Technical Papers
Sep 10, 2019

Microstructure and Strength Development of Sodium Carbonate–Activated Blast Furnace Slags

Publication: Journal of Materials in Civil Engineering
Volume 31, Issue 11

Abstract

This paper presents the study of alkali-activated slags where sodium carbonate acts as a primary activator. The slow activation mechanism of sodium carbonate is accelerated by sodium hydroxide and with traces of calcium hydroxide. Strength development and the progress of hydration of the mixes were studied with the phase transformation and development of microstructural features through quantitative techniques such as thermogravimetric analysis and phase-identification techniques such as Fourier transform infrared spectroscopy and X-ray diffraction. Sodium carbonate replacement with sodium hydroxide and the presence of calcium hydroxide in the binder as a replacement for the slag enhances the rate of dissolution of slag, leading to faster strength development. Calcium hydroxide significantly increases the compressive strength, even at an early age. On the other hand, sodium hydroxide substitution is effective at later ages of the reaction when used at high dosages (e.g., 40%). Formation of strength-giving phases such as hydrotalcite and calcium aluminum silicate hydrate are confirmed with microstructure analysis and explain the strength development.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work was supported by the research grant of Yildiz Technical University Research Foundation (Project No. 2016-05-01-DOP03).

References

Abdalqader, A. F., F. Jin, and A. Al-Tabbaa. 2015. “Characterisation of reactive magnesia and sodium carbonate-activated fly ash/slag paste blends.” Constr. Build. Mater. 93 (Sep): 506–513. https://doi.org/10.1016/j.conbuildmat.2015.06.015.
Abdalqader, A. F., F. Jin, and A. Al-Tabbaa. 2016. “Development of greener alkali-activated cement: Utilisation of sodium carbonate for activating slag and fly ash mixtures.” J. Clean. Prod. 113 (Feb): 66–75. https://doi.org/10.1016/j.jclepro.2015.12.010.
Al Bakri, A. M. M., H. Kamarudin, M. Bnhussain, I. K. Nizar, R. A. Rafiza, and Y. Zarina. 2011. “Microstructure of different NaOH molarity of fly ash-based green polymeric cement.” J. Eng. Tech. Res. 3 (2): 44–49.
ASTM. 2016. Standard test method for compressive strength of hydraulic cement mortars. ASTM C109. Philadelphia: ASTM.
Atiş, C. D., C. Bilim, Ö. Çelik, and O. Karahan. 2009. “Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar.” Constr. Build. Mater. 23 (1): 548–555. https://doi.org/10.1016/j.conbuildmat.2007.10.011.
Ben Haha, M., G. Le Saout, F. Winnefeld, and B. Lothenbach. 2011. “Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags.” Cem. Concr. Res. 41 (3): 301–310. https://doi.org/10.1016/j.cemconres.2010.11.016.
Ben Haha, M., B. Lothenbach, G. Le Saout, and F. Winnefeld. 2012. “Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part II: Effect of Al23.” Cem. Concr. Res. 41 (9): 955–963. https://doi.org/10.1016/j.cemconres.2011.05.002.
Bernal, S. A., J. L. Provis, R. Myers, J. R. San Nicolas, and J. S. J. van Deventer. 2014. “Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders.” Mater. Struct. Constr. 48 (3): 517–529. https://doi.org/10.1617/s11527-014-0412-6.
Bernal, S. A., J. L. Provis, V. Rose, and R. M. Gutiérrez. 2013. “High-resolution X-ray diffraction and fluorescence microscopy characterization of alkali-activated slag-metakaolin binders.” J. Am. Ceram. Soc. 96 (6): 1951–1957. https://doi.org/10.1111/jace.12247.
Duxson, P., J. L. Provis, G. C. Lukey, and J. S. J. van Deventer. 2007. “The role of inorganic polymer technology in the development of green concrete.” Cem. Concr. Res. 37 (12): 1590–1597. https://doi.org/10.1016/j.cemconres.2007.08.018.
Dweck, J., P. F. Ferreira da Silva, P. M. Büchler, and F. K. Cartledge. 2002. “Study by thermogravimetry of the evolution of ettringite phase during type II portland cement hydration.” J. Therm. Anal. Calorim. 69 (1): 179–186. https://doi.org/10.1023/A:1019950126184.
Escalante-García, J. I., A. F. Fuentes, A. Gorokhovsky, P. E. Fraire-Luna, and G. Mendoza-Suarez. 2003. “Hydration products and reactivity of blast-furnace slag activated by various alkalis.” J. Am. Ceram. Soc. 86 (12): 2148–2153. https://doi.org/10.1111/j.1151-2916.2003.tb03623.x.
Fernandez-Jimenez, A., and F. Puertas. 2001. “Setting of alkali-activated slag cement. Influence of activator nature.” Adv. Cem. Res. 13 (3): 115–121. https://doi.org/10.1680/adcr.13.3.115.39288.
Gebregziabiher, B. S., R. Thomas, and S. Peethamparan. 2015. “Very early-age reaction kinetics and microstructural development in alkali-activated slag.” Cem. Concr. Compos. 55 (Jan): 91–102. https://doi.org/10.1016/j.cemconcomp.2014.09.001.
Gu, K., F. Jin, A. Al-Tabbaa, B. Shi, and J. Liu. 2014. “Mechanical and hydration properties of ground granulated blastfurnace slag pastes activated with MgO-CaO mixtures.” Constr. Build. Mater. 69 (Oct): 101–108. https://doi.org/10.1016/j.conbuildmat.2014.07.032.
Huanhani, Z., W. Xuequan, X. Zhongzi, and T. Mingshu. 1993. “Kinetic study on hydration of alkali-activated slag.” Cem. Concr. Res. 23 (6): 1253–1258. https://doi.org/10.1016/0008-8846(93)90062-E.
Jeon, D., Y. Jun, Y. Jeong, and J. E. Oh. 2015. “Microstructural and strength improvements through the use of Na232-activated Class F fly ash system.” Cem. Concr. Res. 67 (Jan): 215–225. https://doi.org/10.1016/j.cemconres.2014.10.001.
Jeong, Y., E. O. Jae, Y. Jun, J. Park, J. Ha, and S. G. Sohn. 2015. “Influence of four additional activators on hydrated-lime [Ca(OH)2] activated ground granulated blast-furnace slag.” Cem. Concr. Compos. 65 (Jan): 1–10. https://doi.org/10.1016/j.cemconcomp.2015.10.007.
Jin, F., K. Gu, and A. Al-Tabbaa. 2015. “Strength and hydration properties of reactive MgO-activated ground granulated blastfurnace slag paste.” Cem. Concr. Compos. 57 (Mar): 8–16. https://doi.org/10.1016/j.cemconcomp.2014.10.007.
Johnson, D. R., and W. A. Robb. 1973. “Gaylussite: Thermal properties by simultaneous thermal analysis.” Am. Mineral. 58 (7–8): 778–784.
Ke, X., S. A. Bernal, and J. L. Provis. 2016. “Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides.” Cem. Concr. Res. 81 (Mar): 24–37. https://doi.org/10.1016/j.cemconres.2015.11.012.
Kim, M. S., Y. Jun, C. Lee, and J. E. Oh. 2013. “Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag.” Cem. Concr. Res. 54 (Dec): 208–214. https://doi.org/10.1016/j.cemconres.2013.09.011.
Kovtun, M., E. P. Kearsley, and J. Shekhovtsova. 2015. “Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate.” Cem. Concr. Res. 72 (Jun): 1–9. https://doi.org/10.1016/j.cemconres.2015.02.014.
Li, Y., and Y. Sun. 2000. “Preliminary study on combined-alkali-slag paste materials.” Cem. Concr. Res. 30 (6): 963–966. https://doi.org/10.1016/S0008-8846(00)00269-6.
Lloyd, R. R., J. L. Provis, and J. S. J. van Deventer. 2010. “Pore solution composition and alkali diffusion in inorganic polymer cement.” Cem. Concr. Res. 40 (9): 1386–1392. https://doi.org/10.1016/j.cemconres.2010.04.008.
Luukkonen, T., Z. Abdollahnejad, J. Yliniemi, P. Kinnunen, and M. Illikainen. 2018. “One-part alkali-activated materials: A review.” Cem. Concr. Res. 103 (Jan): 21–34. https://doi.org/10.1016/j.cemconres.2017.10.001.
Marcu, A., W. Stoefs, D. Belis, and K. Tuokko. 2015. Sectoral case study-soda ash: Climate for sustainable growth. Brussels, Belgium: Centre for European Policy Studies.
Martinez-Lopez, R., and J. I. Escalante-Garcia. 2016. “Alkali activated composite binders of waste silica soda lime glass and blast furnace slag: Strength as a function of the composition.” Constr. Build. Mater. 119 (Aug): 119–129. https://doi.org/10.1016/j.conbuildmat.2016.05.064.
Parashar, P., V. Sharma, D. D. Agarwal, and N. Richhariya. 2012. “Rapid synthesis of hydrotalcite with high antacid activity.” Mater. Lett. 74 (May): 93–95. https://doi.org/10.1016/j.matlet.2011.12.115.
Provis, J. L. 2014. “Geopolymers and other alkali activated materials: Why, how, and what?” Mater. Struct. Constr. 47 (1–2): 11–25. https://doi.org/10.1617/s11527-013-0211-5.
Provis, J. L., and J. S. J. van Deventer. 2014. Alkali activated materials state-of-the-art report. New York: Springer.
Puertas, A., and F. Fernandez Jimenez. 2003. “Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes.” Cem. Concr. Compos. 25 (3): 287–292. https://doi.org/10.1016/S0958-9465(02)00059-8.
Puertas, A., S. Martínez-Ramírez, S. Alonso, and T. Vázquez. 2002. “Alkali-activated fly ash/slag cements: Strength behaviour and hydration products.” Cem. Concr. Res. 30 (10): 1625–1632. https://doi.org/10.1016/S0008-8846(00)00298-2.
Puertas, F., and M. Torres-Carrasco. 2014. “Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation.” Cem. Concr. Res. 57 (Mar): 95–104. https://doi.org/10.1016/j.cemconres.2013.12.005.
Rashad, A. M., S. R. Zeedan, and A. A. Hassan. 2016. “Influence of the activator concentration of sodium silicate on the thermal properties of alkali-activated slag pastes.” Constr. Build. Mater. 102 (1): 811–820. https://doi.org/10.1016/j.conbuildmat.2015.11.023.
Richardson, J. M., J. J. Biernacki, P. E. Stutzman, and D. P. Bentz. 2010. “Stoichiometry of slag hydration with calcium cydroxide.” J. Am. Ceram. Soc. 85 (4): 947–953. https://doi.org/10.1111/j.1151-2916.2002.tb00197.x.
Scrivener, K. L., and R. J. Kirkpatrick. 2008. “Innovation in use and research on cementitious material.” Cem. Concr. Res. 38 (2): 128–136. https://doi.org/10.1016/j.cemconres.2007.09.025.
Shi, C., and R. L. Day. 2000. “Pozzolanic reaction in the presence of chemical activators.” Cem. Concr. Res. 30 (4): 607–613. https://doi.org/10.1016/S0008-8846(99)00205-7.
Shi, C., P. V. Krivenko, and R. Della. 2006. Alkali-activated cements and concretes. Boca Raton, FL: CRC Press. https://doi.org/10.1201/9781482266900.
Sikander, U., S. Sufian, and M. A. Salam. 2017. “A review of hydrotalcite based catalysts for hydrogen production systems.” Int. J. Hydrogen Energy 42 (31): 19851–19868. https://doi.org/10.1016/j.ijhydene.2017.06.089.
Temuujin, J., A. van Riessen, and R. Williams. 2009. “Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes.” J. Hazard. Mater. 167 (1–3): 82–88. https://doi.org/10.1016/j.jhazmat.2008.12.121.
Turner, L. K., and F. G. Collins. 2013. “Carbon dioxide equivalent (CO2e) emissions: A comparison between geopolymer and OPC cement concrete.” Constr. Build. Mater. 43 (Jun): 125–130. https://doi.org/10.1016/j.conbuildmat.2013.01.023.
van Deventer, J. S. J., J. L. Provis, P. Duxson, and D. G. Brice. 2010. “Chemical research and climate change as drivers in the commercial adoption of alkali activated materials.” Waste Biomass Valorization 1 (1): 145–155. https://doi.org/10.1007/s12649-010-9015-9.
Wang, J., X. J. Lyu, L. Wang, X. Cao, Q. Liu, and H. Zang. 2018. “Influence of the combination of calcium oxide and sodium carbonate on the hydration reactivity of alkali-activated slag binders.” J. Clean. Prod. 171 (Jan): 622–629. https://doi.org/10.1016/j.jclepro.2017.10.077.
Wang, S. D., and K. L. Scrivener. 2003. “Al2927 NMR study of alkali-activated slag.” Cem. Concr. Res. 33 (5): 769–774. https://doi.org/10.1016/S0008-8846(02)01044-X.
Winnefeld, F., M. Ben Haha, G. Le Saout, M. Costoya, S. C. Ko, and B. Lothenbach. 2014. “Influence of slag composition on the hydration of alkali-activated slags.” J. Sustain. Cem. Mater. 4 (2): 85–100. https://doi.org/10.1080/21650373.2014.955550.
Yang, K. H., J. K. Song, and K. Song. 2013. “Assessment of CO2 reduction of alkali-activated concrete.” J. Clean. Prod. 39 (Jan): 265–272. https://doi.org/10.1016/j.jclepro.2012.08.001.
Yuan, B., C. Straub, S. Segers, Q. L. Yu, and H. J. H. Brouwers. 2017. “Sodium carbonate activated slag as cement replacement in autoclaved aerated concrete.” Ceram. Int. 43 (8): 6039–6047. https://doi.org/10.1016/j.ceramint.2017.01.144.
Yusuf, M. O., M. A. M. Johari, Z. A. Ahmad, and M. Maslehuddin. 2014. “Effects of addition of Al(OH)3 on the strength of alkaline activated ground blast furnace slag-ultrafine palm oil fuel ash (AAGU) based binder.” Constr. Build. Mater. 50 (Jan): 361–367. https://doi.org/10.1016/j.conbuildmat.2013.09.054.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 31Issue 11November 2019

History

Received: Mar 23, 2019
Accepted: Jun 7, 2019
Published online: Sep 10, 2019
Published in print: Nov 1, 2019
Discussion open until: Feb 10, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Busra Akturk [email protected]
Research Assistant, Dept. of Civil Engineering, Construction Materials Division, Yildiz Technical Univ., Davutpasa Campus, Istanbul 34220, Turkey. Email: [email protected]
Sumeru Nayak, S.M.ASCE [email protected]
Graduate Student, Dept. of Civil and Environmental Engineering, Univ. of Rhode Island, Kingston, RI 02881. Email: [email protected]
Sumanta Das, A.M.ASCE [email protected]
Assistant Professor, Dept. of Civil and Environmental Engineering, Univ. of Rhode Island, Kingston, RI 02881. Email: [email protected]
Assistant Professor, Dept. of Civil Engineering, Construction Materials Division, Yildiz Technical Univ., Davutpasa Campus, Istanbul 34220, Turkey (corresponding author). ORCID: https://orcid.org/0000-0002-4507-704X. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share