Technical Papers
Nov 20, 2020

Application of Native Mix Algal Strain for Gray Water Treatment and Biofuel Production: Preliminary Study

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25, Issue 2

Abstract

The application of native mixed algal strains for wastewater treatment will be investigated in this study. Native mixed algal strains will be collected from Khorda district, Odisha, India, and acclimatized to the secondary treated gray water in a stepwise manner. The algal species in the mixed strain were identified as Oscillatoria sp., Nannochloropsis limnetica, Dictyosphaerium ehrenbergianum, and Chlorella vulgaris. The mixed algal strains will be grown in different systems with combinations of natural light (N) or artificial light (A) and open system (O) or closed system (C). The mixed algal strains grew well in natural light compared with artificial light. The maximum algal biomass concentration of 0.99 and 0.79 g/L, respectively, were observed in the natural light open (NO) and natural light closed (NC) systems. In contrast, the algal strains grown in the closed system indicated improved gray water treatment compared with that of the open system. The organics [(measured as chemical oxygen demand (COD)], NO3, and PO43− removal from gray water were 85.25%, 88.50%, and 73.12%, respectively, in the NC system. In addition, proximate analysis revealed that the biomass obtained from the NC system was slightly superior with the volatile matter, ash content, and fixed carbon of 28.5%, 69.9%, 29%, and 1.6%, respectively. In addition, the heating value of algal biomass obtained from the NC system (3.86 MJ/kg) was slightly higher than that of the NO system (3.52 MJ/kg).

Get full access to this article

View all available purchase options and get full access to this article.

References

Abdel-Raouf, N., A. A. Al-Homaidan, and I. B. M. Ibraheem. 2012. “Microalgae and wastewater treatment.” Saudi J. Biol. Sci. 19 (3): 257–275. https://doi.org/10.1016/j.sjbs.2012.04.005.
Albalawneh, A., and T.-K. Chang. 2015. “Review of the greywater and proposed greywater recycling scheme for agricultural irrigation reuses.” Int. J. Res.-Granthaalayah 3 (12): 16–35.
Álvarez-Álvarez, P., C. Pizarro, M. Barrio-Anta, A. Cámara-Obregón, J. L. María Bueno, A. Álvarez, I. Gutiérrez, and D. F. R. P. Burslem. 2018. “Evaluation of tree species for biomass energy production in Northwest Spain.” Forests 9 (4): 160. https://doi.org/10.3390/f9040160.
APHA (American Public Health Association). 2011. Standard method for examination of water and wastewater. Washington, DC: APHA.
ASTM. 2015. Standard test method for ash in biomass. ASTM E1755-01. West Conshohocken, PA: ASTM.
Bohutskyi, P., S. Chow, B. Ketter, C. Fung Shek, D. Yacar, Y. Tang, M. Zivojnovich, M. J. Betenbaugh, and E. J. Bouwer. 2016. “Phytoremediation of agriculture runoff by filamentous algae poly-culture for biomethane production, and nutrient recovery for secondary cultivation of lipid generating microalgae.” Bioresour. Technol. 222: 294–308. https://doi.org/10.1016/j.biortech.2016.10.013.
Caporgno, M. P., A. Taleb, M. Olkiewicz, J. Font, J. Pruvost, J. Legrand, and C. Bengoa. 2015. “Microalgae cultivation in urban wastewater: Nutrient removal and biomass production for biodiesel and methane.” Algal Res. 10: 232–239. https://doi.org/10.1016/j.algal.2015.05.011.
Chavan, R., and S. Mutnuri. 2019. “Tertiary treatment of domestic wastewater by Spirulina platensis integrated with microalgal biorefinery.” Biofuels 10 (1): 33–44. https://doi.org/10.1080/17597269.2018.1461509.
Chen, M., H. Tang, H. Ma, T. C. Holland, K. Y. S. Ng, and S. O. Salley. 2011. “Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta.” Bioresour. Technol. 102 (2): 1649–1655. https://doi.org/10.1016/j.biortech.2010.09.062.
Chia, M. A., A. T. Lombardi, M. d. G. G. Melão, and C. C. Parrish. 2013. “Lipid composition of Chlorella vulgaris (Trebouxiophyceae) as a function of different cadmium and phosphate concentrations.” Aquat. Toxicol. 128–129: 171–182. https://doi.org/10.1016/j.aquatox.2012.12.004.
Cho, S., T. T. Luong, D. Lee, Y. K. Oh, and T. Lee. 2011. “Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production.” Bioresour. Technol. 102 (18): 8639–8645. https://doi.org/10.1016/j.biortech.2011.03.037.
Chong, M. N., Y. J. Cho, P. E. Poh, and B. Jin. 2015. “Evaluation of Titanium dioxide photocatalytic technology for the treatment of reactive Black 5 dye in synthetic and real greywater effluents.” J. Cleaner Prod. 89: 196–202. https://doi.org/10.1016/j.jclepro.2014.11.014.
Craggs, R. J., W. H. Adey, K. R. Jenson, M. S. St. John, F. B. Green, and W. J. Oswald. 1996. “Phosphorus removal from wastewater using an algal turf scrubber.” Water Sci. Technol. 33 (7): 191–198. https://doi.org/10.2166/wst.1996.0138.
Delgadillo-Mirquez, L., F. Lopes, B. Taidi, and D. Pareau. 2016. “Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture.” Biotechnol. Rep. 11: 18–26. https://doi.org/10.1016/j.btre.2016.04.003.
Demirbaş, A. 1997. “Calculation of higher heating values of biomass fuels.” Fuel 76 (5): 431–434. https://doi.org/10.1016/S0016-2361(97)85520-2.
Derakhshandeh, M., T. Atici, and U. Tezcan Un. 2020. “Evaluation of wild-type microalgae species biomass as carbon dioxide sink and renewable energy resource.” Waste Biomass Valorization 1–17. https://doi.org/10.1007/s12649-020-00969-8.
Evans, L., S. J. Hennige, N. Willoughby, A. J. Adeloye, M. Skroblin, and T. Gutierrez. 2017. “Effect of organic carbon enrichment on the treatment efficiency of primary settled wastewater by Chlorella vulgaris.” Algal Res. 24: 368–377. https://doi.org/10.1016/j.algal.2017.04.011.
Ferro, L., F. G. Gentili, and C. Funk. 2018. “Isolation and characterization of microalgal strains for biomass production and wastewater reclamation in Northern Sweden.” Algal Res. 32: 44–53. https://doi.org/10.1016/j.algal.2018.03.006.
Gentili, F. G., and J. Fick. 2017. “Algal cultivation in urban wastewater: An efficient way to reduce pharmaceutical pollutants.” J. Appl. Phycol. 29 (1): 255–262. https://doi.org/10.1007/s10811-016-0950-0.
Griffiths, M. J., C. Garcin, R. P. van Hille, and S. T. L. Harrison. 2011. “Interference by pigment in the estimation of microalgal biomass concentration by optical density.” J. Microbiol. Methods 85 (2): 119–123. https://doi.org/10.1016/j.mimet.2011.02.005.
Hodaifa, G., S. Sánchez, M. E. Martínez, and R. Órpez. 2013. “Biomass production of Scenedesmus obliquus from mixtures of urban and olive-oil mill wastewaters used as culture medium.” Appl. Energy 104: 345–352. https://doi.org/10.1016/j.apenergy.2012.11.005.
Ilavarasi, A., D. Mubarakali, R. Praveenkumar, E. Baldev, and N. Thajuddin. 2011. “Optimization of various growth media to freshwater microalgae for biomass production.” Biotechnology (Faisalabad) 10 (6): 540–545. https://doi.org/10.3923/biotech.2011.540.545.
ISO. 2015. Solid biofuels. Determination of the content of volatile matter. EN ISO 18123:2015. Geneva: ISO.
Jabeen, S., X. Gao, M. Altarawneh, J. I. Hayashi, M. Zhang, and B. Z. Dlugogorski. 2020. “Analytical procedure for proximate analysis of algal biomass: Case study for Spirulina platensis and Chlorella vulgaris.” Energy Fuels 34 (1): 474–482. https://doi.org/10.1021/acs.energyfuels.9b03156.
Jämsä, M., F. Lynch, A. Santana-Sánchez, P. Laaksonen, G. Zaitsev, A. Solovchenko, and Y. Allahverdiyeva. 2017. “Nutrient removal and biodiesel feedstock potential of green alga UHCC00027 grown in municipal wastewater under Nordic conditions.” Algal Res. 26: 65–73. https://doi.org/10.1016/j.algal.2017.06.019.
Janssen, J. H., J. L. S. P. Driessen, P. P. Lamers, R. H. Wijffels, and M. J. Barbosa. 2018. “Effect of initial biomass-specific photon supply rate on fatty acid accumulation in nitrogen depleted Nannochloropsis gaditana under simulated outdoor light conditions.” Algal Res. 35: 595–601. https://doi.org/10.1016/j.algal.2018.10.002.
Ji, L., W. Song, D. Wei, D. Jiang, L. Cai, Y. Wang, J. Guo, and H. Zhang. 2019. “Modified mussel shell powder for microalgae immobilization to remove N and P from eutrophic wastewater.” Bioresour. Technol. 284: 36–42. https://doi.org/10.1016/j.biortech.2019.03.112.
Karemore, A., R. Pal, and R. Sen. 2013. “Strategic enhancement of algal biomass and lipid in Chlorococcum infusionum as bioenergy feedstock.” Algal Res. 2 (2): 113–121. https://doi.org/10.1016/j.algal.2013.01.005.
Kebede-Westhead, E., C. Pizarro, and W. W. Mulbry. 2006. “Treatment of swine manure effluent using freshwater algae: Production, nutrient recovery, and elemental composition of algal biomass at four effluent loading rates.” J. Appl. Phycol. 18 (1): 41–46. https://doi.org/10.1007/s10811-005-9012-8.
Kotoula, D., A. Iliopoulou, E. Irakleous-Palaiologou, G. Gatidou, M. Aloupi, P. Antonopoulou, M. S. Fountoulakis, and A. S. Stasinakis. 2020. “Municipal wastewater treatment by combining in series microalgae Chlorella sorokiniana and macrophyte Lemna minor: Preliminary results.” J. Cleaner Prod. 271: 122704. https://doi.org/10.1016/j.jclepro.2020.122704.
Kumar, A., S. Ergas, X. Yuan, A. Sahu, Q. Zhang, J. Dewulf, F. X. Malcata, and H. van Langenhove. 2010a. “Enhanced CO2 fixation and biofuel production via microalgae: Recent developments and future directions.” Trends Biotechnol. 28 (7): 371–380. https://doi.org/10.1016/j.tibtech.2010.04.004.
Kumar, R., K. K. Pandey, N. Chandrashekar, and S. Mohan. 2010b. “Effect of tree-age on calorific value and other fuel properties of Eucalyptus hybrid.” J. For. Res. 21 (4): 514–516. https://doi.org/10.1007/s11676-010-0108-x.
Lam, M. K., and K. T. Lee. 2012. “Microalgae biofuels: A critical review of issues, problems and the way forward.” Biotechnol. Adv. 30 (3): 673–690. https://doi.org/10.1016/j.biotechadv.2011.11.008.
Laurens, L. M. L., T. A. Dempster, H. D. T. Jones, E. J. Wolfrum, S. Van Wychen, J. S. P. McAllister, M. Rencenberger, K. J. Parchert, and L. M. Gloe. 2012. “Algal biomass constituent analysis: Method uncertainties and investigation of the underlying measuring chemistries.” Anal. Chem. 84 (4): 1879–1887. https://doi.org/10.1021/ac202668c.
Laurens, L. M. L., and E. J. Wolfrum. 2013. “High-throughput quantitative biochemical characterization of algal biomass by NIR spectroscopy; Multiple linear regression and multivariate linear regression analysis.” J. Agric. Food. Chem. 61 (50): 12307–12314. https://doi.org/10.1021/jf403086f.
Liu, J., Y. Pan, C. Yao, H. Wang, X. Cao, and S. Xue. 2015. “Determination of ash content and concomitant acquisition of cell compositions in microalgae via thermogravimetric (TG) analysis.” Algal Res. 12: 149–155. https://doi.org/10.1016/j.algal.2015.08.018.
Mathimani, T., and A. Pugazhendhi. 2019. “Utilization of algae for biofuel, bio-products and bio-remediation.” Biocatal. Agric. Biotechnol. 17: 326–330. https://doi.org/10.1016/j.bcab.2018.12.007.
Mulbry, W., S. Kondrad, C. Pizarro, and E. Kebede-Westhead. 2008. “Treatment of dairy manure effluent using freshwater algae: Algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers.” Bioresour. Technol. 99 (17): 8137–8142. https://doi.org/10.1016/j.biortech.2008.03.073.
Nancharaiah, Y. V., S. Venkata Mohan, and P. N. L. Lens. 2016. “Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems.” Bioresour. Technol. 215: 173–185. https://doi.org/10.1016/j.biortech.2016.03.129.
Perez-Garcia, O., F. M. E. Escalante, L. E. de-Bashan, and Y. Bashan. 2011. “Heterotrophic cultures of microalgae: Metabolism and potential products.” Water Res. 45 (1): 11–36. https://doi.org/10.1016/j.watres.2010.08.037.
Posadas, E., P. A. García-Encina, A. Domínguez, I. Díaz, E. Becares, S. Blanco, and R. Muñoz. 2014. “Enclosed tubular and open algal-bacterial biofilm photobioreactors for carbon and nutrient removal from domestic wastewater.” Ecol. Eng. 67: 156–164. https://doi.org/10.1016/j.ecoleng.2014.03.007.
Priyanka, K., M. Behera, and R. Neelancherry. 2020. “Graywater treatment in sequencing batch reactor using simultaneous nitrification, denitrification, and phosphorus removal, with kinetic studies of phosphate adsorption onto corncob.” J. Hazard. Toxic Radioact. Waste 24 (3): 04020017. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000504.
Priyanka, K., N. Remya, and M. Behera. 2019. “Comparison of titanium dioxide based catalysts preparation methods in the mineralization and nutrients removal from greywater by solar photocatalysis.” J. Cleaner Prod. 235: 1–10. https://doi.org/10.1016/j.jclepro.2019.06.314.
Rawat, I., R. Ranjith Kumar, T. Mutanda, and F. Bux. 2011. “Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production.” Appl. Energy 88 (10): 3411–3424. https://doi.org/10.1016/j.apenergy.2010.11.025.
Rawat, I., R. Ranjith Kumar, T. Mutanda, and F. Bux. 2013. “Biodiesel from microalgae: A critical evaluation from laboratory to large scale production.” Appl. Energy 103: 444–467. https://doi.org/10.1016/j.apenergy.2012.10.004.
Shuba, E. S., and D. Kifle. 2018. “Microalgae to biofuels: ‘Promising’ alternative and renewable energy, review.” Renewable Sustainable Energy Rev. 81: 743–755. https://doi.org/10.1016/j.rser.2017.08.042.
Sintamarean, I. M., T. H. Pedersen, X. Zhao, A. Kruse, and L. A. Rosendahl. 2017. “Application of algae as cosubstrate to enhance the processability of willow wood for continuous hydrothermal liquefaction.” Ind. Eng. Chem. Res. 56 (15): 4562–4571. https://doi.org/10.1021/acs.iecr.7b00327.
Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton. 2008. Determination of ash in biomass: Laboratory analytical procedure (LAP). Golden, CO: National Renewable Energy Laboratory.
Stein, J., J. Hellebust, and J. Craigie. 1973. Handbook of phycological methods: Culture methods and growth measurements. Cambridge, UK: Cambridge University Press.
Vuppaladadiyam, A. K., N. Merayo, A. Blanco, J. Hou, D. D. Dionysiou, and M. Zhao. 2018. “Simulation study on comparison of algal treatment to conventional biological processes for greywater treatment.” Algal Res. 35: 106–114. https://doi.org/10.1016/j.algal.2018.08.021.
Wells, M. L., P. Potin, J. S. Craigie, J. A. Raven, S. S. Merchant, K. E. Helliwell, A. G. Smith, M. E. Camire, and S. H. Brawley. 2017. “Algae as nutritional and functional food sources: Revisiting our understanding.” J. Appl. Phycol. 29 (2): 949–982. https://doi.org/10.1007/s10811-016-0974-5.
Wilkie, A. C., and W. W. Mulbry. 2002. “Recovery of dairy manure nutrients by benthic freshwater algae.” Bioresour. Technol. 84 (1): 81–91. https://doi.org/10.1016/S0960-8524(02)00003-2.
Wu, Z., and X. Shi. 2007. “Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model.” Lett. Appl. Microbiol. 44 (1): 13–18. https://doi.org/10.1111/j.1472-765X.2006.02038.x.
Ye, S., L. Gao, J. Zhao, M. An, H. Wu, and M. Li. 2020. “Simultaneous wastewater treatment and lipid production by Scenedesmus sp. HXY2.” Bioresour. Technol. 302: 122903. https://doi.org/10.1016/j.biortech.2020.122903.
Zhang, C., Y. Zhang, B. Zhuang, and X. Zhou. 2014. “Strategic enhancement of algal biomass, nutrient uptake and lipid through statistical optimization of nutrient supplementation in coupling Scenedesmus obliquus-like microalgae cultivation and municipal wastewater treatment.” Bioresour. Technol. 171: 71–79. https://doi.org/10.1016/j.biortech.2014.07.060.
Zheng, T., W. Li, Y. Ma, J. Liu, and J. Ren. 2020. “Greywater: Understanding biofilm bacteria succession, pollutant removal and low sulfide generation in small diameter gravity sewers.” J. Cleaner Prod. 268: 122426. https://doi.org/10.1016/j.jclepro.2020.122426.
Zhou, W., Y. Cheng, Y. Li, Y. Wan, Y. Liu, X. Lin, and R. Ruan. 2012. “Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment.” Appl. Biochem. Biotechnol. 167 (2): 214–228. https://doi.org/10.1007/s12010-012-9667-y.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25Issue 2April 2021

History

Received: Jul 29, 2020
Accepted: Sep 25, 2020
Published online: Nov 20, 2020
Published in print: Apr 1, 2021
Discussion open until: Apr 20, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Mohit Aggarwal [email protected]
Research Scholar, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar 752050, India. Email: [email protected]
Neelancherry Remya [email protected]
Assistant Professor, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar 7520520, India (corresponding author). ORCID: https://orcid.org/0000-0002-8522-477X. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share