Tokyo: Japan Concrete Institute.
Pimanmas, A., Q. Hussain, A. Panyasirikhunawut, and W. Rattanapitikon. 2019. “Axial strength and deformability of concrete confined with natural fibre-reinforced polymers (NFRP).” Mag. Concr. Res. 71 (2): 55–70. https://doi.org/10.1680/jmacr.17.00312.
Pimanmas, A., and S. Saleem. 2018. “Dilation characteristics of PET FRP–confined concrete.” J. Compos. Constr. 22 (3): 04018006. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000841.
Razvi, S., and M. Saatcioglu. 1999. “Confinement model for high-strength concrete.” J. Struct. Eng. 125 (3): 281–289. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(281).
Realfonzo, R., and A. Napoli. 2011. “Concrete confined by FRP systems: Confinement efficiency and design strength models.” Composites Part B 42 (4): 736–755. https://doi.org/10.1016/j.compositesb.2011.01.028.
Restrepo, J. I., and B. De Vino. 1996. “Enhancement of the axial load carrying capacity of reinforced concrete columns by means of fiber glass-epoxy jackets.” In Proc., 2nd Int. Conf. on Advanced Composite Materials in Bridges Structure, 547–554. Montreal: Canadian Society for Civil Engineering.
Reyna, R., T. Saito, T. Matsui, and K. Hayashi. 2016. “Monotonic stress-strain relationship of concrete with carbon fiber sheet confinement.” In Proc., Japan Concrete Institute Annual Convention. Tokyo: Japan Concrete Institute.
Richart, F. E., A. Brandtzaeg, and R. L. Brown. 1928. A study of the failure of concrete under combined compressive stresses: Bulletin no. 185. Champaign, IL: Univ. of Illinois at Urbana Champaign, College of Engineering.
Rousakis, T., T. Rakitzis, and A. Karabinis. 2012a. “Empirical modelling of failure strains of uniformly FRP confined concrete columns.” In Proc., 6th Int. Conf. on FRP Composites in Civil Engineering (CICE), edited by J. Monti. Rome: Composites in Civil Engineering.
Rousakis, T. C. 2005. “Mechanical behaviour of concrete confined by composite materials.” [In Greek.] Ph.D. thesis, Civil Engineering Dept., Democritus Univ. of Thrace.
Rousakis, T. C. 2016. “Reusable and recyclable nonbonded composite tapes and ropes for concrete columns confinement.” Composites Part B 103 (Oct): 15–22. https://doi.org/10.1016/j.compositesb.2016.08.003.
Rousakis, T. C., and A. I. Karabinis. 2008. “Substandard reinforced concrete members subjected to compression: FRP confining effects.” Mater. Struct. 41 (9): 1595–1611. https://doi.org/10.1617/s11527-008-9351-4.
Rousakis, T. C., T. D. Rakitzis, and A. I. Karabinis. 2012b. “Design-oriented strength model for FRP-confined concrete members.” J. Compos. Constr. 16 (6): 615–625. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000295.
Saadatmanesh, H., M. R. Ehsani, and M. W. Li. 1994. “Strength and ductility of concrete columns externally reinforced with fiber composite straps.” ACI Struct. J. 91 (4): 434–447.
Saafi, M., H. A. Toutanji, and Z. Li. 1999. “Behavior of concrete columns confined with fiber reinforced polymer tubes.” ACI Mater. J. 96 (4): 500–509.
Saatcioglu, M., and S. R. Razvi. 1992. “Strength and ductility of confined concrete.” J. Struct. Eng. 118 (6): 1590–1607. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:6(1590).
Saenz, L. P. 1964. “Discussion of ‘Equation for the stress–strain curve of concrete’ by P. Desay and S. Krishnan.” ACI J. 61 (9): 1229–1235.
Saiidi, S. M., K. Sureshkumar, and C. Pulido. 2005. “Simple carbon-fiber-reinforced-plastic-confined concrete model for moment-curvature analysis.” J. Compos. Constr. 9 (1): 101–104. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:1(101).
Saleem, S., Q. Hussain, and A. Pimanmas. 2017. “Compressive behavior of PET FRP–confined circular, square, and rectangular concrete columns.” J. Compos. Constr. 21 (3): 04016097. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000754.
Saleem, S., A. Pimanmas, and W. Rattanapitikon. 2018. “Lateral response of PET FRP-confined concrete.” Constr. Build. Mater. 159 (Jan): 390–407. https://doi.org/10.1016/j.conbuildmat.2017.10.116.
Samaan, M., A. Mirmiran, and M. Shahawy. 1998. “Model of concrete confined by fiber composites.” J. Struct. Eng. 124 (9): 1025–1031. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:9(1025).
Shehata, I. A., L. A. Carneiro, and L. C. Shehata. 2002. “Strength of short concrete columns confined with CFRP sheets.” Mater. Struct. 35 (1): 50–58. https://doi.org/10.1007/BF02482090.
Shehata, I. A. E. M., L. A. V. Carneiro, and L. C. D. Shehata. 2007. “Strength of confined short concrete columns.” In Proc., 8th Int. Symp. on Fiber Reinforced Polymer Reinforcement for Concrete Structures. Patras, Greece: Univ. of Patras.
Spoelstra, M. R., and G. Monti. 1999. “FRP-confined concrete model.” J. Compos. Constr. 3 (3): 143–150. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:3(143).
Suon, S., S. Saleem, and A. Pimanmas. 2018. “Compressive behavior of circular concrete columns confined by basalt fiber reinforced polymer (BFRP).” Key Eng. Mater. 765: 355–360. https://doi.org/10.4028/www.scientific.net/KEM.765.355.
Tabbara, M., and G. Karam. 2007. “Modeling the strength of concrete cylinders with FRP wraps using the Hoek-Brown strength criterion.” In Proc., 8th Int. Symp. on Fiber Reinforced Polymer Reinforcement for Concrete Structures. Patras, Greece: Univ. of Patras.
Tamuzs, V., R. Tepfers, E. Zile, and O. Ladnova. 2006. “Behavior of concrete cylinders confined by a carbon composite 3. Deformability and the ultimate axial strain.” Mech. Compos. Mater. 42 (4): 303–314. https://doi.org/10.1007/s11029-006-0040-5.
Tan, K. H., T. Bhowmik, and T. Balendra. 2013. “Confinement model for FRP-bonded capsule-shaped concrete columns.” Eng. Struct. 51 (Jun): 51–59. https://doi.org/10.1016/j.engstruct.2012.12.039.
Tasdemir, M. A., C. Tasdemir, S. Akyüz, A. D. Jefferson, F. D. Lydon, and B. I. G. Barr. 1998. “Evaluation of strains at peak stresses in concrete: A three-phase composite model approach.” Cem. Concr. Compos. 20 (4): 301–318. https://doi.org/10.1016/S0958-9465(98)00012-2.
Teng, J., Y. L. Huang, L. Lam, and L. P. Ye. 2007. “Theoretical model for fiber-reinforced polymer-confined concrete.” J. Compos. Constr. 11 (2): 201–210. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:2(201).
Teng, J. G., J. F. Chen, S. T. Smith, and L. Lam. 2002. FRP-strengthened RC structures. New York: Wiley.
Teng, J. G., T. Jiang, L. Lam, and Y. Z. Luo. 2009. “Refinement of a design-oriented stress–strain model for FRP-confined concrete.” J. Compos. Constr. 13 (4): 269–278. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000012.
Thériault, M., and K. W. Neale. 2000. “Design equations for axially loaded reinforced concrete columns strengthened with fibre reinforced polymer wraps.” Can. J. Civ. Eng. 27 (5): 1011–1020. https://doi.org/10.1139/l00-019.
Toutanji, H. 1999. “Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets.” ACI Mater. J. 96 (3): 397–404.
Toutanji, H., M. Han, J. Gilbert, and S. Matthys. 2010. “Behavior of large-scale rectangular columns confined with FRP composites.” J. Compos. Constr. 14 (1): 62–71. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000051.
Triantafillou, T. C., C. G. Papanicolaou, P. Zissimopoulos, and T. Laourdekis. 2006. “Concrete confinement with textile-reinforced mortar jackets.” ACI Struct. J. 103 (1): 28–37.
Valdmanis, V., L. De Lorenzis, T. Rousakis, and R. Tepfers. 2007. “Behaviour and capacity of CFRP-confined concrete cylinders subjected to monotonic and cyclic axial compressive load.” Struct. Concr. 8 (4): 187–200. https://doi.org/10.1680/stco.2007.8.4.187.
Vintzileou, E., and E. Panagiotidou. 2008. “An empirical model for predicting the mechanical properties of FRP-confined concrete.” Constr. Build. Mater. 22 (5): 841–854. https://doi.org/10.1016/j.conbuildmat.2006.12.009.
Wang, Y. C., and K. Hsu. 2008. “Design of FRP-wrapped reinforced concrete columns for enhancing axial load carrying capacity.” Compos. Struct. 82 (1): 132–139. https://doi.org/10.1016/j.compstruct.2007.04.002.
Wang, Y. C., and J. I. Restrepo. 2001. “Investigation of concentrically loaded reinforced concrete columns confined with glass fiber-reinforced polymer jackets.” ACI Struct. J. 98 (3): 377–385.
Wang, Y. F., and H. L. Wu. 2010. “Experimental investigation on square high-strength concrete short columns confined with AFRP sheets.” J. Compos. Constr. 14 (3): 346–351. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000090.
Wang, Y. F., and H. L. Wu. 2011. “Size effect of concrete short columns confined with aramid FRP jackets.” J. Compos. Constr. 15 (4): 535–544. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000178.
Wang, Z., D. Wang, S. T. Smith, and D. Lu. 2012a. “CFRP-confined square RC columns. I: Experimental investigation.” J. Compos. Constr. 16 (2): 150–160. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000245.
Wang, Z., D. Wang, S. T. Smith, and D. Lu. 2012b. “CFRP-confined square RC columns. II: Cyclic axial compression stress-strain model.” J. Compos. Constr. 16 (2): 161–170. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000246.
Wei, Y., and Y. F. Wu. 2014. “Compression behavior of concrete columns confined by high strength steel wire.” Constr. Build. Mater. 54 (Mar): 443–453. https://doi.org/10.1016/j.conbuildmat.2013.12.083.
Wei, Y. Y., and Y. F. Wu. 2012. “Unified stress–strain model of concrete for FRP-confined columns.” Constr. Build. Mater. 26 (1): 381–392. https://doi.org/10.1016/j.conbuildmat.2011.06.037.
Wong, P. S., F. J. Vecchio, and H. Trommels. 2013. Vector2 and formworks user’s manual. 2nd ed. Toronto: Univ. of Toronto.
Wu, G., Z. T. Lü, and Z. S. Wu. 2006. “Strength and ductility of concrete cylinders confined with FRP composites.” Constr. Build. Mater. 20 (3): 134–148. https://doi.org/10.1016/j.conbuildmat.2005.01.022.
Wu, G., Z. S. Wu, and Z. T. Lü. 2007. “Design-oriented stress–strain model for concrete prisms confined with FRP composites.” Constr. Build. Mater. 21 (5): 1107–1121. https://doi.org/10.1016/j.conbuildmat.2005.12.014.
Wu, H. L., and Y. F. Wang. 2010. “Experimental study on reinforced high-strength concrete short columns confined with AFRP sheets.” Steel Compos. Struct. 10 (6): 501–516. https://doi.org/10.12989/scs.2010.10.6.501.
Wu, H. L., Y. F. Wang, L. Yu, and X. R. Li. 2009. “Experimental and computational studies on high-strength concrete circular columns confined by aramid fiber-reinforced polymer sheets.” J. Compos. Constr. 13 (2): 125–134. https://doi.org/10.1061/(ASCE)1090-0268(2009)13:2(125).
Wu, Y. F., and Y. Cao. 2017. “Energy balance method for modeling ultimate strain of confined concrete.” ACI Struct. J. 114 (2): 373–381. https://doi.org/10.14359/51689429.
Wu, Y. F., and L. M. Wang. 2009. “Unified strength model for square and circular concrete columns confined by external jacket.” J. Struct. Eng. 135 (3): 253–261. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:3(253).
Wu, Y. F., and Y. Wei. 2015. “General stress-strain model for steel-and FRP-confined concrete.” J. Compos. Constr. 19 (4): 04014069. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000511.
Wu, Y. F., and Y. Y. Wei. 2010. “Effect of cross-sectional aspect ratio on the strength of CFRP-confined rectangular concrete columns.” Eng. Struct. 32 (1): 32–45. https://doi.org/10.1016/j.engstruct.2009.08.012.
Wu, Y. F., and Y. W. Zhou. 2010. “Unified strength model based on Hoek-Brown failure criterion for circular and square concrete columns confined by FRP.” J. Compos. Constr. 14 (2): 175–184. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000062.
Xiao, Q. G., J. G. Teng, and T. Yu. 2010. “Behavior and modeling of confined high-strength concrete.” J. Compos. Constr. 14 (3): 249–259. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000070.
Xiao, Y., and H. Wu. 2000. “Compressive behavior of concrete confined by carbon fiber composite jackets.” J. Mater. Civ. Eng. 12 (2): 139–146. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:2(139).
Xiao, Y., and H. Wu. 2003. “Compressive behavior of concrete confined by various types of FRP composite jackets.” J. Reinf. Plast. Compos. 22 (13): 1187–1201. https://doi.org/10.1177/0731684403035430.
Yan, B., L. Huang, L. Yan, C. Gao, and B. Kasal. 2017. “Behavior of flax FRP tube encased recycled aggregate concrete with clay brick aggregate.” Constr. Build. Mater. 136 (Apr): 265–276. https://doi.org/10.1016/j.conbuildmat.2017.01.046.
Yan, L., and N. Chouw. 2012. “Behavior and analytical modeling of natural flax fibre-reinforced polymer tube confined plain concrete and coir fibre-reinforced concrete.” J. Compos. Mater. 47 (17): 2133–2148. https://doi.org/10.1177/0021998312454691.
Yan, Z., and C. P. Pantelides. 2006. “Fiber-reinforced polymer jacketed and shape-modified compression members: II-model.” ACI Struct. J. 103 (6): 894–903.
Yan, Z., and C. P. Pantelides. 2011. “Concrete column shape modification with FRP shells and expansive cement concrete.” Constr. Build. Mater. 25 (1): 396–405. https://doi.org/10.1016/j.conbuildmat.2010.06.013.
Youssef, M. N., M. Q. Feng, and A. S. Mosallam. 2007. “Stress–strain model for concrete confined by FRP composites.” Composites Part B 38 (5): 614–628. https://doi.org/10.1016/j.compositesb.2006.07.020.
Yu, T., and J. G. Teng. 2011. “Design of concrete-filled FRP tubular columns: Provisions in the Chinese technical code for infrastructure application of FRP composites.” J. Compos. Constr. 15 (3): 451–461. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000159.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 31Issue 12December 2019

History

Received: Nov 30, 2018
Accepted: Jun 7, 2019
Published online: Sep 30, 2019
Published in print: Dec 1, 2019
Discussion open until: Feb 29, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, Dept. of Civil Engineering, Faculty of Engineering, Kasetsart Univ., Bangkok 10900, Thailand (corresponding author). ORCID: https://orcid.org/0000-0001-5391-6117. Email: [email protected]; [email protected]
Shahzad Saleem [email protected]
Assistant Professor, Dept. of Civil Engineering, Univ. of Engineering and Technology, Taxila 47080, Pakistan. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share