Abstract

Self-designed electrokinetic setups were constructed to examine the differences in electromigration and electroosmotic rates in both sand and clay. Two dyes were analyzed separately to measure these phenomena within these two media types. The dyes used were a red food coloring (primary compound Allura Red) and a green food coloring (referred to as a “blue dye,” as its migrating component was C-phycocyanin (C-PC) via Spirulina Blue extract). The power supply had a 30 V output with a measured 9.36 ± 0.04 mA current (0.054 mA/cm2) output. Electromigration was readily apparent for the red dye in both sand (9.12 ± 1.57 cm/d) and clay (0.93 ± 0.16) cm/d. It was also observed for the blue dye (C-PC) in sand (7.28 ± 0.57 cm/d) but not in clay. A confirmation experiment for the blue dye in sand was performed at an identical voltage but a slightly lower current output (0.040 mA/cm2), and the migration rate was found to be similar, at 6.60 ± 0.20 cm/d. For the blue dye in clay, the migration rate proceeded toward the cathode at 0.17 cm/d. Calculations indicate this phenomenon to be due to electroosmosis but may be due to a weak electromigration of the dye in protonated form.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work was funded through a consortium of multiple funding sources, and was not directly funded by any particular source, in partiality or entirety. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. I would like to thank the soil laboratory at NJIT for their assistance with numerous portions of the clay media setup.

References

Abderrahmene, M., B. AbdelIllah, and G. Fouad. 2017. “Electrical prediction of tortuosity in porous media.” Energy Procedia 139: 718–724. https://doi.org/10.1016/j.egypro.2017.11.277.
Acar, Y. B., and A. N. Alshawabkeh. 1993. “Principles of electrokinetic remediation.” Environ. Sci. Technol. 27 (13): 2638–2647. https://doi.org/10.1021/es00049a002.
Acar, Y. B., R. J. Gale, A. N. Alshawabkeh, R. E. Marks, S. Puppala, M. Bricka, and R. Parker. 1995. “Electrokinetic remediation: Basics and technology status.” J. Hazard. Mater. 40 (2): 117–137. https://doi.org/10.1016/0304-3894(94)00066-P.
Acar, Y. B., M. F. Rabbi, and E. E. Ozsu. 1997. “Electrokinetic injection of ammonium and sulfate ions into sand and kaolinite beds.” J. Geotech. Geoenviron. Eng. 123 (3): 239–249. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:3(239).
Alaydi, K. 2016. “The application of electroosmosis in clay improvement.” Master’s thesis, Dept. of Civil and Environmental Engineering, Chalmers Univ. of Technology.
Alshawabkeh, A. N. 1994. “Theoretical and experimental modeling of removing contaminants from soils by an electric field.” LSU historical dissertations and theses, Dept. of Civil and Environmental Engineering, Louisiana State Univ.
Alshawabkeh, A. N. 2009. “Electrokinetic soil remediation: Challenges and opportunities.” Sep. Sci. Technol. 44 (10): 2171–2187. https://doi.org/10.1080/01496390902976681.
Alshawabkeh, A. N., and Y. B. Acar. 1996. “Electrokinetic remediation. II: Theoretical model.” J. Geotech. Eng. 122 (3): 186–196. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:3(186).
AnaSpec. 2018. “4 C-Phycocyanin.” Datasheet.
Asadollahfardi, G., and M. Rezaee. 2019. “Electrokinetic remediation of diesel-contaminated silty sand under continuous and periodic voltage application.” Environ. Eng. Res. 24 (3): 456–462. https://doi.org/10.4491/eer.2018.301.
Awan, M. A., I. A. Qazi, and I. Khalid. 2003. “Removal of heavy metals through adsorption using sand.” J. Environ. Sci. 15 (3): 413–416.
Azzam, R., and W. Oey. 2001. “The utilization of electrokinetics in geotechnical and environmental engineering.” Transp. Porous Media 42 (3): 293–314. https://doi.org/10.1023/A:1006753622691.
Bachem. 2018. Peptide Calculator (alpha subunit).
Bandyopadhyay, S., and K. Sanjoy. 2018. “Engineering aspects of bioremediation.” In Remediation of hazardous waste contaminated soils, edited by D. L. Wise, 55–75. London: Routledge.
Barka, A. 2018. “Interfacial behavior of colored protein fractions from Spirulina platensis.” Ph.D. thesis, Dept. of Agronomic Sciences and Biological Engineering, Université de Liège.
Beddiar, K., T. Fen-Chong, A. Dupas, Y. Berthaud, and P. Dangla. 2005. “Role of pH in electro-osmosis: Experimental study on NaCl–water saturated kaolinite.” Transp. Porous Media 61 (1): 93–107. https://doi.org/10.1007/s11242-004-6798-9.
Białk-Bielińska, A., J. Kumirska, and P. Stepnowski. 2013. “What do we know about the chronic and mixture toxicity of the residues of sulfonamides in the environment?” In Organic pollutants-monitoring, risk and treatment, edited by M. N. Rashed, 59–86. London: InTech.
Blewett, J., W. J. McCarter, T. M. Chrisp, and G. Starrs. 2003. “An experimental study on ionic migration through saturated kaolin.” Eng. Geol. 70 (3–4): 281–291. https://doi.org/10.1016/S0013-7952(03)00096-6.
Boufadel, M., X. Geng, C. An, E. Owens, Z. Chen, K. Lee, E. Taylor, and R. C. Prince. 2019. “A review on the factors affecting the deposition, retention, and biodegradation of oil stranded on beaches and guidelines for designing laboratory experiments.” Curr. Pollut. Rep. 5 (4): 407–423. https://doi.org/10.1007/s40726-019-00129-0.
Boufadel, M. C., X. Geng, and J. Short. 2016. “Bioremediation of the Exxon Valdez oil in Prince William sound beaches.” Mar. Pollut. Bull. 113 (1–2): 156–164. https://doi.org/10.1016/j.marpolbul.2016.08.086.
Cameselle, C. 2015. “Enhancement of electro-osmotic flow during the electrokinetic treatment of a contaminated soil.” Electrochim. Acta 181: 31–38. https://doi.org/10.1016/j.electacta.2015.02.191.
Cameselle, C., and S. Gouveia. 2018. “Electrokinetic remediation for the removal of organic contaminants in soils.” Curr. Opin. Electrochem. 11: 41–47. https://doi.org/10.1016/j.coelec.2018.07.005.
Chang, J.-H., Z. Qiang, and C.-P. Huang. 2006. “Remediation and stimulation of selected chlorinated organic solvents in unsaturated soil by a specific enhanced electrokinetics.” Colloids Surf., A 287 (1–3): 86–93. https://doi.org/10.1016/j.colsurfa.2006.03.039.
Chronakis, I. S., A. N. Galatanu, T. Nylander, and B. Lindman. 2000. “The uinolon of protein preparations from blue-green algae (Spirulina platensis strain Pacifica) at the air/water interface.” Colloids Surf., A 173 (1–3): 181–192. https://doi.org/10.1016/S0927-7757(00)00548-3.
Cox, E., J. Wang, D. Reynolds, D. Gent, M. Singletary, and A. Wilson. 2018. Electrokinetic-enhanced (EK-enhanced) amendment delivery for remediation of low permeability and heterogeneous materials. Columbia, SC: Geosyntec Consultants Columbia United States.
Decesaro, A., A. Rampel, T. S. Machado, A. Thomé, K. Reddy, A. C. Margarites, and L. M. Colla. 2017. “Bioremediation of soil contaminated with diesel and biodiesel fuel using biostimulation with microalgae biomass.” J. Environ. Eng. 143 (4): 04016091. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001165.
De Paiva, S. d. S. M., I. B. Da Silva, E. C. M. de Moura Santos, I. M. V. Rocha, C. A. Martínez-Huitle, and E. V. dos Santos. 2018. “Coupled electrochemical processes for removing dye from soil and water.” J. Electrochem. Soc. 165 (9): E318–E324. https://doi.org/10.1149/2.0391809jes.
Dos Santos, E. V., S. Ferro, and M. Vocciante. 2020. “Electrokinetic remediation.” In The handbook of environmental remediation, edited by C. M. Hussain, 121–144. London: Royal Society of Chemistry.
Figueroa, A., C. Cameselle, S. Gouveia, and H. K. Hansen. 2016. “Electrokinetic treatment of an agricultural soil contaminated with heavy metals.” J. Environ. Sci. Health, Part A 51 (9): 691–700. https://doi.org/10.1080/10934529.2016.1170425.
Fleming, M., Y. Tai, P. Zhuang, and M. B. McBride. 2013. “Extractability and bioavailability of Pb and As in historically contaminated orchard soil: Effects of compost amendments.” Environ. Pollut. 177: 90–97. https://doi.org/10.1016/j.envpol.2013.02.013.
Gill, R. T., M. J. Harbottle, J. W. N. Smith, and S. F. Thornton. 2014. “Electrokinetic-enhanced bioremediation of organic contaminants: A review of processes and environmental applications.” Chemosphere 107: 31–42. https://doi.org/10.1016/j.chemosphere.2014.03.019.
Hansen, H. K., L. M. Ottosen, and A. B. Ribeiro. 2016. “Electrokinetic soil remediation: An overview.” In Electrokinetics across disciplines and continents, edited by A. B. Ribeiro, E. P. Mateus, and N. Couto, 3–18. Cham, Switzerland: Springer.
Haritash, A. K., and C. P. Kaushik. 2009. “Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review.” J. Hazard. Mater. 169 (1–3): 1–15. https://doi.org/10.1016/j.jhazmat.2009.03.137.
Haroun, M. 2009. Feasibility of in-situ removal of heavy metals by electroremediation of offshore muds. Los Angeles: Univ. of Southern California.
Haryanto, B., and C.-H. Chang. 2015. “Removing adsorbed heavy metal ions from sand surfaces via applying interfacial properties of rhamnolipid.” J. Oleo Sci. 64 (2): 161–168. https://doi.org/10.5650/jos.ess14058.
Hunger, K. 2007. Industrial dyes: Chemistry, properties, applications. Hoboken, NJ: John Wiley & Sons.
Huweg, A. F. S. 2013. “Modelling of electrokinetic phenomena in soils.” Ph.D. thesis, Dept. of Engineering and Surveying, Univ. of Southern Queensland.
Jamshidi-Zanjani, A., and A. Khodadadi Darban. 2017. “A review on enhancement techniques of electrokinetic soil remediation.” Pollution 3 (1): 157–166.
J. R. Watkins Co. 2010. “Natural green color.” Safety Data Sheet.
Khan, F. I., T. Husain, and R. Hejazi. 2004. “An overview and analysis of site remediation technologies.” J. Environ. Manage. 71 (2): 95–122. https://doi.org/10.1016/j.jenvman.2004.02.003.
Kim, K.-J., J.-M. Cho, K. Baek, J.-S. Yang, and S.-H. Ko. 2010. “Electrokinetic removal of chloride and sodium from tidelands.” J. Appl. Electrochem. 40 (6): 1139–1144. https://doi.org/10.1007/s10800-010-0082-1.
Kong, F., M. Zhang, J. Chen, L. Fan, H. Xiao, S. Liu, and C. Cao. 2017. “Continuous protein concentration via free-flow moving reaction boundary electrophoresis.” J. Chromatogr. A 1508: 169–175. https://doi.org/10.1016/j.chroma.2017.06.008.
Krishan, G. 2019. “Groundwater salinity.” Curr. World Environ. 14 (2): 186–188. https://doi.org/10.12944/CWE.14.2.02.
Kuddus, M., P. Singh, G. Thomas, and A. Ali. 2015. “Production of c-phycocyanin and its potential applications.” In Biotechnology of bioactive compounds: Sources and applications, edited by V. K. Gupta, M. G. Tuohy, M. G. Lohani, and A. Odonovan, 283–299. Hoboken, NJ: Wiley-Blackwell.
Lee, Y.-J., H. Han, S.-H. Kim, and J.-W. Yang. 2009. “Combination of electrokinetic separation and electrochemical oxidation for acid dye removal from soil.” Sep. Sci. Technol. 44 (10): 2455–2469. https://doi.org/10.1080/01496390902983802.
Li, G., Y. Li, J. Zhang, and J. Liu. 2020. “Study on electrokinetic remediation of Pb-contaminated saturated sand.” Int. J. Electrochem. Sci. 15: 1486–1497. https://doi.org/10.20964/2020.02.40.
Li, T., H. Hu, L. Jin, B. Xue, Y. Zhang, and Y. Guo. 2016. “Enhanced bioremediation of crude oil in polluted beach sand by the combination of bioaugmentation and biodiesel.” J. Water Reuse Desalin. 6 (2): 264–273. https://doi.org/10.2166/wrd.2015.086.
Li, Z., J.-W. Yu, and I. Neretnieks. 1997. “Removal of Pb(II), Cd(II) and Cr(III) from sand by electromigration.” J. Hazard. Mater. 55 (1–3): 295–304. https://doi.org/10.1016/S0304-3894(97)00021-6.
Lim, M. W., E. Von Lau, and P. E. Poh. 2016. “A comprehensive guide of remediation technologies for oil contaminated soil—Present works and future directions.” Mar. Pollut. Bull. 109 (1): 14–45. https://doi.org/10.1016/j.marpolbul.2016.04.023.
Lindgren, E., E. Mattson, and M. Kozak. 1994. Electrokinetic remediation of unsaturated soils. Washington, DC: ACS Publications.
Lindgren, E., M. Kozak, and E. Mattson. 1991. Electrokinetic remediation of contaminated soils: An update. Albuquerque, NM: Sandia National Lab.
Lindgren, E., M. Kozak, and E. Mattson. 1992. Electrokinetic remediation of unsaturated soils. Albuquerque, NM: Sandia National Labs.
Liu, Q., Y. Huang, R. Zhang, T. Cai, and Y. Cai. 2016. “Medical application of Spirulina platensis derived C-phycocyanin.” Evidence-Based Complementary Altern. Med. 2016: 7803846. https://doi.org/10.1155/2016/7803846.
Llorente, I., S. Fajardo, and J. M. Bastidas. 2014. “Applications of electrokinetic phenomena in materials science.” J. Solid State Electrochem. 18 (2): 293–307. https://doi.org/10.1007/s10008-013-2267-0.
Luo, Q., X. Zhang, H. Wang, and Y. Qian. 2005. “The use of non-uniform electrokinetics to enhance in situ bioremediation of phenol-contaminated soil.” J. Hazard. Mater. 121 (1–3): 187–194. https://doi.org/10.1016/j.jhazmat.2005.02.007.
Madusanka, N., K. N. de Silva, and G. Amaratunga. 2015. “A curcumin activated carboxymethyl cellulose–montmorillonite clay nanocomposite having enhanced curcumin release in aqueous media.” Carbohydr. Polym. 134: 695–699. https://doi.org/10.1016/j.carbpol.2015.08.030.
Martelli, G., C. Folli, L. Visai, M. Daglia, and D. Ferrari. 2014. “Thermal stability improvement of blue colorant C-Phycocyanin from Spirulina platensis for food industry applications.” Process Biochem. 49 (1): 154–159. https://doi.org/10.1016/j.procbio.2013.10.008.
Mattson, E. D., R. S. Bowman, and E. R. Lindgren. 2002. “Electrokinetic ion transport through unsaturated soil: 1. Theory, model development, and testing.” J. Contam. Hydrol. 54 (1–2): 99–120. https://doi.org/10.1016/S0169-7722(01)00144-9.
McCormick and Company. 2010. “Red food color.” Material Safety Data Sheet.
Millán, M., P. Y. Bucio-Rodríguez, J. Lobato, C. M. Fernández-Marchante, G. Roa-Morales, C. Barrera-Díaz, and M. A. Rodrigo. 2020. “Strategies for powering electrokinetic soil remediation: A way to optimize performance of the environmental technology.” J. Environ. Manage. 267: 110665. https://doi.org/10.1016/j.jenvman.2020.110665.
Minic, S. L., M. Milcic, D. Stanic-Vucinic, M. Radibratovic, T. G. Sotiroudis, M. R. Nikolic, and T. Ć. Velickovic. 2015. “Phycocyanobilin, a bioactive tetrapyrrolic compound of blue-green alga Spirulina, binds with high affinity and competes with bilirubin for binding on human serum albumin.” RSC Adv. 5 (76): 61787–61798. https://doi.org/10.1039/C5RA05534B.
Mosulishvili, L., A. Belokobyl’skij, E. Kirkesali, A. Khizanishvili, M. Frontas’ eva, S. Pavlov, and S. Gundorina. 2002. Investigation of the structure and element composition of C-phycocyanin extracted from the microalgae Spirulina platensis. Dubna, Russia: Frank Laboratory of Neutron Physics.
Muz, M., J. P. Dann, F. Jäger, W. Brack, and M. Krauss. 2017. “Identification of mutagenic aromatic amines in river samples with industrial wastewater impact.” Environ. Sci. Technol. 51 (8): 4681–4688. https://doi.org/10.1021/acs.est.7b00426.
Nkhalambayausi-Chirwa, E. M., P. E. Molokwane, T. B. Lutsinge, T. E. Igboamalu, and Z. S. Birungi. 2020. “Advances in bioremediation of toxic heavy metals and radionuclides in contaminated soil and aquatic systems.” In Bioremediation of industrial waste for environmental safety, edited by R. N. Bharagava, and G. Saxena, 21–52. Singapore: Springer.
Özcan, A., Ç Ömeroğlu, Y. Erdoğan, and A. S. Özcan. 2007. “Modification of bentonite with a cationic surfactant: An adsorption study of textile dye reactive blue 19.” J. Hazard. Mater. 140 (1–2): 173–179. https://doi.org/10.1016/j.jhazmat.2006.06.138.
Page, M. M., and C. L. Page. 2002. “Electroremediation of contaminated soils.” J. Environ. Eng. 128 (3): 208–219. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:3(208).
Paillat, T., E. Moreau, P. O. Grimaud, and G. Touchard. 2000. “Electrokinetic phenomena in porous media applied to soil decontamination.” IEEE Trans. Dielectr. Electr. Insul. 7 (5): 693–704. https://doi.org/10.1109/94.879363.
Pazos, M., C. Cameselle, and M. A. Sanromán. 2008. “Remediation of dye-polluted kaolinite by combination of electrokinetic remediation and electrochemical treatment.” Environ. Eng. Sci. 25 (3): 419–428. https://doi.org/10.1089/ees.2007.0068.
Pazos, M., M. T. Ricart, M. A. Sanromán, and C. Cameselle. 2007. “Enhanced electrokinetic remediation of polluted kaolinite with an azo dye.” Electrochim. Acta 52 (10): 3393–3398. https://doi.org/10.1016/j.electacta.2006.04.067.
Pereira, A. M. P. T., L. J. G. Silva, L. M. Meisel, and A. Pena. 2015. “Fluoroquinolones and tetracycline antibiotics in a Portuguese aquaculture system and aquatic surroundings: Occurrence and environmental impact.” J. Toxicol. Environ. Health, Part A 78 (15): 959–975. https://doi.org/10.1080/15287394.2015.1036185.
Pradeep, H. N., and C. A. Nayak. 2019. “Enhanced stability of C-phycocyanin colorant by extrusion encapsulation.” J. Food Sci. Technol. 56 (10): 4526–4534. https://doi.org/10.1007/s13197-019-03955-8.
Prentice, G. 1991. Electrochemical engineering principles. Englewood Cliffs, NJ: Prentice Hall.
Priyadarsini, K. I. 2014. “The chemistry of curcumin: From extraction to therapeutic agent.” Molecules 19 (12): 20091–20112. https://doi.org/10.3390/molecules191220091.
ProteinCalculator. 2014. “Sequence input.”
PubChem. 2018. “FD&C Red No. 40.” Compound Summary.
Rahman, Z., and V. P. Singh. 2019. “The relative impact of toxic heavy metals (THMs)(arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview.” Environ. Monit. Assess. 191 (7): 419. https://doi.org/10.1007/s10661-019-7528-7.
Ramadan, B. S., G. L. Sari, R. T. Rosmalina, and A. J. Effendi. 2018. “An overview of electrokinetic soil flushing and its effect on bioremediation of hydrocarbon contaminated soil.” J. Environ. Manage. 218: 309–321. https://doi.org/10.1016/j.jenvman.2018.04.065.
Rauf, M. A., S. B. Bukallah, F. A. Hamour, and A. S. Nasir. 2008. “Adsorption of dyes from aqueous solutions onto sand and their kinetic behavior.” Chem. Eng. J. 137 (2): 238–243. https://doi.org/10.1016/j.cej.2007.04.025.
Reddy, K. R., and C. Cameselle. 2009. Electrochemical remediation technologies for polluted soils, sediments and groundwater. Hoboken, NJ: John Wiley & Sons.
Reddy, K. R., and S. Chinthamreddy. 2003. “Effects of initial form of chromium on electrokinetic remediation in clays.” Adv. Environ. Res. 7 (2): 353–365. https://doi.org/10.1016/S1093-0191(02)00005-9.
Reddy, K. R., and S. Chinthamreddy. 2004. “Enhanced electrokinetic remediation of heavy metals in glacial till soils using different electrolyte solutions.” J. Environ. Eng. 130 (4): 442–455. https://doi.org/10.1061/(ASCE)0733-9372(2004)130:4(442).
Reddy, K. R., and U. S. Parupudi. 1997. “Removal of chromium, nickel and cadmium from clays by in-situ electrokinetic remediation.” J. Soil Contam. 6 (4): 391–407. https://doi.org/10.1080/15320389709383574.
Reddy, K. R., U. S. Parupudi, S. N. Devulapalli, and C. Y. Xu. 1997. “Effects of soil composition on the removal of chromium by electrokinetics.” J. Hazard. Mater. 55 (1–3): 135–158. https://doi.org/10.1016/S0304-3894(97)00020-4.
Ren, D., S. Zhou, Q. Li, C. Wang, S. Zhang, and H. Zhang. 2016. “Enhanced electrokinetic remediation of uinolone-contaminated soils.” Toxicol. Environ. Chem. 98 (5–6): 585–600. https://doi.org/10.1080/02772248.2015.1133383.
Rendal, C., K. O. Kusk, and S. Trapp. 2011. “Optimal choice of pH for toxicity and bioaccumulation studies of ionizing organic chemicals.” Environ. Toxicol. Chem. 30 (11): 2395–2406. https://doi.org/10.1002/etc.641.
Reynier, N., J. F. Blais, G. Mercier, and S. Besner. 2014. “Decontamination of metals, pentachlorophenol, and polychlorined dibenzo-p-dioxins and dibenzofurans polluted soil in alkaline conditions using an amphoteric biosurfactant.” Environ. Technol. 35 (2): 177–186. https://doi.org/10.1080/09593330.2013.822005.
Rowe, R. K., and K. Badv. 1996. “Chloride migration through clayey silt underlain by fine sand or silt.” J. Geotech. Eng. 122 (1): 60–68. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:1(60).
Saavedra-Labastida, E., M. Díaz-Nava, J. Illescas, and C. Muro. 2019. “Comparison of the removal of an anionic dye from aqueous solutions by adsorption with organically modified clays and their composites.” Water Air Soil Pollut. 230 (4): 88. https://doi.org/10.1007/s11270-019-4131-z.
Saichek, R. E., and K. R. Reddy. 2005. “Electrokinetically enhanced remediation of hydrophobic organic compounds in soils: A review.” Crit. Rev. Environ. Sci. Technol. 35 (2): 115–192. https://doi.org/10.1080/10643380590900237.
Sala, L., F. S. Figueira, G. P. Cerveira, C. C. Moraes, and S. J. Kalil. 2014. “Kinetics and adsorption isotherm of C-phycocyanin from Spirulina platensis on ion-exchange resins.” Braz. J. Chem. Eng. 31 (4): 1013–1022. https://doi.org/10.1590/0104-6632.20140314s00002443.
Sheik, A. H., F. Montazersadgh, V. Starov, A. Trybala, and H. C. H. Bandulasena. 2018. “Procedures used in electrokinetic investigations of surfactant-laden interfaces, liquid films and foam system.” Curr. Opin. Colloid Interface Sci. 37: 128–135. https://doi.org/10.1016/j.cocis.2018.09.001.
Simó, C., M. Herrero, C. Neusüß, M. Pelzing, E. Kenndler, C. Barbas, E. Ibáñez, and A. Cifuentes. 2005. “Characterization of proteins from Spirulina platensis microalga using capillary electrophoresis-ion trap-mass spectrometry and capillary electrophoresis-time of flight-mass spectrometry.” Electrophoresis 26 (13): 2674–2683. https://doi.org/10.1002/elps.200500055.
Singh, S., and A. Haritash. 2019. “Polycyclic aromatic hydrocarbons: Soil pollution and remediation.” Int. J. Environ. Sci. Technol. 16: 6489–6512. https://doi.org/10.1007/s13762-019-02414-3.
Solano, A. M. S., S. Garcia-Segura, C. A. Martínez-Huitle, and E. Brillas. 2015. “Degradation of acidic aqueous solutions of the diazo dye Congo Red by photo-assisted electrochemical processes based on Fenton’s reaction chemistry.” Appl. Catal., B 168–169: 559–571. https://doi.org/10.1016/j.apcatb.2015.01.019.
Song, Y., L. Cang, G. Fang, S. T. Ata-Ul-Karim, H. Xu, and D. Zhou. 2018. “Electrokinetic delivery of anodic in situ generated active chlorine to remediate diesel-contaminated sand.” Chem. Eng. J. 337: 499–505. https://doi.org/10.1016/j.cej.2017.12.122.
Stanic-Vucinic, D., S. Minic, M. R. Nikolic, and T. C. Velickovic. 2018. “Spirulina phycobiliproteins as food components and complements.” In Microalgal biotechnology, edited by E. Jacob-Lopes, L. Q. Zepka, and M. I. Queiroz, 129–149. London: IntechOpen.
Subhashini, J., S. Mahipal, G. Reddy, and P. Reddanna. 2006. “C-Phycocyanin, A biliprotein from Spirulina platensis: Anti-oxidant, anti-inflammatory and anti-cancer effects.” In Traditional systems of medicine, edited by M. Z. Abdin, and Y. P. Abrol, 395–403. New Delhi, India: Narosa Publishing House.
Tarboton, D. G. 2003. Rainfall-runoff processes. Logan, UT: Utah State Univ.
Van Cauwenberghe, L. 1997. Electrokinetics, 97–103. Pittsburgh: Ground-Water Remediation Technology Analysis Center.
Virkutyte, J., M. Sillanpää, and P. Latostenmaa. 2002. “Electrokinetic soil remediation—critical overview.” Sci. Total Environ. 289 (1–3): 97–121. https://doi.org/10.1016/S0048-9697(01)01027-0.
Vyskocil, V., and J. Barek. 2011. “Electroanalysis of nitro and amino derivatives of polycyclic aromatic hydrocarbons.” Curr. Org. Chem. 15 (17): 3059–3076. https://doi.org/10.2174/138527211798357209.
Wang, C., Z. Zhang, W. Xu, and H. Sun. 2016. “Electrokinetic-assisted bioremediation of field soil with historic polycyclic aromatic hydrocarbon contamination.” Environ. Eng. Sci. 33 (1): 44–52. https://doi.org/10.1089/ees.2014.0286.
Wang, F., Y.-H. Liu, Y. Ma, Z.-G. Cui, and L.-L. Shao. 2017. “Application of TMA-PEG to promote C-phycocyanin extraction from S. platensis in the PEG ATPS.” Process Biochem. 52: 283–294. https://doi.org/10.1016/j.procbio.2016.11.006.
Wang, L., L. Huang, H. Xia, H. Li, X. Li, and X. Liu. 2019. “Application of a multi-electrode system with polyaniline auxiliary electrodes for electrokinetic remediation of chromium-contaminated soil.” Sep. Purif. Technol. 224: 106–112. https://doi.org/10.1016/j.seppur.2019.05.019.
Wen, D., R. Fu, and Q. Li. 2020. “Removal of inorganic contaminants in soil by electrokinetic remediation technologies: A review.” J. Hazard. Mater. 401: 123345. https://doi.org/10.1016/j.jhazmat.2020.123345.
WSNatural_Sourcing. 2011. “Organic spirulina extract.” Material Safety Data Sheet.
Xu, Y. J., S. Li, W. Zhang, L. Y. Fan, J. Shao, and C. X. Cao. 2009. “Moving reaction boundary and isoelectric focusing: IV. Systemic study on Hjertén’s pH gradient mobilization.” J. Sep. Sci. 32 (4): 585–596. https://doi.org/10.1002/jssc.200800500.
Zhang, Z., S. Cho, Y. Dadmohammadi, Y. Li, and A. Abbaspourrad. 2020. “Improvement of the storage stability of C-phycocyanin in beverages by high-pressure processing.” Food Hydrocolloids 110: 106055. https://doi.org/10.1016/j.foodhyd.2020.106055.
Zhao, Y., J. Geng, X. Wang, X. Gu, and S. Gao. 2011. “Tetracycline adsorption on kaolinite: pH, metal cations and humic acid effects.” Ecotoxicology 20 (5): 1141–1147. https://doi.org/10.1007/s10646-011-0665-6.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25Issue 2April 2021

History

Received: May 20, 2020
Accepted: Aug 20, 2020
Published online: Nov 23, 2020
Published in print: Apr 1, 2021
Discussion open until: Apr 23, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Center for Natural Resources, New Jersey Institute of Technology, Newark, NJ 07102 (corresponding author). ORCID: https://orcid.org/0000-0003-2134-4622. Email: [email protected]
Michel C. Boufadel, F.ASCE [email protected]
Center for Natural Resources, New Jersey Institute of Technology, Newark, NJ 07102. Email: [email protected]
Lucia Rodriguez-Freire [email protected]
John A. Reif, Jr., Dept. of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102. Email: [email protected]
Otto H. York Dept. of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102. Email: [email protected]
Stewart Abrams [email protected]
Director of Remediation Technology, Langan Engineering, Lawrenceville, NJ 08648. Email: [email protected]
Geosyntec Consultants, Kennesaw, GA 30144. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share