Technical Papers
Nov 1, 2021

Mixture of CaCO3 Polymorphs Serves as Best Adsorbent of Heavy Metals in Quadruple System

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 26, Issue 1

Abstract

This study compares and analyzes removal of Pb (II), Cu (II), Mn (II), and Zn (II) from aqueous solution as individual ions (monometal system) or as mixed ions (quadruple system) by commercial laboratory-grade calcium carbonate (C–CaCO3) and as-synthesized CaCO3 (S–CaCO3) as adsorbents. This was performed to determine whether heavy metal ion adsorption can be influenced by the polymorphic phases of CaCO3. C–CaCO3 and S–CaCO3 were equally efficient in the removal of Pb (II) and Cu (II) from a monometal system. However, S–CaCO3 exhibited only 49.3% ± 0.14 heavy metal removal when compared with 96.7% ± 0.08 by C–CaCO3 in a quadruple system. FTIR and HR-SEM analysis revealed C–CaCO3 consisted of a mixture of calcite and aragonite polymorphs, whereas S–CaCO3 was pure calcite polymorph. These results indicated the importance of identification of the polymorphic phase and phase transformation in any experiment while utilizing CaCO3 as adsorbent.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors gratefully acknowledge the Science and Engineering Research Board (SERB, New Delhi), affiliated with the Department of Science and Technology, Government of India; Prof. Anju Chadha, Laboratory of Bioorganic Chemistry Department of Biotechnology, Indian Institute of Technology Madras (IITM), for kindly letting us use the FTIR spectroscopy facility. Special thanks to Kabilan, Somali, and Rajinikanth for teaching us how to use and handle the instrument. We also thank the EWRE division (Department of Civil Engineering, IITM) and SAIF (IITM) for providing the instrumental facilities.

References

Ajikumar, P. K., L. G. Wong, G. Subramanyam, R. Lakshminarayanan, and S. Valiyaveettil. 2005. “Synthesis and characterization of monodispersed spheres of amorphous calcium carbonate and calcite spherules.” Cryst. Growth Des. 5 (3): 1129–1134. https://doi.org/10.1021/cg049606f.
Andersen, F. A., and L. Brecevic. 1991. “Infrared spectra of amorphous and crystalline calcium carbonate.” Acta Chem. Scand. 45 (10): 1018–1024. https://doi.org/10.3891/acta.chem.scand.45-1018.
Appel, C., and L. Ma. 2002. “Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils.” J. Environ. Qual. 31 (2): 581–589. https://doi.org/10.2134/jeq2002.0581.
Arslanoğlu, H. 2021. “Production of low-cost adsorbent with small particle size from calcium carbonate rich residue carbonatation cake and their high-performance phosphate adsorption applications.” J. Mater. Res. Technol. 11: 428–447. https://doi.org/10.1016/j.jmrt.2021.01.054.
Aziz, H. A., M. N. Adlan, and K. S. Ariffin. 2008. “Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: Post treatment by high quality limestone.” Bioresour. Technol. 99 (6): 1578–1583. https://doi.org/10.1016/j.biortech.2007.04.007.
Cartwright, J. H., A. G. Checa, J. D. Gale, D. Gebauer, and C. I. Sainz-Díaz. 2012. “Calcium carbonate polyamorphism and its role in biomineralization: How many amorphous calcium carbonates are there?” Angew. Chem. Int. Ed. 51 (48): 11960–11970. https://doi.org/10.1002/anie.201203125.
Catalli, K., J. Santillan, and Q. Williams. 2005. “A high-pressure infrared spectroscopic study of PbCO3-cerussite: constraints on the structure of the post-aragonite phase.” Phys. Chem. Miner. 32 (5): 412–417. https://doi.org/10.1007/s00269-005-0010-9.
Chakrabarty, D., and S. Mahapatra. 1999. “Aragonite crystals with unconventional morphologies.” J. Mater. Chem. 9 (11): 2953–2957. https://doi.org/10.1039/a905407c.
Chakraborty, R., A. Asthana, A. K. Singh, B. Jain, and A. B. H. Susan. 2020. “Adsorption of heavy metal ions by various low-cost adsorbents: A review.” Int. J. Environ. Anal. Chem. 100: 1–38. https://doi.org/10.1080/03067319.2020.1722811.
Dang, H. C., X. Yuan, Q. Xiao, W. X. Xiao, Y. K. Luo, X. L. Wang, F. Song, and Y. Z. Wang. 2017. “Facile batch synthesis of porous vaterite microspheres for high efficient and fast removal of toxic heavy metal ions.” J. Environ. Chem. Eng. 5 (5): 4505–4515. https://doi.org/10.1016/j.jece.2017.08.029.
di Lorenzo, F., C. Ruiz-Agudo, and S. V. Churakov. 2019. “The key effects of polymorphism during Pb II uptake by calcite and aragonite.” CrystEngComm 21 (41): 6145–6155. https://doi.org/10.1039/C9CE01040H.
Fu, F., and Q. Wang. 2011. “Removal of heavy metal ions from wastewaters: A review.” J. Environ. Manage. 92 (3): 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011.
Fukushi, K., T. Munemoto, M. Sakai, and S. Yagi. 2011. “Monohydrocalcite: A promising remediation material for hazardous anions.” Sci. Technol. Adv. Mater. 12 (6): 064702. https://doi.org/10.1088/1468-6996/12/6/064702.
Fukushi, K., M. Sakai, T. Munemoto, Y. Yokoyama, and Y. Takahashi. 2016. “Arsenate sorption on monohydrocalcite by coprecipitation during transformation to aragonite.” J. Hazard. Mater. 304: 110–117. https://doi.org/10.1016/j.jhazmat.2015.10.019.
Godelitsas, A., J. M. Astilleros, K. Hallam, S. Harissopoulos, and A. Putnis. 2003. “Interaction of calcium carbonates with lead in aqueous solutions.” Environ. Sci. Technol. 37 (15): 3351–3360. https://doi.org/10.1021/es020238i.
Gomaa, E. Z. 2019. “Biosequestration of heavy metals by microbially induced calcite precipitation of ureolytic bacteria.” Rom. Biotechnol. Lett. 24 (1): 147–153. https://doi.org/10.25083/rbl/24.1/147.153.
Greer, H. F., W. Zhou, and L. Guo. 2015. “Phase transformation of Mg-calcite to aragonite in active-forming hot spring travertines.” Mineral. Petrol. 109 (4): 453–462. https://doi.org/10.1007/s00710-015-0367-5.
Habte, L., N. Shiferaw, M. D. Khan, T. Thriveni, and J. W. Ahn. 2020. “Sorption of Cd2+ and Pb2+ on aragonite synthesized from eggshell.” Sustainability 12 (3): 1174. https://doi.org/10.3390/su12031174.
Hacker, B. R., D. C. Rubie, S. H. Kirby, and S. R. Bohlen. 2005. “The calcite→ aragonite transformation in low-Mg marble: Equilibrium relations, transformation mechanisms, and rates.” J. Geophys. Res.: Solid Earth 110 (B3): B03205. https://doi.org/10.1029/2004JB003302.
Han, R., B. Zhou, Y. Huang, X. Lu, S. Li, and N. Li. 2020. “Bibliometric overview of research trends on heavy metal health risks and impacts in 1989–2018.” J. Cleaner Prod. 276: 123249. https://doi.org/10.1016/j.jclepro.2020.123249.
Hodson, M. E., L. G. Benning, B. Demarchi, K. E. Penkman, J. D. Rodriguez-Blanco, P. F. Schofield, and E. A. Versteegh. 2015. “Biomineralisation by earthworms—An investigation into the stability and distribution of amorphous calcium carbonate.” Geochem. Trans. 16 (1): 4. https://doi.org/10.1186/s12932-015-0019-z.
Hu, H., X. Li, P. Huang, Q. Zhang, and W. Yuan. 2017. “Efficient removal of copper from wastewater by using mechanically activated calcium carbonate.” J. Environ. Manage. 203: 1–7. https://doi.org/10.1016/j.jenvman.2017.07.066.
Huang, Y. C., Y. Mou, T. W. T. Tsai, Y. J. Wu, H. K. Lee, S. J. Huang, and J. C. Chan. 2012. “Calcium-43 NMR studies of polymorphic transition of calcite to aragonite.” J. Phys. Chem. B 116 (49): 14295–14301. https://doi.org/10.1021/jp309923p.
Ito, T., S. Matsubara, and R. Miyawaki. 1999. “Vaterite after ikaite in carbonate sediment: Journal of Mineralogy.” J. Mineral. Petrol. Econ. Geol. 94 (5): 176–182. https://doi.org/10.2465/ganko.94.176.
Jahani, D., A. Nazari, J. Ghourbanpour, and A. Ameli. 2020. “Polyvinyl alcohol/calcium carbonate nanocomposites as efficient and cost-effective cationic dye adsorbents.” Polymers 12 (10): 2179. https://doi.org/10.3390/polym12102179.
Kimura, T., and N. Koga. 2011. “Monohydrocalcite in comparison with hydrated amorphous calcium carbonate: Precipitation condition and thermal behavior.” Cryst. Growth Des. 11 (9): 3877–3884. https://doi.org/10.1021/cg200412h.
Kitano, Y., N. Kanamori, and S. Yoshioka. 1976. “Adsorption of zinc and copper ions on calcite and aragonite and its influence on the transformation of aragonite to calcite.” Geochem. J. 10 (4): 175–179. https://doi.org/10.2343/geochemj.10.175.
Król, A., K. Mizerna, and M. Bożym. 2020. “An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag.” J. Hazard. Mater. 384: 121502. https://doi.org/10.1016/j.jhazmat.2019.121502.
Lin, P. Y., H. M. Wu, S. L. Hsieh, J. S. Li, C. Dong, C. W. Chen, and S. Hsieh. 2020. “Preparation of vaterite calcium carbonate granules from discarded oyster shells as an adsorbent for heavy metal ions removal.” Chemosphere 254: 126903. https://doi.org/10.1016/j.chemosphere.2020.126903.
Liu, R., Y. Guan, L. Chen, and B. Lian. 2018. “Adsorption and desorption characteristics of Cd2+ and Pb2+ by micro and nano-sized biogenic CaCO3.” Front. Microbiol. 9: 41. https://doi.org/10.3389/fmicb.2018.00041.
Liu, R., F. Liu, S. Zhao, Y. Su, D. Wang, and Q. Shen. 2013. “Crystallization and oriented attachment of monohydrocalcite and its crystalline phase transformation.” CrystEngComm 15 (3): 509–515. https://doi.org/10.1039/C2CE26562A.
Ma, X., L. Li, L. Yang, C. Su, K. Wang, S. Yuan, and J. Zhou. 2012. “Adsorption of heavy metal ions using hierarchical CaCO3–maltose meso/macroporous hybrid materials: Adsorption isotherms and kinetic studies.” J. Hazard. Mater. 209–210: 467–477. https://doi.org/10.1016/j.jhazmat.2012.01.054.
Manyangadzey, M., N. M. Chikuruwo, T. B. Narsaiah, C. S. Chakra, G. Charis, G. Danha, and T. A. Mamvura. 2020. “Adsorption of lead ions from wastewater using nano silica spheres synthesized on calcium carbonate templates.” Heliyon 6 (11): e05309. https://doi.org/10.1016/j.heliyon.2020.e05309.
Merrikhpour, H., and M. Jalali. 2012. “Waste calcite sludge as an adsorbent for the removal of cadmium, copper, lead, and zinc from aqueous solutions.” Clean Technol. Environ. Policy 14 (5): 845–855. https://doi.org/10.1007/s10098-012-0450-0.
Mohammadifard, H., and M. C. Amiri. 2017. “Evaluating Cu (II) removal from aqueous solutions with response surface methodology by using novel synthesized CaCO3 nanoparticles prepared in a colloidal gas aphron system.” Chem. Eng. Commun. 204 (4): 476–484. https://doi.org/10.1080/00986445.2016.1277522.
Mohan, S., and V. V. Nair. 2020. “Comparative study of separation of heavy metals from leachate using activated carbon and fuel Ash.” J. Hazard. Toxic Radioact. Waste 24 (4): 04020031. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000520.
Neumann, M., and M. Epple. 2007. “Monohydrocalcite and its relationship to hydrated amorphous calcium carbonate in biominerals.” Eur. J. Inorg. Chem. 2007 (14): 1953–1957. https://doi.org/10.1002/ejic.200601033.
Nkwunonwo, U. C., P. O. Odika, and N. I. Onyia. 2020. “A review of the health implications of heavy metals in food chain in Nigeria.” Sci. World J. 2020: 6594109. https://doi.org/10.1155/2020/6594109.
Pagnanelli, F., A. Esposito, L. Toro, and F. Veglio. 2003. “Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: Langmuir-type empirical model.” Water Res. 37 (3): 627–633. https://doi.org/10.1016/S0043-1354(02)00358-5.
Qin, H., T. Hu, Y. Zhai, N. Lu, and J. Aliyeva. 2020. “The improved methods of heavy metals removal by biosorbents: A review.” Environ. Pollut. 258: 113777. https://doi.org/10.1016/j.envpol.2019.113777.
Reig, F. B., J. G. Adelantado, and M. M. Moreno. 2002. “FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. application to geological samples.” Talanta 58 (4): 811–821. https://doi.org/10.1016/S0039-9140(02)00372-7.
Rodriguez-Blanco, J. D., S. Shaw, P. Bots, T. Roncal-Herrero, and L. G. Benning. 2014. “The role of Mg in the crystallization of monohydrocalcite.” Geochim. Cosmochim. Acta 127: 204–220. https://doi.org/10.1016/j.gca.2013.11.034.
Ru, X., Y. Guo, Z. Bai, X. Xie, X. Ma, L. Zhu, K. Wang, F. Wang, L. Yang, and J. Lu. 2019. “Atomistics of pre-nucleation layering of liquid metals at the interface with poor nucleants.” Commun. Chem. 2 (1): 1–7. https://doi.org/10.1038/s42004-018-0104-1.
Sdiri, A., and T. Higashi. 2013. “Simultaneous removal of heavy metals from aqueous solution by natural limestones.” Appl. Water Sci. 3 (1): 29–39. https://doi.org/10.1007/s13201-012-0054-1.
Song, X., Y. Cao, X. Bu, and X. Luo. 2021. “Porous vaterite and cubic calcite aggregated calcium carbonate obtained from steamed ammonia liquid waste for Cu2+ heavy metal ions removal by adsorption process.” Appl. Surf. Sci. 536: 147958. https://doi.org/10.1016/j.apsusc.2020.147958.
Toffolo, M. B., L. Regev, S. Dubernet, Y. Lefrais, and E. Boaretto. 2019. “FTIR-based crystallinity assessment of aragonite–calcite mixtures in archaeological lime binders altered by diagenesis.” Minerals 9 (2): 121. https://doi.org/10.3390/min9020121.
Tran, H. N., S. J. You, A. Hosseini-Bandegharaei, and H. P. Chao. 2017. “Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review.” Water Res. 120: 88–116. https://doi.org/10.1016/j.watres.2017.04.014.
Tripathi, A., and M. R. Ranjan. 2015. “Heavy metal removal from wastewater using low cost adsorbents.” J. Bioremed. Biodegrad. 6 (6): 315. https://doi.org/10.4172/2155-6199.1000315.
Tumanyan, A. F., A. P. Seliverstova, and N. A. Zaitseva. 2020. “Possible formulations of oil binders using plant materials.” Chem. Technol. Fuels Oils 56 (1): 1–8. https://doi.org/10.1007/s10553-020-01103-z.
Vagenas, N. V., A. Gatsouli, and C. G. Kontoyannis. 2003. “Quantitative analysis of synthetic calcium carbonate polymorphs using FT-IR spectroscopy.” Talanta 59 (4): 831–836. https://doi.org/10.1016/S0039-9140(02)00638-0.
Van, H. T., L. H. Nguyen, X. H. Nguyen, T. H. Nguyen, T. V. Nguyen, S. Vigneswaran, J. Rinklebe, and H. N. Tran. 2019. “Characteristics and mechanisms of cadmium adsorption onto biogenic aragonite shells-derived biosorbent: Batch and column studies.” J. Environ. Manage. 241: 535–548. https://doi.org/10.1016/j.jenvman.2018.09.079.
Wang, X., Y. Ye, X. Wu, J. R. Smyth, Y. Yang, Z. Zhang, and Z. Wang. 2019. “High-temperature Raman and FTIR study of aragonite-group carbonates.” Phys. Chem. Miner. 46 (1): 51–62. https://doi.org/10.1007/s00269-018-0986-6.
Wang, Y. Y., Q. Z. Yao, G. T. Zhou, and S. Q. Fu. 2015. “Transformation of amorphous calcium carbonate into monohydrocalcite in aqueous solution: A biomimetic mineralization study.” Eur. J. Mineral. 27 (6): 717–729. https://doi.org/10.1127/ejm/2015/0027-2486.
Wen, T., Y. Zhao, T. Zhang, B. Xiong, H. Hu, Q. Zhang, and S. Song. 2019. “Effect of anions species on copper removal from wastewater by using mechanically activated calcium carbonate.” Chemosphere 230: 127–135. https://doi.org/10.1016/j.chemosphere.2019.04.213.
Zaffino, C., V. Guglielmi, S. Faraone, A. Vinaccia, and S. Bruni. 2015. “Exploiting external reflection FTIR spectroscopy for the in-situ identification of pigments and binders in illuminated manuscripts. Brochantite and posnjakite as a case study.” Spectrochim. Acta, Part A 136: 1076–1085. https://doi.org/10.1016/j.saa.2014.09.132.
Zeng, C., H. Hu, X. Feng, K. Wang, and Q. Zhang. 2020. “Activating CaCO3 to enhance lead removal from lead-zinc solution to serve as green technology for the purification of mine tailings.” Chemosphere 249: 126227. https://doi.org/10.1016/j.chemosphere.2020.126227.
Zhang, G., J. M. Delgado-López, D. Choquesillo-Lazarte, and J. M. García-Ruiz. 2015. “Growth behavior of monohydrocalcite (CaCO3·H2O) in silica-rich alkaline solution.” Cryst. Growth Des. 15 (2): 564–572. https://doi.org/10.1021/cg5010775.
Zhang, J., B. Yao, H. Ping, Z. Fu, Y. Li, W. Wang, H. Wang, Y. Wang, J. Zhang, and F. Zhang. 2016. “Template-free synthesis of hierarchical porous calcium carbonate microspheres for efficient water treatment.” RSC Adv. 6 (1): 472–480. https://doi.org/10.1039/C5RA18366A.
Zhang, Q., and C. Wang. 2020. “Natural and human factors affect the distribution of soil heavy metal pollution: A review.” Water Air Soil Pollut. 231 (7): 350. https://doi.org/10.1007/s11270-020-04728-2.
Zhang, R., J. J. Richardson, A. F. Masters, G. Yun, K. Liang, and T. Maschmeyer. 2018a. “Effective removal of toxic heavy metal ions from aqueous solution by CaCO3 microparticles.” Water Air Soil Pollut. 229 (4): 136. https://doi.org/10.1007/s11270-018-3787-0.
Zhang, Y., H. Zhang, Z. Zhang, C. Liu, C. Sun, W. Zhang, and T. Marhaba. 2018b. “Ph effect on heavy metal release from a polluted sediment.” J. Chem. 2018: 7597640. https://doi.org/10.1155/2018/7597640.
Zhao, D. H., and H. W. Gao. 2010. “Turning calcium carbonate into a cost-effective wastewater-sorbing material by occluding waste dye.” Environ. Sci. Pollut. Res. 17 (1): 97–105. https://doi.org/10.1007/s11356-009-0111-y.
Zhou, G. T., and Y. F. Zheng. 1998. “Synthesis of aragonite-type calcium carbonate by overgrowth technique at atmospheric pressure.” J. Mater. Sci. Lett. 17 (11): 905–908. https://doi.org/10.1023/A:1026444118595.
Zhou, Q., N. Yang, Y. Li, B. Ren, X. Ding, H. Bian, and X. Yao. 2020. “Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017.” Global Ecol. Conserv. 22: e00925.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 26Issue 1January 2022

History

Received: Jan 19, 2021
Accepted: Aug 11, 2021
Published online: Nov 1, 2021
Published in print: Jan 1, 2022
Discussion open until: Apr 1, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Viswambari Devi R. [email protected]
National Post-Doctoral Fellow (SERB), Bioengineering and Drug Design Laboratory, Dept. of Biotechnology, Indian Institute of Technology, Chennai 600036, India. Email: [email protected]
Research Scholar, Environmental & Water Resources Engineering, Dept. of Civil Engineering, Indian Institute of Technology Madras, Chennai, TN 600036, India. ORCID: https://orcid.org/0000-0001-9988-4296. Email: [email protected]
Priyanka Sathyamoorthy [email protected]
Summer Intern, Bioengineering and Drug Design Laboratory, Dept. of Biotechnology, Indian Institute of Technology, Chennai 600036, India. Email: [email protected]
Mukesh Doble [email protected]
Professor, Bioengineering and Drug Design Laboratory, Dept. of Biotechnology, Indian Institute of Technology, Chennai 600036, India (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Hierarchically doping calcium carbonate pellets for directly solar-driven high-temperature thermochemical energy storage, Solar Energy, 10.1016/j.solener.2023.01.018, 251, (197-207), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share