Abstract

In this study, the ecotoxicological effects posed by bulk of the material obtained from landfill mining, that is, fine fraction (<10 mm), were assessed by performing bioassays tests with the aim of using the data in geoenvironmental applications, such as landfill biocover to control residual methane emissions from old landfills. Attention is mainly focused on the possible interaction of fine fractions with the test organism. The tested eluates of fine fraction exhibited low acute toxicity toward the bacteria Allivibrio fischeri and Escherichia coli, the marine rotifer Brachionus plicatilis, and brine shrimp Artemia salina. The eluates showed slight inhibitory effects on the germination of seeds of lettuce Lactuca sativa L. and timothy Phleum pratense L., and no inhibitory effects on germination of seeds of perennial ryegrass Lolium perenne L. The fine fraction studied in the present study can be characterized as acutely nontoxic or slightly acutely toxic. Correlation analysis revealed moderate positive correlation between lethality of rotifers and soluble content of organic compounds in the fine fraction eluates. In conclusion, the conducted experiments demonstrated that the usage of fine fraction for onsite applications such as landfill biocover may pose minimal environmental consequences, based on the ecotoxicity assessment.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work was supported by Estonian research council under projects MOBJD1075 and P200198MIMV. MOÜ Saaremaa Landfill Ltd for the innovative thinking and support as well as Swedish Institute project “Closing the Life Cycle of Landfills—Landfill Mining in the Baltic Sea Region for future” for financial support are deeply acknowledged. Allar Lääne from the Estonian University of Life Sciences is greatly acknowledged for laboratory assistance.

References

Banks, M. K., and K. E. Schultz. 2005. “Comparison of plants for germination toxicity tests in petroleum-contaminated soils.” Water Air Soil Pollut. 167 (1–4): 211–219. https://doi.org/10.1007/s11270-005-8553-4.
Bernai, M. P., C. Paredes, M. A. Sánchez-Monedero, and J. Cegarra. 1998. “Maturity and stability parameters of composts prepared with a wide range of organic wastes.” Bioresour. Technol. 63 (1): 91–99. https://doi.org/10.1016/S0960-8524(97)00084-9.
Bernard, C., J. R. Colin, and L. D.-D. Anne. 1997. “Estimation of the hazard of landfills through toxicity testing of leachates: 2. Comparison of physico-chemical characteristics of landfill leachates with their toxicity determined with a battery of tests.” Chemosphere 35 (11): 2783–2796. https://doi.org/10.1016/S0045-6535(97)00332-9.
Bitton, G., and B. Koopman. 1992. “Bacterial and enzymatic bioassays for toxicity testing in the environment.” Rev. Environ. Contam. Toxicol. 125: 1–22.
Boluda, R., L. Roca-Pérez, and L. Marimón. 2011. “Soil plate bioassay: An effective method to determine ecotoxicological risks.” Chemosphere 84 (1): 1–8. https://doi.org/10.1016/j.chemosphere.2011.02.013.
Bortolotto, T., J. B. Bertoldo, F. Z. da Silveira, T. M. Defaveri, J. Silvano, and C. T. Pich. 2009. “Evaluation of the toxic and genotoxic potential of landfill leachates using bioassays.” Environ. Toxicol. Pharmacol. 28 (2): 288–293. https://doi.org/10.1016/j.etap.2009.05.007.
Burlakovs, J., Z. Vincevica-Gaile, K. M. Pehme, T. Tamm, and M. Kriipsalu. 2021. “Methane degradation potential by recycled fine fraction waste biocover.” In Proc., 2nd Geoscience & Engineering in Energy Transition Conf., 1–4. Utrecht, Netherlands: European Association of Geoscientists & Engineers.
Castaldi, P., G. Garau, and P. Melis. 2008. “Maturity assessment of compost from municipal solid waste through the study of enzyme activities and water-soluble fractions.” Waste Manage. 28 (3): 534–540. https://doi.org/10.1016/j.wasman.2007.02.002.
CEC (Council of the European Communities). 2003. Establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC. Council Decision 2003/33/EC of 19 December 2002. Official Journal of the European Communities, L11/27-49. Brussels, Belgium: CEC.
CEN (European Committee for Standardization). 2002. Characterisation of waste- Leaching-Compliance test for leaching of granular waste materials and sludges - Part 4: One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 10 mm (without or with size reduction). EVS-EN 12457-4:2002. Estonian Standard. Brussels, Belgium: CEN.
Chandana, N., V. S. N. S. Goli, A. Mohammad, and D. N. Singh. 2021. “Characterization and utilization of landfill-mined-soil-like-fractions (LFMSF) for sustainable development: A critical appraisal.” Waste Biomass Valorization 12 (2): 641–662. https://doi.org/10.1007/s12649-020-01052-y.
Datta, M., M. Somani, G. V. Ramana, and T. R. Sreekrishnan. 2021. “Feasibility of re-using soil-like material obtained from mining of old MSW dumps as an earth-fill and as compost.” Process Saf. Environ. Prot. 147: 477–487. https://doi.org/10.1016/j.psep.2020.09.051.
Devare, M., and M. Bahadir. 1994. “Biological monitoring of landfill leachate using plants and luminescent bacteria.” Chemosphere 28 (2): 261–271. https://doi.org/10.1016/0045-6535(94)90123-6.
Di Salvatore, M., A. M. Carafa, and G. Carratù. 2008. “Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: A comparison of two growth substrates.” Chemosphere 73 (9): 1461–1464. https://doi.org/10.1016/j.chemosphere.2008.07.061.
Dubey, A., M. Chakrabarti, and D. Pandit. 2016. “Landfill mining as a remediation technique for open dumpsites in India.” Procedia Environ. Sci. 35: 319–327. https://doi.org/10.1016/j.proenv.2016.07.012.
Greenberg, A. E., L. S. Clesceri, A. D. Eaton, M. A. H. Franson, and American Public Health Association. 2012. Standard methods for the examination of water and wastewater. Washington, DC: APHA.
Hölzle, I. 2019. “Contaminant patterns in soils from landfill mining.” Waste Manage. 83: 151–160. https://doi.org/10.1016/j.wasman.2018.11.013.
Huber-Humer, M., S. Röder, and P. Lechner. 2009. “Approaches to assess biocover performance on landfills.” Waste Manage. 29 (7): 2092–2104. https://doi.org/10.1016/j.wasman.2009.02.001.
Hull, R. M., U. Krogmann, and P. F. Strom. 2005. “Composition and characteristics of excavated materials from a New Jersey landfill.” J. Environ. Eng. 131 (3): 478–490. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:3(478).
Isidori, M., M. Lavorgna, A. Nardelli, and A. Parrella. 2003. “Toxicity identification evaluation of leachates from municipal solid waste landfills: A multispecies approach.” Chemosphere 52 (1): 85–94. https://doi.org/10.1016/S0045-6535(03)00298-4.
Jain, P., H. Kim, and G. Townsend. 2005. “Heavy metal content in soil reclaimed from a municipal solid waste landfill.” Waste Manage. 25 (1): 25–35. https://doi.org/10.1016/j.wasman.2004.08.009.
Jemec, A., T. Tišler, and A. Žgajnar-Gotvajn. 2012. “Assessment of landfill leachate toxicity reduction after biological treatment.” Arch. Environ. Contam. Toxicol. 62 (2): 210–221. https://doi.org/10.1007/s00244-011-9703-x.
Jones, P. T., D. Geysen, Y. Tielemans, S. Van Passel, Y. Pontikes, B. Blanpain, M. Quaghebeur, and N. Hoekstra. 2013. “Enhanced landfill mining in view of multiple resource recovery: A critical review.” J. Cleaner Prod. 55: 45–55. https://doi.org/10.1016/j.jclepro.2012.05.021.
Kaartinen, T., K. Sormunen, and J. Rintala. 2013. “Case study on sampling, processing and characterization of landfilled municipal solid waste in the view of landfill mining.” J. Cleaner Prod. 55: 56–66. https://doi.org/10.1016/j.jclepro.2013.02.036.
Kaczala, F., M. H. Mehdinejad, A. Lääne, K. Orupõld, A. Bhatnagar, M. Kriipsalu, and W. Hogland. 2017. “Leaching characteristics of the fine fraction from an excavated landfill: Physico-chemical characterization.” J. Mater. Cycles Waste Manag. 19 (1): 294–304. https://doi.org/10.1007/s10163-015-0418-3.
Kaiser, K. 1998. “Correlations of Vibrio fischeri bacteria test data with bioassay data for other organisms.” Environ. Health Perspect. 106: 583–591.
Kalčiková, G., M. Vávrová, J. Zagorc-Končan, and A. Žgajnar Gotvajn. 2011. “Evaluation of the hazardous impact of landfill leachates by toxicity and biodegradability tests.” Environ. Technol. 32 (12): 1345–1353. https://doi.org/10.1080/09593330.2010.536785.
Klauck, C. R., M. A. S. Rodrigues, and L. B. Silva. 2015. “Evaluation of phytotoxicity of municipal landfill leachate before and after biological treatment.” Braz. J. Biol. 75 (2): S57–S62. https://doi.org/10.1590/1519-6984.1813.
Li, X. F., P. F. Wang, C. L. Feng, D. Q. Liu, J. K. Chen, and F. C. Wu. 2019. “Acute toxicity and hazardous concentrations of zinc to native freshwater organisms under different pH values in China.” Bull. Environ. Contam. Toxicol. 103 (1): 120–126. https://doi.org/10.1007/s00128-018-2441-2.
Masi, S., D. Caniani, E. Grieco, D. S. Lioi, and I. M. Mancini. 2014. “Assessment of the possible reuse of MSW coming from landfill mining of old open dumpsites.” Waste Manage. 34 (3): 702–710. https://doi.org/10.1016/j.wasman.2013.12.013.
Matejczyk, M., G. A. Płaza, G. Nałęcz-Jawecki, K. Ulfig, and A. Markowska-Szczupak. 2011. “Estimation of the environmental risk posed by landfills using chemical, microbiological and ecotoxicological testing of leachates.” Chemosphere 82 (7): 1017–1023. https://doi.org/10.1016/j.chemosphere.2010.10.066.
Melnyk, A., K. Kuklińska, L. Wolska, and J. Namieśnik. 2014. “Chemical pollution and toxicity of water samples from stream receiving leachate from controlled municipal solid waste (MSW) landfill.” Environ. Res. 135: 253–261. https://doi.org/10.1016/j.envres.2014.09.010.
MicroBioTests. 2007. “RotoxKit M™ rotifer toxicity screening test for estuarine and marine waters.” Standard operational procedure. Accessed June 27, 2016. http://www.microbiotests.be/index.php?option=com_content&view=article&id=77:standardopetrationalprocedures&catid=53:technicalinfo&Itemid=95.
Mönkäre, T. J., M. R. T. Palmroth, and J. A. Rintala. 2016. “Characterization of fine fraction mined from two Finnish landfills.” Waste Manage. 47: 34–39. https://doi.org/10.1016/j.wasman.2015.02.034.
Nunes, B. S., F. D. Carvalho, L. M. Guilhermino, and G. Van Stappen. 2006. “Use of the genus Artemia in ecotoxicity testing.” Environ. Pollut. 144 (2): 453–462. https://doi.org/10.1016/j.envpol.2005.12.037.
OECD (Organisation for Economic Co-operation and Development). 2006. “OECD guidelines for the testing of chemicals. Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test.” Accessed June 27, 2016. http://www.oecd-ilibrary.org/environment/test-no-208-terrestrial-plant-test-seedling-emergence-and-seedling-growth-test_9789264070066-en.
Pablos, M. V., et al. 2011. “Correlation between physicochemical and ecotoxicological approaches to estimate landfill leachates toxicity.” Waste Manage. 31 (8): 1841–1847. https://doi.org/10.1016/j.wasman.2011.03.022.
Parrodi, J. C. H., D. Höllen, and R. Pomberger. 2018. “Characterization of fine fractions from landfill mining: A review of previous investigations.” Detritus 2 (1): 46–72. https://doi.org/10.31025/2611-4135/2018.13663.
Pehme, K.-M., K. Orupõld, V. Kuusemets, O. Tamm, Y. Jani, T. Tamm, and M. Kriipsalu. 2020. “Field study on the efficiency of a methane degradation layer composed of fine fraction soil from landfill mining.” Sustainability 12 (15): 1–16.
Persoone, G., et al. 2003. “A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters.” Environ. Toxicol. 18 (6): 395–402. https://doi.org/10.1002/tox.10141.
Pivato, A., and L. Gaspari. 2006. “Acute toxicity test of leachates from traditional and sustainable landfills using luminescent bacteria.” Waste Manage. 26 (10): 1148–1155. https://doi.org/10.1016/j.wasman.2005.10.008.
Prechthai, T., M. Padmasri, and C. Visvanathan. 2008. “Quality assessment of mined MSW from an open dumpsite for recycling potential.” Resour. Conserv. Recycl. 53 (1–2): 70–78. https://doi.org/10.1016/j.resconrec.2008.09.002.
Quaghebeur, M., B. Laenen, D. Geysen, P. Nielsen, Y. Pontikes, T. V. Gerven, and J. Spooren. 2013. “Characterization of landfilled materials: Screening of the enhanced landfill mining potential.” J. Cleaner Prod. 55: 72–83. https://doi.org/10.1016/j.jclepro.2012.06.012.
Raave, H., S. Kapak, and K. Orupõld. 2007. “Phytotoxicity of oil shale semi-coke and its aqueous extracts: A study by seed germination bioassay.” Oil Shale 24 (1): 59–71. https://doi.org/10.3176/oil.2007.1.07.
Särkkä, H., et al. 2018. “Investigation of municipal solid waste (MSW) and industrial landfills as a potential source of secondary raw materials.” Detritus 1: 83–90.
Schultz, E., K. Vaajasaari, A. Joutti, and J. Ahtiainen. 2002. “Toxicity of industrial wastes and waste leaching test eluates containing organic compounds.” Ecotoxicol. Environ. Saf. 52 (3): 248–255. https://doi.org/10.1006/eesa.2002.2183.
Silva, A. C., M. Dezotti, and G. L. Sant’Anna Jr. 2004. “Treatment and detoxification of a sanitary landfill leachate.” Chemosphere 55 (2): 207–214. https://doi.org/10.1016/j.chemosphere.2003.10.013.
Singh, A., and M. K. Chandel. 2021. “Physicochemical and FTIR spectroscopic analysis of fine fraction from a municipal solid waste dumpsite for potential reclamation of materials.” Waste Manage. Res. 39 (2): 374–385. https://doi.org/10.1177/0734242X20962844.
Somani, M., M. Datta, G. V. Ramana, and T. R. Sreekrishnan. 2018. “Investigations on fine fraction of aged municipal solid waste recovered through landfill mining: Case study of three dumpsites from India.” Waste Manage. Res. 36 (8): 744–755. https://doi.org/10.1177/0734242X18782393.
Somani, M., M. Datta, G. V. Ramana, and T. R. Sreekrishnan. 2019b. “Leachate characteristics of aged soil-like material from MSW dumps: Sustainability of landfill mining.” J. Hazard. Toxic Radioact. Waste 23 (4): 04019014. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000452.
Somani, M., M. Datta, G. V. Ramana, and T. R. Sreekrishnan. 2020. “Contaminants in soil-like material recovered by landfill mining from five old dumps in India.” Process Saf. Environ. Prot. 137: 82–92. https://doi.org/10.1016/j.psep.2020.02.010.
Somani, M., M. Datta, S. K. Gupta, T. R. Sreekrishnan, and G. V. Ramana. 2019a. “Comprehensive assessment of the leachate quality and its pollution potential from six municipal waste dumpsites of India.” Bioresour. Technol. Rep. 6: 198–206. https://doi.org/10.1016/j.biteb.2019.03.003.
Somani, M., M. Datta, G. V. Ramana, T. R. Sreekrishnan, and I. Hölzle. 2022. “Factors affecting the intensity of color released in water extract by soil-like material obtained from mining of old MSW dumps.” J. Solid Waste Technol. Manag. 48 (1): 13–25. https://doi.org/10.5276/JSWTM/2022.13.
Svensson, B. M., L. Mathiasson, L. Mårtensson, and S. Bergström. 2005. “Artemia salina as test organism for assessment of acute toxicity of leachate water from landfills.” Environ. Monit. Assess. 102 (1–3): 309–321. https://doi.org/10.1007/s10661-005-6029-z.
Tam, N. F. Y., and S. Tiquia. 1994. “Assessing toxicity of spent pig litter using a seed germination technique.” Resour. Conserv. Recycl. 11 (1–4): 261–274. https://doi.org/10.1016/0921-3449(94)90094-9.
Tsarpali, V., M. Kamilari, and S. Dailianis. 2012. “Seasonal alterations of landfill leachate composition and toxic potency in semi-arid regions.” J. Hazard. Mater. 233–234: 163–171. https://doi.org/10.1016/j.jhazmat.2012.07.007.
Ward, M. L., G. Bitton, T. Townsend, and M. Booth. 2002. “Determining toxicity of leachates from Florida municipal solid waste landfills using a battery-of-tests approach.” Environ. Toxicol. 17 (3): 258–266. https://doi.org/10.1002/tox.10053.
Žaltauskaitė, J., and A. Čypaitė. 2008. “Assessment of landfill leachate toxicity using higher plants.” Environ. Res. Eng. Manag. 46: 42–46.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 26Issue 4October 2022

History

Received: Feb 28, 2022
Accepted: May 13, 2022
Published online: Jul 27, 2022
Published in print: Oct 1, 2022
Discussion open until: Dec 27, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Kaja Orupõld [email protected]
Institute of Agricultural and Environmental Sciences, Estonian Univ. of Life Sciences, Tartu 51006, Estonia. Email: [email protected]
Mohit Somani [email protected]
Institute of Forestry and Rural Engineering, Estonian Univ. of Life Sciences, Tartu 51006, Estonia (corresponding author). Email: [email protected]
Fabio Kaczala [email protected]
Water Engineer, Sweco, Kalmar 39235, Sweden. Email: [email protected]
Marika Hogland [email protected]
Dept. of Biology and Environmental Sciences, Faculty of Health and Life Sciences, Linnaeus Univ., Kalmar 35195, Sweden. Email: [email protected]
Amit Bhatnagar [email protected]
Dept. of Separation Science, LUT School of Engineering Science, LUT Univ., Sammonkatu 12, FI-50130 Mikkeli 53850, Finland. Email: [email protected]
William Hogland [email protected]
Dept. of Biology and Environmental Sciences, Faculty of Health and Life Sciences, Linnaeus Univ., Kalmar 35195, Sweden. Email: [email protected]
Egle Saaremäe [email protected]
Institute of Forestry and Rural Engineering, Estonian Univ. of Life Sciences, Tartu 51006, Estonia. Email: [email protected]
Mait Kriipsalu [email protected]
Institute of Forestry and Rural Engineering, Estonian Univ. of Life Sciences, Tartu 51006, Estonia. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share