Technical Papers
Jul 29, 2017

Mechanical Improvement of a Fine-Grained Lateritic Soil Treated with Cement for Use in Road Construction

Publication: Journal of Materials in Civil Engineering
Volume 29, Issue 11

Abstract

The mechanical strength of a fine-grained lateritic soil treated with CEMII/BM 32.5 N cement up to 9% by weight of dry soil and prepared at three different molding water contents was investigated by means of California bearing ratio (CBR), unconfined compressive strength (UCS), indirect tensile strength (TS), and triaxial shear tests. The effect of cement treatment on the microstructure of the lateritic soil was investigated by scanning electron microscopy (SEM) and Raman spectroscopy. The results indicated that cement improved the performance of lateritic soil, particularly at the optimum moisture content (OMC) and dry side of optimum (ωDRY), thus offering the possibility of using the tested lateritic soil in road pavement layers. Furthermore, soils with 6 and 9% cement addition satisfied the strength requirements so that lateritic soil can be used as a base course in rigid pavements. The results of triaxial shear tests revealed the existence of two types of behavior, namely, a ductile behavior for untreated soil and brittle behavior for cement-treated soil. These positive impacts are mainly related to the fact that cement addition gives way to the formation of ettringite, calcite, portlandite, and calcium silicate hydrates (afwillite and tobermorite), which derive principally from cement hydration.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors would like to thank the MUNDUS ACP 2 project for funding this research. Their thanks also go to the host laboratory, the LGCGE, where almost all of these works were carried out.

References

AASHTO. (1993). “Guide for design of pavement structures.” AASHTO M320, Washington, DC.
Abdulhussein Saeed, K., Anuar Kassim, K., and Nur, H. (2014). “Physicochemical characterization of cement treated kaolin clay.” Građevinar, 66(06), 513–521.
Al-Amoudi, O. S. B. (2002). “Characterization and chemical stabilization of Al-Qurayyah sabkha soil.” J. Mater. Civ. Eng., 478–484.
Al-Amoudi, O. S. B., Khan, K., and Al-Kahtani, N. S. (2010). “Stabilization of a Saudi calcareous marl soil.” Constr. Build. Mater., 24(10), 1848–1854.
Al-Mukhtar, M., Khattab, S., and Alcover, J. F. (2012). “Microstructure and geotechnical properties of lime-treated expansive clayey soil.” Eng. Geol., 139-140, 17–27.
Autret, P. (1980). “Contribution à l’étude des graveleux latéritiques traités au ciment.” Ph.D. dissertation, ENA, Des Plaines, IL (in French).
Bagarre, A. (1990). Synthèse: Utilisation des graveleux latéritiques en technique routière, Institut des sciences et des techniques de l’équipement et de l’environnement pour le développement, Paris (in French).
Baghdadi, Z. A., Fatani, M. N., and Sabban, N. A. (1995). “Soil modification by cement kiln dust.” J. Mater. Civil Eng., 218–222.
Bobet, A., Hwang, J., Johnston, C. T., and Santagata, M. (2011). “One-dimensional consolidation behavior of cement-treated organic soil.” Can. Geotech. J., 48(7), 1100–1115.
CEBTP (Experimental Center for Research and Studies in Building and Public Works). (1984). Guide pratique de dimensionnement des chaussées pour les pays tropicaux, Ministère des Relations Extérieures, Coopération et Développement, France (in French).
Chew, S. H., Kamruzzaman, A. H. M., and Lee, F. H. (2004). “Physicochemical and engineering behavior of cement treated clays.” J. Geotech. Geoenviron. Eng., 696–706.
Ebrahimi, A., Edil, T. B., and Son, Y. H. (2011). “Effectiveness of cement kiln dust in stabilizing recycled base materials.” J. Mater. Civil Eng., 1059–1066.
Eluozo, S. N., and Nwaobakata, C. (2013). “Predictive models to determine the behavior of plastic and liquid limit of lateratic soil for road construction at Egbema: Imo state of Nigeria.” Int. J. Eng. Technol., 2(1), 25.
Fleureau, J. M., Verbrugge, J. C., Huergo, P. J., Gomes Correia, A., and Kheirbek-Saoud, S. (2002). “Description and modeling of the drying and wetting paths of compacted soils.” Can. Geotech. J., 39(6), 1341–1357.
Gidigasu, M. (2012). Laterite soil engineering: Pedogenesis and engineering principles, Vol. 9, Elsevier, Amsterdam, Netherlands.
Goual, I., Goual, M. S., Taibi, S., and Abou-Bekr, N. (2012). “Amélioration des propriétés d’un tuf naturel utilisé en technique routière saharienne par ajout d’un sable calcaire.” Eur. J. Environ. Civil Eng., 16(6), 744–763 (in French).
GTR (French Road Earthworks Guidelines). (2000). Guide des Terrassements Routiers, réalisation de remblais et des couches de formes, fascicules I et II, GTR SETRA-LCPC, 2nd Ed., LCPC-SETRA, France, 211 (in French).
Holtz, R. D., and Kovacs, W. D. (1981). Introduction à la géotechnique, Editions de l’Ecole Polytechnique de Montréal, France (in French).
Horpibulsuk, S., Suddeepong, A., Chinkulkijniwat, A., and Liu, M. D. (2012). “Strength and compressibility of lightweight cemented clays.” Appl. Clay Sci., 69, 11–21.
Ismaiel, H. A. H. (2006). “Treatment and improvement of the geotechnical properties of different soft fine-grained soils using chemical stabilization.” Thesis dissertation, Martin-Luther-Univ. Halle-Wittenberg, Germany.
ISO. (2005). “Qualité du sol—Détermination du pH.” NF ISO 10390, Editions AFNOR Boutique, France (in French).
Jegandan, S., Liska, M., Osman, A. A., and Al-Tabbaa, A. (2010). “Sustainable binders for soil stabilisation.” Proc. Inst. Civil Eng. Ground Improv., 163(1), 53–61.
Joel, M., and Agbede, I. O. (2010). “Mechanical-cement stabilization of laterite for use as flexible pavement material.” J. Mater. Civ. Eng., 146–152.
Kamruzzaman, A. H., Chew, S. H., and Lee, F. H. (2009). “Structuration and destructuration behavior of cement-treated Singapore marine clay.” J. Geotech. Geoenviron. Eng., 573–589.
LabSpec version 5 [Computer software]. Horiba, Tokyo.
Lancelot, L., Shahrour, I., and Al Mahmoud, M. (2006). “Failure and dilatancy properties of sand at relatively low stresses.” J. Eng. Mech., 1396–1399.
Lawane, A., Vinai, R., Pantet, A., Thomassin, J. H., and Messan, A. (2014). “Hygrothermal features of laterite dimension stones for sub-Saharan residential building construction.” J. Mater. Civil Eng., 05014002.
Lemaire, K., Deneele, D., Bonnet, S., and Legret, M. (2013). “Effects of lime and cement treatment on the physicochemical, microstructural and mechanical characteristics of a plastic silt.” Eng. Geol., 166, 255–261.
Li, Y., Tan, Y. Z., Jiang, J., and Xia, C. F. (2012). “Experimental study on the compressibility of cement improved laterite soil.” Applied mechanics and materials, Vol. 170, Trans Tech, Zurich, Switzerland, 371–374.
Locat, J., Berube, M. A., and Choquette, M. (1990). “Laboratory investigations on the lime stabilization of sensitive clays: Shear strength development.” Can. Geotech. J., 27(3), 294–304.
Malomo, S., Obademi, M. O., Odedina, P. O., and Adebo, O. A. (1983). “An investigation of the peculiar characteristics of laterite soils from southern Nigeria.” Bull. Int. Assoc. Eng. Geol., 28(1), 197–206.
Mengue, E. (2015). “Évaluation du comportement mécanique d’un sol latéritique traité au ciment pour des applications routières.” Ph.D. dissertation, Univ. Lille 1 Sciences and Technologies, Villeneuve-d′Ascq, France (in French).
Mengue, E., Mroueh, H., Lancelot, L., and Eko, R. M. (2015). “Dimensionnement d’une assise de chaussée à base d’un sol latéritique traité au ciment à différents dosages. Rencontres Universitaires de Génie Civil, Bayonne, France.
Mengue, E., Mroueh, H., Lancelot, L., and Eko, R. M. (2017). “Physicochemical and consolidation properties of compacted lateritic soil treated with cement.” Soils Found., 57(1), 60–79.
Messou, M. (1980). “Comportement mécanique d’une couche de base en graveleux latéritiques améliorés au ciment: Cas des routes en Côte d’Ivoire.” Ph.D. dissertation, Ecole Nationale des Ponts et Chaussées, Champs-sur-Marne, France (in French).
Millogo, Y., Hajjaji, M., Ouedraogo, R., and Gomina, M. (2008). “Cement-lateritic gravels mixtures: Microstructure and strength characteristics.” Constr. Build. Mater., 22(10), 2078–2086.
Millogo, Y., Morel, J. C., Traoré, K., and Ouedraogo, R. (2012). “Microstructure, geotechnical and mechanical characteristics of quicklime-lateritic gravels mixtures used in road construction.” Constr. Build. Mater., 26(1), 663–669.
Mitchell, D. R. G., Hinczak, I., and Day, R. A. (1998). “Interaction of silica fume with calcium hydroxide solutions and hydrated cement pastes.” Cem. Concr. Res., 28(11), 1571–1584.
NF EN (French Norm and European Norm). (1998). “Analyse chimiques: Essais pour déterminer les propriétés chimiques des granulats.” NF EN 1744, Editions AFNOR Boutique, France (in French).
NF EN (French Norm and European Norm). (2003a). “Mélanges traités et mélanges non traités aux liants hydrauliques—Partie 41: Méthode d’essai pour la détermination de la résistance à la compression des mélanges traités aux liants hydrauliques.” NF EN 13286-41, Editions AFNOR Boutique, France (in French).
NF EN (French Norm and European Norm). (2003b). “Mélanges traités et mélanges non traités aux liants hydrauliques—Partie 42: Méthode d’essai pour la détermination de la résistance à traction indirecte des mélanges traités aux liants hydrauliques.” NF EN 13286-42, Editions AFNOR Boutique, France (in French).
NF EN (French Norm and European Norm). (2003c). “Mélanges traités et mélanges non traités aux liants hydrauliques—Partie 43: Méthode d’essai pour la détermination du module d’élasticité des mélanges traités aux liants hydrauliques.” NF EN 13286-43, Editions AFNOR Boutique, France (in French).
NF (French Norm). (1993). “Sols: Reconnaissance et essais—Détermination des limites d’Atterberg—Limite de liquidité à la coupelle—Limite de plasticité au rouleau.” NF P94-051, Editions AFNOR Boutique, France (in French).
NF (French Norm). (1994). “Sols: Reconnaissance et essais—Essais à l’appareil triaxial de révolution—Appareillage—Préparation des éprouvettes—Essai (UU) non consolidé non drainé—Essai (Cu+U) consolidé non drainé avec mesure de pression interstitielle—Essai (CD) consolidé drainé.” NF P94-074, Editions AFNOR Boutique, France (in French).
NF (French Norm). (1997). “Sols: Reconnaissance et essais—Indice CBR après immersion. Indice CBR immédiat. Indice Portant Immédiat—Mesure sur échantillon compacté dans le moule CBR.” NF P94-078, Editions AFNOR Boutique, France (in French).
NF (French Norm). (1998). “Sols: Reconnaissance et essais—Mesure de la capacité d’adsorption de bleu de méthylène d’un sol ou d’un matériau rocheux—Détermination de la valeur de bleu de méthylène d’un sol ou d’un matériau rocheux par l’essai à la tache.” NF P94-068, Editions AFNOR Boutique, France (in French).
NF (French Norm). (1999). “Sols: Reconnaissance et essais—Détermination des références de compactage d’un matériau—Essai Proctor Normal—Essai Proctor modifié—Sols: Reconnaissance et essais—Détermination des références de compactage d’un matériau—Essai Proctor Normal—Essai Proctor modifié.” NF P94-093, Editions AFNOR Boutique, France (in French).
NF P (French Norm for Building and Civil Engineering). (1991). “Sols: reconnaissance et essais—Détermination de la masse volumique des particules solides des sols—Méthode du pycnomètre à eau.” NF P94-054, Editions AFNOR Boutique, France (in French).
NF P (French Norm for Building and Civil Engineering). (1992a). “Analyse granulométrie des sols. Méthode par sédimentation.” NF P94-057, Editions AFNOR Boutique, France (in French).
NF P (French Norm for Building and Civil Engineering). (1992b). “Exécution des terrassements—Classification des matériaux utilisables dans la construction des remblais et des couches de forme d’infrastructures routières.” NF P11-300, Editions AFNOR Boutique, France (in French).
NF P (French Norm for Building and Civil Engineering). (1994). “Assises de chaussée. Sables traités aux liants hydrauliques et pouzzolaniques. Définition–Composition–Classification.” NF P98-113, Editions AFNOR Boutique, France (in French).
NF P (French Norm for Building and Civil Engineering). (1996). “Analyse granulométrique. Méthode par tamisage à sec après lavage.” NF P94-056, Editions AFNOR Boutique, France (in French).
Okyay, U. S., and Dias, D. (2010). “Use of lime and cement treated soils as pile supported load transfer platform.” Eng. Geol., 114(1), 34–44.
Osula, D. O. (1991). “Lime modification of problem laterite.” Eng. Geol., 30(2), 141–154.
Oyediran, I. A., and Kalejaiye, M. (2011). “Effect of increasing cement content on strength and compaction parameters of some lateritic soils from southwestern Nigeria.” Electron. J. Geotech. Eng., 16, 1501–1514.
Portelinha, F. H. M., Lima, D. C., Fontes, M. P. F., and Carvalho, C. A. B. (2012). “Modification of a lateritic soil with lime and cement: An economical alternative for flexible pavement layers.” Soils Rocks Sao Paulo, 35(1), 51–63.
Qian, J., Liang, G., Ling, J., Jia, Q., and Zeng, F. (2015). “Laboratory characterization of cement–lateritic gravel for use in base construction.” J. Mater. Civil Eng., D4015001.
Sariosseiri, F., and Muhunthan, B. (2009). “Effect of cement treatment on geotechnical properties of some Washington State soils.” Eng. Geol., 104(1), 119–125.
Szymkiewicz, F. (2011). “Evaluation des propriétés mécaniques du matériau soil-mixing.” Ph.D. dissertation, Ecole des Ponts ParisTech, Champs-sur-Marne, France (in French).
Tremblay, H., Leroueil, S., and Locat, J. (2001). “Mechanical improvement and vertical yield stress prediction of clayey soils from eastern Canada treated with lime or cement.” Can. Geotech. J., 38(3), 567–579.
Xiao, H. W., and Lee, F. H. (2008). “Curing time effect on behavior of cement treated marine clay.” Proc., World Academy of Science, Engineering and Technology, World Academy of Science, Engineering and Technology, Turkey, 33, 2070–3740.
Yu, P., Kirkpatrick, R. J., Poe, B., McMillan, P. F., and Cong, X. (1999). “Structure of calcium silicate hydrate (C-S-H): Near-, mid-, and far-infrared spectroscopy.” J. Am. Ceram. Soc., 82(3), 742–748.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 29Issue 11November 2017

History

Received: Sep 21, 2016
Accepted: Apr 28, 2017
Published online: Jul 29, 2017
Published in print: Nov 1, 2017
Discussion open until: Dec 29, 2017

Permissions

Request permissions for this article.

Authors

Affiliations

Emmanuel Mengue [email protected]
Lecturer and Research Assistant, Laboratory of Civil Engineering and Geo-Environment, Polytech’Lille, Univ. Lille 1 Sciences and Technologies, Villeneuve d’Ascq 59655, France (corresponding author). E-mail: [email protected]
Hussein Mroueh
Professor, Laboratory of Civil Engineering and Geo-Environment, Polytech’Lille, Univ. Lille 1 Sciences and Technologies, Villeneuve d’Ascq 59655, France.
Laurent Lancelot
Assistant Professor, Laboratory of Civil Engineering and Geo-Environment, Polytech’Lille, Univ. Lille 1 Sciences and Technologies, Villeneuve d’Ascq 59655, France.
Robert Medjo Eko
Professor, Laboratory of Engineering Geology, Dept. of Earth Sciences, Faculty of Science, Univ. of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share