Technical Papers
Nov 1, 2021

Influence of Synthesis and Functionalization Procedures of Fe3O4 NPs by Mono- and Diamino Silane Coupling Agents on the Adsorption Efficiency of Anionic Dyes

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 26, Issue 1

Abstract

Magnetite (Fe3O4) is the most important iron oxide species that has received considerable attention by many researchers because of its strong magnetic susceptibility, lack of a remanent field, coercivity, and absence of a hysteresis loop. In this study, Fe3O4 was prepared by three different techniques: coprecipitation, hydrothermal, and sonochemical. The samples prepared by coprecipitation, sonochemical, and hydrothermal methods possessed magnetic saturation values of 60, 52, and 27 emu/g (A·m2/kg), respectively. Therefore, the coprecipitated sample was functionalized by mono- and diamino silane coupling agents (ASCs). The loading of ASCs onto the Fe3O4 surface was carried out in different solvents, such as toluene, ethanol, and water. The functionalized surfaces were characterized by using different techniques, namely, X-ray powder diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, vibrating-sample magnetometry, thermogravimetric analysis, scanning electron microscopy, energy-dispersive X-ray analysis, transmission electron microscopy, and Brunauer–Emmett–Teller analysis. The adsorption of eosin-Y (EY) dye onto the Fe3O4-APTS surface was affirmed by fitting in the Langmuir isotherm model. Besides, the qmax value (38.32 mg/g) obtained from the Langmuir isotherm model was matched with the theoretical qecal value calculated from the pseudosecond-order (PSO) model. Furthermore, the adsorption mechanism of EY onto the functionalized Fe3O4 surface was by physisorption, according to the lower free energy values (ΔG°) obtained. In addition, the adsorption process is endothermic in nature. However, adsorption kinetics was best described by the PSO model.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors are grateful to Tanta University for financial support of this study under Project code (TU-03-16). The authors wish to express their gratefulness to Professor Matsuda and his entire Lab’s member especially Professor Kawamura and Dr. Rajesh Kumar at Toyohashi University of Technology, Japan, for allowing and helping Dr. M. Abdel-Galeil to make some of the characterization of the adsorbents using different instruments.

References

Abdel-Shafy, H., and R. Aly. 2002. “Water issue in Egypt: Resources, pollution and protection endeavors.” Central Eur. J. Occup. Environ. Med. 8 (1): 3–21.
Aguado, J., J. M. Arsuaga, A. Arencibia, M. Lindo, and V. Gascón. 2009. “Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica.” J. Hazard. Mater. 163 (1): 213–221. https://doi.org/10.1016/j.jhazmat.2008.06.080.
Ahmad, A., S. H. Mohd-Setapar, C. S. Chuong, A. Khatoon, W. A. Wani, R. Kumar, and M. Rafatullah. 2015. “Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater.” RSC Adv. 5 (39): 30801–30818. https://doi.org/10.1039/C4RA16959J.
Ali, I., M. Asim, and T. A. Khan. 2012. “Low cost adsorbents for the removal of organic pollutants from wastewater.” J. Environ. Manage. 113: 170–183.
Ansari, R., and Z. Mosayebzadeh. 2010. “Removal of eosin Y, an anionic dye, from aqueous solutions using conducting electroactive polymers.” Iran. Polym. J. 19 (7): 541–551.
Bayramoglu, G., N. Adiguzel, G. Ersoy, M. Yilmaz, and M. Y. Arica. 2013. “Removal of textile dyes from aqueous solution using amine-modified plant biomass of A. caricum: Equilibrium and kinetic studies.” Water Air Soil Pollut. 224 (8): 1–16. https://doi.org/10.1007/s11270-013-1640-z.
Bayramoglu, G., A. Akbulut, G. Liman, and M. Y. Arica. 2017. “Removal of metal complexed azo dyes from aqueous solution using tris(2-aminoethyl)amine ligand modified magnetic p(GMA-EGDMA) cationic resin: Adsorption, isotherm and kinetic studies.” Chem. Eng. Res. Des. 124: 85–97. https://doi.org/10.1016/j.cherd.2017.06.005.
Bergmann, C. P., and P. C. Panta. 2015. “Raman spectroscopy of iron oxide of nanoparticles (Fe3O4).” J. Mater. Sci. Eng. 5 (1): 4–6. https://doi.org/10.4172/2169-0022.1000217.
Bittner, F., T. Oekermann, and M. Wark. 2018. “Scale-up of the electrodeposition of ZnO/eosin Y hybrid thin films for the fabrication of flexible dye-sensitized solar cell modules.” Materials 11 (2): 1–19.
Chatterjee, S., S. Chatterjee, B. P. Chatterjee, A. R. Das, and A. K. Guha. 2005. “Adsorption of a model anionic dye, eosin Y, from aqueous solution by chitosan hydrobeads.” J. Colloid Interface Sci. 288 (1): 30–35. https://doi.org/10.1016/j.jcis.2005.02.055.
Dalvand, A., R. Nabizadeh, M. Reza Ganjali, M. Khoobi, S. Nazmara, and A. Hossein Mahvi. 2016. “Modeling of reactive blue 19 azo dye removal from colored textile wastewater using L-arginine-functionalized Fe3O4 nanoparticles: Optimization, reusability, kinetic and equilibrium studies.” J. Magn. Magn. Mater. 404: 179–189. https://doi.org/10.1016/j.jmmm.2015.12.040.
Du, W. L., Z. R. Xu, X. Y. Han, Y. L. Xu, and Z. G. Miao. 2008. “Preparation, characterization and adsorption properties of chitosan nanoparticles for eosin Y as a model anionic dye,” J. Hazard. Mater. 153: 152–156.
Egerton, R. F. 2005. Physical principles of electron microscopy. Basel, Switzerland: Springer.
El-Alaily, T. M., M. K. El-Nimr, S. A. Saafan, M. M. Kamel, T. M. Meaz, and S. T. Assar. 2015. “Construction and calibration of a low cost and fully automated vibrating sample magnetometer.” J. Magn. Magn. Mater. 386: 25–30. https://doi.org/10.1016/j.jmmm.2015.03.051.
Elhami, S., M. Abrishamkar, and L. Esmaeilzadeh. 2013. “Preparation and Characterization of Diethylentriamine-montmorillonite and its application for the removal of Eosin Y dye: Optimization, Kinetic and Isotherm studies,” J. Sci. Ind. Res., 72: 461–466.
Freundlich, H. M. F. 1906. “Over the adsorption in solution.” J. Phys. Chem. 57: 385–471, 1100–1107.
Gemeay, A. H., B. E. Keshta, R. G. El-Sharkawy, and A. B. Zaki. 2020. “Chemical insight into the adsorption of reactive wool dyes onto amine-functionalized magnetite/silica core–shell from industrial wastewaters.” Environ. Sci. Pollut. Res. 27: 32341–32358.
Ghoochian, M., H. A. Panahi, S. Sobhanardakani, L. Taghavi, and A. H. Hassani. 2019. “Synthesis and application of Fe3O4/SiO2/thermosensitive/PAMAM-CS nanoparticles as a novel adsorbent for removal of tamoxifen from water samples.” Microchem. J. 145: 1231–1240. https://doi.org/10.1016/j.microc.2018.12.004.
Ghorbani, F., H. Younesi, Z. Mehraban, M. S. Celik, A. Ghoreyshi, and M. Anbia. 2013. “Aqueous cadmium ions removal by adsorption on APTMS grafted mesoporous silica MCM-41 in batch and fixed bed column processes.” Int. J. Eng. 26 (5): 473–488.
Hariani, P. L., M. Faizal, R. Ridwan, M. Marsi, and D. Setiabudidaya. 2013. “Synthesis and properties of Fe3O4 nanoparticles by coprecipitation method to removal procion dye.” Int. J. Environ. Sci. Dev. 4 (3): 336–340. https://doi.org/10.7763/IJESD.2013.V4.366.
Herrera, A. P., C. Barrera, and C. Rinaldi. 2008. “Synthesis and functionalization of magnetite nanoparticles with aminopropylsilane and carboxymethyldextran.” J. Mater. Chem. 18 (31): 3650–3654. https://doi.org/10.1039/b805256e.
Hozhabr Araghi, S., and M. H. Entezari. 2015. “Amino-functionalized silica magnetite nanoparticles for the simultaneous removal of pollutants from aqueous solution.” Appl. Surf. Sci. 333: 68–77. https://doi.org/10.1016/j.apsusc.2015.01.211.
Huo, Y., H. Wu, Z. Wang, F. Wang, Y. Liu, Y. Feng, and Y. Zhao. 2018. “Preparation of core/shell nanocomposite adsorbents based on amine polymer-modified magnetic materials for the efficient adsorption of anionic dyes.” Colloids Surf., A 549: 174–183. https://doi.org/10.1016/j.colsurfa.2018.04.021.
Issa, A. A., M. El-Azazy, and A. S. Luyt. 2019. “Kinetics of alkoxysilanes hydrolysis: An empirical approach.” Sci. Rep. 9 (1): 1–15.
Issa, A. A., and A. S. Luyt. 2019. “Kinetics of alkoxysilanes and organoalkoxysilanes polymerization: A review.” Polymers 11: 3.
Jubb, A. M., and H. C. Allen. 2010. “Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition.” ACS Appl. Mater. Interfaces 2 (10): 2804–2812. https://doi.org/10.1021/am1004943.
Kahani, S. A., and Z. Yagini. 2014. “A comparison between chemical synthesis magnetite nanoparticles and biosynthesis magnetite.” Bioinorg. Chem. Appl. 2014 384984. https://doi.org/10.1155/2014/384984.
Kefeni, K. K., T. A. M. Msagati, and B. B. Mamba. 2017. “Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device.” Mater. Sci. Eng. B 215: 37–55. https://doi.org/10.1016/j.mseb.2016.11.002.
Kharisov, B. I., H. V. R. Dias, O. V. Kharissova, A. Vázquez, Y. Peña, and I. Gómez. 2014. “Solubilization, dispersion and stabilization of magnetic nanoparticles in water and non-aqueous solvents: Recent trends.” RSC Adv. 4 (85): 45354–45381. https://doi.org/10.1039/C4RA06902A.
Kim, E. H., H. S. Lee, B. K. Kwak, and B.-K. K. Kim. 2005. “Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent.” J. Magn. Magn. Mater. 289: 328–330. https://doi.org/10.1016/j.jmmm.2004.11.093.
Kumar, J., S. Kumar, M. Mishra, and H. Sahoo. 2019. “Amine functionalized magnetic iron oxide nanoparticles: Synthesis, antibacterial activity and rapid removal of Congo red dye.” J. Mol. Liq. 282: 428–440. https://doi.org/10.1016/j.molliq.2019.03.033.
Li, X., Y. Fan, S. Zhang, and S. Qi. 2017. “Enhanced adsorption removal of anionic dyes via a facile preparation of amino-functionalized magnetic silica.” Water Sci. Technol. 75 (6): 1399–1409.
Liu, S., C. Ma, M.-G. Ma, and F. Xu. 2019. Magnetic nanocomposite adsorbents. Composite nanoadsorbents. Amsterdam, Netherlands: Elsevier.
Ma, M., Y. Zhang, W. Yu, H. Y. Shen, H. Q. Zhang, and N. Gu. 2003. “Preparation and characterization of magnetite nanoparticles coated by amino silane.” Colloids Surf., A 212 (2–3): 219–226. https://doi.org/10.1016/S0927-7757(02)00305-9.
Ma, Z., Y. Guan, and H. Liu. 2005. “Synthesis and characterization of micron-sized monodisperse superparamagnetic polymer particles with amino groups.” J. Polym. Sci. A: Polym. Chem. 43 (15): 3433–3439. https://doi.org/10.1002/pola.20803.
Mahdavi, M., M. B. Ahmad, M. J. Haron, F. Namvar, B. Nadi, M. Z. Ab Rahman, and J. Amin. 2013. “Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications.” Molecules 18 (7): 7533–7548. https://doi.org/10.3390/molecules18077533.
Mahmoodi, N. M. 2014. “Synthesis of core–shell magnetic adsorbent nanoparticle and selectivity analysis for binary system dye removal.” J. Ind. Eng. Chem. 20 (4): 2050–2058.
Mehta, D., S. Mazumdar, and S. K. Singh. 2015. “Magnetic adsorbents for the treatment of water/wastewater—A review.” J. Water Process Eng. 7: 244–265. https://doi.org/10.1016/j.jwpe.2015.07.001.
Meroufel, B., O. Benali, M. Benyahia, Y. Benmoussa, and M. A. Zenasni. 2015. “Adsorptive removal of anionic dye from aqueous solutions by mixture of Kaolin and Bentonite clay: Characteristics, isotherm, kinetic and thermodynamic studies.” Iran. J. Energy Environ. 6 (2): 482–491.
Nageeb, M. 2013. “Adsorption technique for the removal of organic pollutants from water and wastewater.” In Organic pollutants—Monitoring, risk and treatment, edited by M. N. Rashed. London: IntechOpen.
Pacakova, B., S. Kubickova, A. Reznickova, D. Niznansky, and J. Vejpravova. 2017. Spinel ferrite nanoparticles: Correlation of structure and magnetism. London: IntechOpen.
Pasternack, R. M., S. R. Amy, and Y. J. Chabal. 2008. “Attachment of 3-(aminopropyl)triethoxysilane on silicon oxide surfaces: Dependence on solution temperature.” Langmuir 24 (22): 12963–12971. https://doi.org/10.1021/la8024827.
Pavan, F. A., S. L. P. Dias, E. C. Lima, and E. V. Benvenutti. 2008. “Removal of Congo red from aqueous solution by anilinepropylsilica xerogel.” Dyes Pigm. 76 (1): 64–69. https://doi.org/10.1016/j.dyepig.2006.08.027.
Phan, N. T. S., and C. W. Jones. 2006. “Highly accessible catalytic sites on recyclable organosilane-functionalized magnetic nanoparticles: An alternative to functionalized porous silica catalysts.” J. Mol. Catal. A: Chem. 253 (1–2): 123–131. https://doi.org/10.1016/j.molcata.2006.03.019.
Pirillo, S., V. Pedroni, E. Rueda, and M. Luján Ferreira. 2009. “Elimination of dyes from aqueous solutions using iron oxides and chitosan artigo.” Química Nova 32 (5): 1239–1244. https://doi.org/10.1590/S0100-40422009000500030.
Pradeep, A., and G. Chandrasekaran. 2006. “FTIR study of Ni, Cu and Zn substituted nano-particles of MgFe2O4.” Mater. Lett. 60 (3): 371–374. https://doi.org/10.1016/j.matlet.2005.08.053.
Rafiee, E., and S. Eavani. 2013. “Controlled immobilization of Keggin-type heteropoly acids on the surface of silica encapsulated γ-Fe2O3 nanoparticles and investigation of catalytic activity in the oxidative esterification of arylaldehydes with methanol.” J. Mol. Catal. A: Chem. 373: 30–37. https://doi.org/10.1016/j.molcata.2013.02.024.
Russo, P., D. Acierno, M. Palomba, G. Carotenuto, R. Rosa, A. Rizzuti, and C. Leonelli. 2012. “Ultrafine magnetite nanopowder: Synthesis, characterization, and preliminary use as filler of polymethylmethacrylate nanocomposites.” J. Nanotechnol. 2012: 728326. https://doi.org/10.1155/2012/728326.
Sabnis, R. W. 2010. Handbook of biological dyes and stains: Synthesis and industrial applications. Hoboken, NJ: Wiley.
Safari, J., and L. Javadian. 2014. “Chitosan decorated Fe3O4 nanoparticles as a magnetic catalyst in the synthesis of phenytoin derivatives.” RSC Adv. 4 (90): 48973–48979. https://doi.org/10.1039/C4RA06618A.
Singh, N. B., G. Nagpal, S. Agrawal, and Rachna. 2018. “Water purification by using adsorbents: A review.” Environ. Technol. Innov. 11: 187–240. https://doi.org/10.1016/j.eti.2018.05.006.
Spencer, J. N., W. S. Wolbach, J. W. Hovick, and K. J. Modarress. 1985. “Hydrogen bonding by alcohols and amines.” J. Solution Chem. 14 (11): 805–814. https://doi.org/10.1007/BF00646002.
Sun, X., K. Sun, and Y. Liang. 2015. “Hydrothermal synthesis of magnetite: Investigation of influence of aging time and mechanism.” Micro Nano Lett. 10 (2): 99–104. https://doi.org/10.1049/mnl.2014.0344.
Teja, A. S., and P. Y. Koh. 2009. “Synthesis, properties, and applications of magnetic iron oxide nanoparticles.” Prog. Cryst. Growth Charact. Mater. 55 (1–2): 22–45. https://doi.org/10.1016/j.pcrysgrow.2008.08.003.
Temkin, M. J., and V. Pyzhev. 1963. “Recent modifications to Langmuir isotherms.” Acta Physicochim. 12: 217–222.
Testa-Anta, M., M. A. Ramos-Docampo, M. Comesaña-Hermo, B. Rivas-Murias, and V. Salgueiriño. 2019. “Raman spectroscopy to unravel the magnetic properties of iron oxide nanocrystals for bio-related applications.” Nanoscale Adv. 1 (6): 2086–2103. https://doi.org/10.1039/C9NA00064J.
Ugbe, F. A., and V. A. Ikudayisi. 2017. “The kinetics of eosin yellow removal from aqueous solution using pineapple peels.” Edorium J. 2: 5–11.
Unsoy, G., U. Gunduz, O. Oprea, D. Ficai, M. Sonmez, M. Radulescu, M. Alexie, and A. Ficai. 2015. “Magnetite: From synthesis to applications.” Curr. Top. Med. Chem. 15 (16): 1622–1640. https://doi.org/10.2174/1568026615666150414153928.
Vijayakumar, R., Y. Koltypin, I. Felner, and A. Gedanken. 2000. “Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles.” Mater. Sci. Eng. A 286 (1): 101–105. https://doi.org/10.1016/S0921-5093(00)00647-X.
Wang, J., J. Sun, Q. Sun, and Q. Chen. 2003. “One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties.” Mater. Res. Bull. 38 (7): 1113–1118. https://doi.org/10.1016/S0025-5408(03)00129-6.
Wang, W., L. Zheng, F. Lu, R. Hong, M. Z. Q. Chen, and L. Zhuang. 2017. “Facile synthesis and characterization of magnetochromatic Fe3O4 nanoparticles.” AIP Adv. 7 (5): 1–8.
Wang, Y., I. Nkurikiyimfura, and Z. Pan. 2015. “Sonochemical synthesis of magnetic nanoparticles.” Chem. Eng. Commun. 202 (5): 616–621. https://doi.org/10.1080/00986445.2013.858039.
Weber, W. J., and J. C. Morris. 1963. “Kinetics of adsorption on carbon from solution.” J. Sanitary Eng. Div. 89 (2): 31–59. https://doi.org/10.1061/JSEDAI.0000430.
Wu, S. W., and C. Z. Jiang. 2016. “Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications.” Nanoscale 8: 19421–19474.
Wu, W., Q. He, and C. Jiang. 2008. “Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies.” Nanoscale Res. Lett. 3 (11): 397–415. https://doi.org/10.1007/s11671-008-9174-9.
Xu, P., et al. 2012. “Use of iron oxide nanomaterials in wastewater treatment: A review.” Sci. Total Environ. 424: 1–10. https://doi.org/10.1016/j.scitotenv.2012.02.023.
Yang, H., and Q. Feng. 2010. “Characterization of pore-expanded amino-functionalized mesoporous silicas directly synthesized with dimethyldecylamine and its application for decolorization of sulphonated azo dyes.” J. Hazard. Mater. 180 (1–3): 106–114. https://doi.org/10.1016/j.jhazmat.2010.03.116.
Yew, Y. P., K. Shameli, M. Miyake, N. Kuwano, N. B. B. A. Khairudin, S. E. B. Mohamad, and K. X. Lee. 2016. “Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract.” Nanoscale Res. Lett. 11 (1): 1–7. https://doi.org/10.1186/s11671-015-1209-4.
Zainab, N. M., M. A. Salah, and A. D. Rasha. 2011. “Adsorption of eosin Y dye on Iraqi clay.” J. Kerbala Univ. 9 (3): 171–178.
Zhang, B., J. Xing, Y. Lang, and H. Liu. 2008. “Synthesis of amino-silane modified magnetic silica adsorbents and application for adsorption of flavonoids from Glycyrrhiza uralensis Fisch.” Sci. China, Ser. B Chem. 51 (2): 145–151. https://doi.org/10.1007/s11426-007-0104-y.
Zhang, S., Y. Zhang, J. Liu, Q. Xu, H. Xiao, X. Wang, H. Xu, and J. Zhou. 2013. “Thiol modified Fe3O4@SiO2 as a robust, high effective, and recycling magnetic sorbent for mercury removal.” Chem. Eng. J. 226: 30–38. https://doi.org/10.1016/j.cej.2013.04.060.
Zhu, H., Y. Hu, G. Jiang, and G. Shen. 2011. “Peroxidase-like activity of aminopropyltriethoxysilane-modified iron oxide magnetic nanoparticles and its application to clenbuterol detection.” Eur. Food Res. Technol. 233 (5): 881–887. https://doi.org/10.1007/s00217-011-1582-x.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 26Issue 1January 2022

History

Received: Mar 18, 2021
Accepted: Aug 4, 2021
Published online: Nov 1, 2021
Published in print: Jan 1, 2022
Discussion open until: Apr 1, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Lecturer of Physical and Inorganic Chemistry, Chemistry Dept., Faculty of Science, Tanta Univ., 31527 Tanta, Egypt (corresponding author). ORCID: https://orcid.org/0000-0003-3379-7936. Email: [email protected]
Ali H. Gemeay [email protected]
Professor of Physical Chemistry, Chemistry Dept., Faculty of Science, Tanta Univ., 31527 Tanta, Egypt. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share