Abstract

Phosphogypsum (PG) is a by-product of the phosphoric acid fertilizer industries that has possible applications in paving when stabilized with cement or lime. This study’s aim is to compare the mechanical performance of the hemi-hydrate (HH) and dihydrate (DH) mixes with tropical soil, lime, and cement. The results of physical, mechanical, and mineralogical tests are presented, which demonstrate that the use of HH in cement and lime mixes reduces the swelling of this material compared to the use of DH; in addition, HH provides better mechanical behavior. These findings indicate that DH has limited application in pavement construction, but when converted into HH and mixed with tropical soil or chemical stabilizers, its alternative uses are possible, and more content (approximately 90%) of this material can be used.

Formats available

You can view the full content in the following formats:

Acknowledgments

The authors are thankful for the funds provided by FAPEG and Anglo American to support this research, the partnering institutions for the use of their laboratories (University of Sao Paulo, University of Brasilia, Furnas and Regional Center for Technological Development and Innovation—CRTI/UFG) and the CNPq and CAPES for the grants.

References

ABNT (Brazilian Association of Technical Standards). (1984a). “Análise granulométrica.”, Sao Paulo, Brazil (in Portuguese).
ABNT (Brazilian Association of Technical Standards). (1984b). “Grãos de solos que passam na peneira de 4, 8 mm—Determinação da massa específica.”, Sao Paulo, Brazil (in Portuguese).
ABNT (Brazilian Association of Technical Standards). (1984c). “Solo—Determinação do limite de liquidez.”, Sao Paulo, Brazil (in Portuguese).
ABNT (Brazilian Association of Technical Standards). (1984d). “Solo—Determinação do limite de plasticidade.”, Sao Paulo, Brazil (in Portuguese).
ABNT (Brazilian Association of Technical Standards). (1984e). “Solo—Ensaio de compactação.”, Sao Paulo, Brazil (in Portuguese).
ABNT (Brazilian Association of Technical Standards). (1991). “Cimento portland composto—Especificação.”, Sao Paulo, Brazil (in Portuguese).
ABNT (Brazilian Association of Technical Standards). (2003). “Cal hidratada para argamassas—Requisitos.”, Sao Paulo, Brazil (in Portuguese).
ABNT (Brazilian Association of Technical Standards). (2004). “Resíduos sólidos—Classificação.”, Sao Paulo, Brazil (in Portuguese).
ABNT (Brazilian Association of Technical Standards). (2012). “Solo-Cimento—Ensaio de compressão simples de corpos de prova cilíndricos.”, Sao Paulo, Brazil (in Portuguese).
Ahmed, A. (2015). “Compressive strength and microstructure of soft clay soil stabilized with recycled bassanite.” Appl. Clay Sci., 104, 27–35.
Ahmed, A., and Issa, U. H. (2014). “Stability of soft clay soil stabilized with recycled gypsum in a wet environment.” Soils Found., 54(3), 405–416.
Ahmed, A., Ugai, K., and Kamei, T. (2011). “Laboratory and field evaluations of recycled gypsum as a stabilizer agent in embankment construction.” Soils Found., 51(6), 975–990.
Altun, I. A., and Sert, Y. (2004). “Utilization of weathered phosphogypsum as set retarder in portland cement.” Cem. Concr. Res., 34(4), 677–680.
Alves, K. C. S. K. (2015). “Estudo do fosfogesso tratado termicamente e de suas misturas com solo tropical.” Master’s degree dissertation, Univ. Federal de Goias, Goiania, Brazil (in Portuguese).
ASTM. (2006). “Standard test method for specific gravity of soil solids by gas pycnometer.” ASTM D5550, West Conshohocken, PA.
Bell, F. G. (1996). “Lime stabilization of clay minerals and soils.” J. Eng. Geol., 42(4), 223–237.
Camapum de Carvalho, J., Rezende, L. R., Cardoso, F. B. F., Lucena, L. C. F. L., Guimarães, R. C., and Valencia, Y. G. (2015). “Tropical soils for highway construction: Peculiarities and considerations.” Transp. Geotech., 5, 3–19.
Chang, W. F., Chib, D. A., and Ho, R. (1989). “Phosphogypsum for secondary road construction.”, Florida Institute of Phosphate Research, Bartow, FL.
Conklin, C. (1992). “Potention uses of phosphogypsum and associated risks: Background information document.” 402-R-92-002, U.S. Environmental Protection Agency, Washington, DC.
Cunha, N. L. (2011). “Uso de materiais não convencionais para base de pavimentos asfálticos no município de Aparecida de Goiania-GO.” Master’s degree dissertation, Univ. Federal de Goias, Goiania, Brazil (in Portuguese).
Degirmenci, N., Okucu, A., and Turabi, A. (2007). “Application of phosphogypsum in soil stabilization.” Build. Environ., 42(9), 3393–3398.
DNIT (National Department of Infrastructure and Transport). (2007). “Pavimentação—Base estabilizada granulometricamente com utilização de solo laterítico—Especificação de service.”, Rio de Janeiro, Brazil (in Portuguese).
DNIT (National Department of Infrastructure and Transport). (2010). “Pavimentação—Solos—Determinação do módulo de resiliência– Método de ensaio.”, Rio de Janeiro, Brazil (in Portuguese).
DNIT (National Department of Infrastructure and Transport). (2012). “Solos—Determinação da expansibilidade—Método de ensaio.”, Rio de Janeiro, Brazil (in Portuguese).
Faria, L. L., Rezende, L. R., and Mesquita, G. M. (2007). “Ensaios laboratoriais com misturas de solo, fosfogesso e cal.” Reunião Anual de Pavimentação/Encontro Nacional de Conservação Rodoviária, Manaus, Brazil (in Portuguese).
Gutti, C. S., Roy, A., Metcalf, J. B., and Seals, R. K. (1996). “The influence of admixtures on the strength and linear expansion of cement-stabilized phosphogypsum.” Cem. Concr. Res., 26(7), 1083–1094.
James, J., Lakshmi, S. V., and Pandian, P. K. (2014). “Strength and index properties of phophosgypsium stabilized expansive soil.” Int. J. Appl. Environ. Sci., 9(5), 2721–2731.
James, J., and Pandian, P. K. (2014). “Effect of phosphogypsum on strength of lime stabilized expansive soil.” Gradevinar, 66(12), 1109–1116.
Lloyd, G. M., Jr. (1985). “Phosphogypsum: A review of the Florida Institute of Phosphate Research programs to develop uses for phosphogypsum.”, Florida Institute of Phosphate Research, Bartow, FL.
Matos, T. H. C. (2011). “Caracterização hidro-mecânica do fosfogesso e das misturas solo-fosfogesso.” Master’s degree dissertation, Univ. de Brasilia, Brasilia, Federal District, Brazil (in Portuguese).
Mazzilli, B., Palmiro, V., Saueia, C., and Nisti, M. B. (2000). “Radiochemical characterization of Brazilian phosphogypsum.” J. Environ. Radioact., 49(1), 113–122.
Mesquita, G. M. (2007). “Aplicação de misturas de fosfogesso e solos tropicais finos na pavimentação.” Master’s degree dissertation, Univ. Federal de Goias, Goiania, Brazil (in Portuguese).
Metogo, D. A. N. (2011). “Construção e avaliação inicial de um trecho de pavimento asfáltico executado com misturas de solo tropical, fosfogesso e cal.” Master’s degree dissertation, Univ. Federal de Goias, Goiania, Brazil (in Portuguese).
Oliveira, S. M. F. (2005). “Estudo do comportamento mecânico de misturas de fosfogesso e cal para utilização na construção rodoviária.” Master’s degree dissertation, Univ. de Sao Paulo, Sao Paulo, Brazil (in Portuguese).
Ortiz Oliva, J. A. (1997). “Estudo de misturas de solo e fosfogesso com vistas a sua utilização em Rodovias.” Master’s degree dissertation, Univ. Sao Paulo, Sao Paulo, Brazil (in Portuguese).
Parreira, A. B., Kobayashi, A. R. K., and Silvestre, O. B., Jr. (2003). “Influence of portland cement type on unconfined compressive strength and linear expansion of cement-stabilized phosphogypsum.” J. Environ. Eng., 956–960.
Pavanin, L. A., Parra, K. N., and Silva, L. O. (2007). “Resíduos industriais: Caracterização e estudos do fosfogesso.” 47th Congresso Brasileiro de Química, Associação Brasileira de Química, Natal, Rio Grande do Norte, Brazil (in Portuguese).
Pericleos, M. I., and Metcalf, J. B. (1996). “Resilient modulus of cement-stabilized phosphogypsum.” J. Mater. Civ. Eng., 7–10.
Rentería-Villalobos, M., Vioque, I., Mantero, J., and Manjón, G. (2010). “Radiological chemical and morphological characterizations of phosphate rock and phosphogypsum from phosphoric acid factories in SW Spain.” J. Hazard. Mater., 181(1–3), 193–203.
Rezende, L. R. (2003). “Estudo de comportamento de materiais alternativos utilizados em estruturas de pavimentos flexíveis.” Ph.D. thesis, Univ. de Brasília, Brasilia, Federal District, Brazil (in Portuguese).
Roy, A., Kalvakaalava, R., and Seals, R. K. (1996). “Microstructural and phase characteristics of phosphogypsum-cement mixtures.” J. Mater. Civ. Eng., 11–18.
Rufo, R. C. (2009). “Estudos laboratoriais de misturas de fosfogesso, solo tropical e cal para fins de pavimentação.” Master degree dissertation, Univ. Federal de Goias, Goiania, Brazil (in Portuguese).
Rutherford, P. M., Dudas, M. J., and Samek, R. A. (1994). “Environmental impacts of phosphogypsum.” Sci. Total Environ., 149(1–2), 1–38.
Saueia, C. H. R., Mazzilli, B. P., Le Bourlegat, F. M., and Costa, G. J. L. (2013). “Distribution of potentially toxic elements in the Brazilian phosphogypsum and phosphate fertilizers.” E3S Web of Conferences 1, EDP Sciences, Boulder, CO, 1–4.
Shen, W., Gan, G., Dong, R., Chen, H., Tan, Y., and Zhou, M. (2012). “Utilization of solidified phosphogypsum as portland cement retarder.” J. Mater. Cycles Waste Manage., 14(3), 228–233.
Smadi, M. M., Haddad, R. H., Akour, A. M. (1999). “Potential use of phosphogypsum in concrete.” Cem. Concr. Res., 29(9), 1419–1425.
Yang, J., Liu, W., Zhang, L., and Xiao, B. (2009). “Preparation of load-bearing building materials from autoclaved phosphogypsum.” Constr. Build. Mater., 23(2), 687–693.
Yu, Q. L., and Brouwers, H. J. H. (2011). “Microstructure and mechanical properties of b-hemihydrate produced gypsum: An insight from its hydration process.” Constr. Build. Mater., 25(7), 3149–3157.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 29Issue 1January 2017

History

Received: Oct 30, 2015
Accepted: Jun 9, 2016
Published online: Aug 10, 2016
Published in print: Jan 1, 2017
Discussion open until: Jan 10, 2017

Authors

Affiliations

Lilian Ribeiro de Rezende [email protected]
Associate Professor, School of Civil and Environmental Engineering, Federal Univ. of Goias, Av. Universitaria, No. 1488, Setor Leste Universitario, Goiania, 74605-220 Goias, Brazil (corresponding author). E-mail: [email protected]
Tallyta da Silva Curado [email protected]
Professor, Dept. of Civil Engineering, Federal Institute of Goias, Rua Maria Vieira Cunha, No. 775, Residencial Flamboyant, Jatai, 75804-714 Goias, Brazil. E-mail: [email protected]
Millena Vasconcelos Silva [email protected]
School of Civil and Environmental Engineering, Federal Univ. of Goias, Av. Universitaria, No. 1488, Setor Leste Universitario, Goiania, 74605-220 Goias, Brazil. E-mail: [email protected]
Márcia Maria dos Anjos Mascarenha [email protected]
Assistant Professor, School of Civil and Environmental Engineering, Federal Univ. of Goias, Av. Universitaria, No. 1488, Setor Leste Universitario, Goiania, 74605-220 Goias, Brazil. E-mail: [email protected]
Daniel Arthur Nnang Metogo [email protected]
Civil Engineer, National Dept. of Transport Infrastructure, SAN Q. 03 BL. A, Asa Norte, 70040-902 Federal District, Brazil. E-mail: [email protected]
Manoel Porfirio Cordão Neto [email protected]
Associate Professor, Dept. of Civil and Environmental Engineering, Brasilia Univ., SG-12, Brasilia, 70910-900 Federal District, Brazil. E-mail: [email protected]
Liedi Legi Bariani Bernucci [email protected]
Full Professor, Dept. of Transport Engineering, Sao Paulo Univ., Av. Prof. Almeida Prado, Travessa 2, No. 83, Cidade Universitária, Sao Paulo, 05508-900 São Paulo, Brazil. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share