Technical Papers
Nov 19, 2020

Removal of Chromium from Electroplating Industry Wastewater Using Bioelectrochemical System: Kinetic Study and Statistical Analysis

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25, Issue 2

Abstract

The hybrid bioelectrochemical systems (BES), a self-sustaining novel technology, was tested for evaluating its efficiency for removal of hexavalent chromium from electroplating industry wastewater. The BES reactor was designed and optimized for different parameters, such as substrate concentration, mixed liquor volatile suspended solids (MLVSS), hydraulic retention time (HRT), and chromium concentration. The concentration of hexavalent chromium [Cr(VI)] in the electroplating industries was found in the range of 0.43–48.7 mg/L. Whereas in the experiments Cr(VI) concentration, it varied from 10 to 50 mg/L (10, 20, 30, 40, and 50 mg/L). The BES demonstrated 87.88% of Cr(VI) removal at an influent concentration of 50 mg/L and HRT of 24 h. Correlation analysis revealed that chromium removal efficiency (CRE) was directly proportional to substrate consumption, voltage generation, MLVSS, and HRT, and had an inverse relation with chromium concentration in the cathode chamber. Principal component analysis (PCA) extracted two principal components that together explained approximately 82.15% of data variability (PC1: 62.73%; PC2: 19.41%). The kinetics of substrate degradation and chromium removal was assessed, revealing that substrate degradation and chromium removal can be better described by a first-order kinetic model.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors are grateful for the financial support from Indian Institute of Technology (Indian School of Mines), Dhanbad under a Junior Research Fellowship scheme funded by Ministry of Human Resource Development (MHRD), Government of India, New Delhi, India for carrying out this study.

References

Ahn, K. H., K. G. Song, H. Y. Cha, and I. T. Yeom. 1999. “Removal of ions in nickel electroplating rinse water using low-pressure nanofiltration.” Desalination 122 (1): 77–84. https://doi.org/10.1016/S0011-9164(99)00029-6.
APHA, AWWA, WEF (American Public Health Association, American Water Works Association, Water Environment Federation). 2012. Standard methods for examination of water and wastewater. 22nd ed. Baltimore, MD: United Book Press.
Aranda-García, E., and E. Cristiani-Urbina. 2019. “Effect of pH on hexavalent and total chromium removal from aqueous solutions by avocado shell using batch and continuous systems.” Environ. Sci. Pollut. Res. 26 (4): 3157–3173. https://doi.org/10.1007/s11356-017-0248-z.
Basha, C. A., M. Somasundaram, T. Kannadasan, and C. W. Lee. 2011. “Heavy metals removal from copper smelting effluent using electrochemical filter press cells.” Chem. Eng. J. 171 (2): 563–571. https://doi.org/10.1016/j.cej.2011.04.031.
BIS (Bureau of Indian Standards). 1974. Guide for treatment of effluents of electroplating industry. IS:7453:1974. Delhi, India: BIS.
Boricha, A. G., and Z. V. P. Murthy. 2009. “Preparation, characterization and performance of nanofiltration membranes for the treatment of electroplating industry effluent.” Sep. Purif. Technol. 65 (3): 282–289. https://doi.org/10.1016/j.seppur.2008.10.047.
Charerntanyarak, L. 1999. “Heavy metals removal by chemical coagulation and precipitation.” Water Sci. Technol. 39 (10–11): 135–138. https://doi.org/10.2166/wst.1999.0642.
Chattopadhyay, B., A. Chatterjee, and S. K. Mukhopadhyay. 2002. “Bioaccumulation of metals in the east calcutta wetland ecosystem.” Aquat. Ecosyst. Health Manage. 5 (2): 191–203. https://doi.org/10.1080/14634980290031848.
Chen, D., L. Wei, Z. Zou, K. Yang, and H. Wang. 2016. “Bacterial communities in a novel three-dimensional bioelectrochemical denitrification system: The effects of pH.” Appl. Microbiol. Biotechnol. 100 (15): 6805–6813. https://doi.org/10.1007/s00253-016-7499-3.
Choi, C., and N. Hu. 2013. “The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell.” Bioresour. Technol. 133: 589–598. https://doi.org/10.1016/j.biortech.2013.01.143.
Contrera, R. C., K. C. da Cruz Silva, D. M. Morita, J. A. Rodrigues, M. Zaiat, and V. Schalch. 2014. “First-order kinetics of landfill leachate treatment in a pilot-scale anaerobic sequence batch biofilm reactor.” J. Environ. Manage. 145: 385–393. https://doi.org/10.1016/j.jenvman.2014.07.013.
CPCB (Central Pollution Control Board). 2007. Comprehensive industry document on electroplating industries. New Delhi, India: CPCB and Ministry of Environment and Forests.
Das, I., M. M. Ghangrekar, R. Satyakam, P. Srivastava, S. Khan, and H. N. Pandey. 2020. “On-site sanitary wastewater treatment system using 720-L stacked microbial fuel cell: Case study.” J. Hazard. Toxic Radioact. Waste 24 (3): 04020025. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000518.
Fu, F., and Q. Wang. 2011. “Removal of heavy metal ions from wastewaters: a review.” J. Environ. Manage. 92 (3): 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011.
Gangadharan, P., and I. M. Nambi. 2015. “Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell.” Water Sci. and Technol. 71 (3): 353–358. https://doi.org/10.2166/wst.2014.524.
Huang, J., P. Yang, Y. Guo, and K. Zhang. 2011a. “Electricity generation during wastewater treatment: An approach using an AFB-MFC for alcohol distillery wastewater.” Desalination 276 (1–3): 373–378. https://doi.org/10.1016/j.desal.2011.03.077.
Huang, L., X. Chai, G. Chen, and B. E. Logan. 2011b. “Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells.” Environ. Sci. Technol. 45 (11): 5025–5031. https://doi.org/10.1021/es103875d.
Huang, L., X. Chai, S. Cheng, and G. Chen. 2011c. “Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation.” Chem. Eng. J. 166 (2): 652–661. https://doi.org/10.1016/j.cej.2010.11.042.
Huang, L., J. Chen, X. Quan, and F. Yang. 2010. “Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell.” Bioprocess. Biosyst. Eng. 33 (8): 937–945. https://doi.org/10.1007/s00449-010-0417-7.
Jadhav, G. S., and M. M. Ghangrekar. 2009. “Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration.” Bioresour. Technol. 100 (2): 717–723. https://doi.org/10.1016/j.biortech.2008.07.041.
Juang, R. S., and R. C. Shiau. 2000. “Metal removal from aqueous solutions using chitosan-enhanced membrane filtration.” J. Membr. Sci. 165 (2): 159–167. https://doi.org/10.1016/S0376-7388(99)00235-5.
Kelly, P. T., and Z. He. 2014. “Nutrients removal and recovery in bioelectrochemical systems: A review.” Bioresour. Technol. 153: 351–360. https://doi.org/10.1016/j.biortech.2013.12.046.
Kim, J. R., B. Min, and B. E. Logan. 2005. “Evaluation of procedures to acclimate a microbial fuel cell for electricity production.” Appl. Microbiol. Biotechnol. 68 (1): 23–30. https://doi.org/10.1007/s00253-004-1845-6.
Kotaś, J., and Z. Stasicka. 2000. “Chromium occurrence in the environment and methods of its speciation.” Environ. Pollut. 107 (3): 263–283. https://doi.org/10.1016/S0269-7491(99)00168-2.
Kumar, G. S., and A. J. Thatheyus. 2013. “Bioremediation of chromium, nickel, and zinc in electroplating effluent by Escherichia coli.” Annu. Rev. Res. Biol. 3: 913–920.
Kumar, R., D. Bhatia, R. Singh, S. Rani, and N. R. Bishnoi. 2011. “Sorption of heavy metals from electroplating effluent using immobilized biomass Trichoderma viride in a continuous packed-bed column.” Int. Biodeterior. Biodegrad. 65 (8): 1133–1139. https://doi.org/10.1016/j.ibiod.2011.09.003.
Kumar, R., N. R. Bishnoi, and K. Bishnoi. 2008. “Biosorption of chromium(VI) from aqueous solution and electroplating wastewater using fungal biomass.” Chem. Eng. J. 135 (3): 202–208. https://doi.org/10.1016/j.cej.2007.03.004.
Kuntke, P., T. H. Sleutels, M. R. Arredondo, S. Georg, S. G. Barbosa, A. Ter Heijne, H. V. Hamelers, and C. J. Buisman. 2018. “(Bio) electrochemical ammonia recovery: Progress and perspectives.” Appl. Microbiol. Biotechnol. 102 (9): 3865–3878. https://doi.org/10.1007/s00253-018-8888-6.
Kurniawan, T. A., G. Y. S. Chan, W. H. Lo, and S. Babel. 2006. “Physico–chemical treatment techniques for wastewater laden with heavy metals.” Chem. Eng. J. 118 (1–2): 83–98. https://doi.org/10.1016/j.cej.2006.01.015.
Lefebvre, O., C. M. Neculita, X. Yue, and H. Y. Ng. 2012. “Bioelectrochemical treatment of acid mine drainage dominated with iron.” J. Hazard. Mater. 241–242: 411–417. https://doi.org/10.1016/j.jhazmat.2012.09.062.
Li, W. W., H. Q. Yu, and Z. He. 2014. “Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies.” Energy Environ. Sci. 7 (3): 911–924. https://doi.org/10.1039/C3EE43106A.
Li, Y., A. Lu, H. Ding, S. Jin, Y. Yan, C. Wang, C. Zen, and X. Wang. 2009. “Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells.” Electrochem. Commun. 11 (7): 1496–1499. https://doi.org/10.1016/j.elecom.2009.05.039.
Li, Z., X. Zhang, and L. Lei. 2008. “Electricity production during the treatment of real electroplating wastewater containing Cr 6+ using microbial fuel cell.” Process Biochem. 43 (12): 1352–1358. https://doi.org/10.1016/j.procbio.2008.08.005.
Logan, B. E. 2009. “Exoelectrogenic bacteria that power microbial fuel cells.” Nat. Rev. Microbiol. 7 (5): 375–381. https://doi.org/10.1038/nrmicro2113.
Logan, B. E., B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey. 2006. “Microbial fuel cells: Methodology and technology.” Energy Environ. Sci. 40 (17): 5181–5192. https://doi.org/10.1021/es0605016.
Lovley, D. R., and E. J. Phillips. 1988. “Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese.” Appl. Environ. Microbiol. 54 (6): 1472–1480. https://doi.org/10.1128/AEM.54.6.1472-1480.1988.
Lu, N., S. G. Zhou, L. Zhuang, J. T. Zhang, and J. R. Ni. 2009. “Electricity generation from starch processing wastewater using microbial fuel cell technology.” Biochem. Eng. J. 43 (3): 246–251. https://doi.org/10.1016/j.bej.2008.10.005.
Mansoorian, H. J., A. H. Mahvi, and A. J. Jafari. 2014. “Removal of lead and zinc from battery industry wastewater using electrocoagulation process: Influence of direct and alternating current by using iron and stainless-steel rod electrodes.” Sep. Purif. Technol. 135: 165–175. https://doi.org/10.1016/j.seppur.2014.08.012.
Manzoor, S., M. H. Shah, N. Shaheen, A. Khalique, and M. Jaffar. 2006. “Multivariate analysis of trace metals in textile effluents in relation to soil and groundwater.” J. Hazard. Mater. 137 (1): 31–37. https://doi.org/10.1016/j.jhazmat.2006.01.077.
Min, B., and B. E. Logan. 2004. “Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell.” Environ. Sci. Technol. 38 (21): 5809–5814. https://doi.org/10.1021/es0491026.
Mishra, A., and A. Malik. 2012. “Simultaneous bioaccumulation of multiple metals from electroplating effluent using Aspergillus lentulus.” Water Res. 46 (16): 4991–4998. https://doi.org/10.1016/j.watres.2012.06.035.
Mohan, S. V., G. Velvizhi, J. A. Modestra, and S. Srikanth. 2014. “Microbial fuel cell: Critical factors regulating bio-catalyzed electrochemical process and recent advancements.” Renewable Sustainable Energy Rev. 40: 779–797. https://doi.org/10.1016/j.rser.2014.07.109.
Mohan, Y., and D. Das. 2009. “Effect of ionic strength, cation exchanger and inoculum age on the performance of microbial fuel cells.” Int. J. Hydrogen Energy 34 (17): 7542–7546. https://doi.org/10.1016/j.ijhydene.2009.05.101.
Nancharaiah, Y. V., S. V. Mohan, and P. N. L. Lens. 2016. “Biological and bioelectrochemical recovery of critical and scarce metals.” Trends Biotechnol. 34 (2): 137–155. https://doi.org/10.1016/j.tibtech.2015.11.003.
Nguyen, V. K., Y. Park, J. Yu, and T. Lee. 2016a. “Bioelectrochemical denitrification on biocathode buried in simulated aquifer saturated with nitrate-contaminated groundwater.” Environ. Sci. Pollut. Res. 23 (15): 15443–15451. https://doi.org/10.1007/s11356-016-6709-y.
Nguyen, V. K., Y. Park, J. Yu, and T. Lee. 2016b. “Simultaneous arsenite oxidation and nitrate reduction at the electrodes of bioelectrochemical systems.” Environ. Sci. Pollut. Res. 23 (19): 19978–19988. https://doi.org/10.1007/s11356-016-7225-9.
Noori, M. T., A. Ganta, and B. R. Tiwari. 2020. “Recent advances in the design and architecture of bioelectrochemical systems to treat wastewater and to produce choice-based byproducts.” J. Hazard. Toxic Radioact. Waste 24 (3): 04020023. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000510.
Noori, M. T., M. M. Ghangrekar, C. K. Mukherjee, and B. Min. 2019. “Biofouling effects on the performance of microbial fuel cells and recent advances in biotechnological and chemical strategies for mitigation.” Biotechnol. Adv. 37 (8): 107420. https://doi.org/10.1016/j.biotechadv.2019.107420.
O’Toole, G., H. B. Kaplan, and R. Kolter. 2000. “Biofilm formation as microbial development.” Annu. Rev. Microbiol. 54 (1): 49–79. https://doi.org/10.1146/annurev.micro.54.1.49.
Picioreanu, C., I. M. Head, K. P. Katuri, M. C. van Loosdrecht, and K. Scott. 2007. “A computational model for biofilm-based microbial fuel cells.” Water Res. 41 (13): 2921–2940. https://doi.org/10.1016/j.watres.2007.04.009.
Ping, Q., I. M. Abu-Reesh, and Z. He. 2016. “Mathematical modeling based evaluation and simulation of boron removal in bioelectrochemical systems.” Sci. Total Environ. 569–570: 1380–1389. https://doi.org/10.1016/j.scitotenv.2016.06.220.
Pinto, R. P., B. Srinivasan, M.-F. Manuel, and B. Tartakovsky. 2010. “A two-population bio-electrochemical model of a microbial fuel cell.” Bioresour. Technol. 101 (14): 5256–5265. https://doi.org/10.1016/j.biortech.2010.01.122.
Rabaey, K., N. Boon, S. D. Siciliano, M. Verhaege, and W. Verstraete. 2004. “Biofuel cells select for microbial consortia that self-mediate electron transfer.” Appl. Environ. Microbiol. 70 (9): 5373–5382. https://doi.org/10.1128/AEM.70.9.5373-5382.2004.
Rajesh, P. P., M. T. Noori, and M. M. Ghangrekar. 2020. “Improving performance of microbial fuel cell by using polyaniline-coated carbon–felt anode.” J. Hazard. Toxic Radioact. Waste 24 (3): 04020024. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000512.
Reddy, C. N., H. T. H. Nguyen, M. T. Noori, and B. Min. 2019. “Potential applications of algae in the cathode of microbial fuel cells for enhanced electricity generation with simultaneous nutrient removal and algae biorefinery: Current status and future perspectives.” Bioresour. Technol. 292: 122010. https://doi.org/10.1016/j.biortech.2019.122010.
Ruus, A., M. Schaanning, S. Øxnevad, and K. Hylland. 2005. “Experimental results on bioaccumulation of metals and organic contaminants from marine sediments.” Aquat. Toxicol. 72 (3): 273–292. https://doi.org/10.1016/j.aquatox.2005.01.004.
Ryu, E. Y., M. Kim, and S. J. Lee. 2011. “Characterization of microbial fuel cells enriched using Cr(VI)-containing sludge.” J. Microbiol. Biotechnol. 21 (2): 187–191. https://doi.org/10.4014/jmb.1008.08019.
Singh, R., N. Gautam, A. Mishra, and R. Gupta. 2011. “Heavy metals and living systems: An overview.” Indian J. Pharmacol. 43 (3): 246–253. https://doi.org/10.4103/0253-7613.81505.
Sleutels, T. H. J. A., A. Ter Heijne, C. J. N. Buisman, and H. V. M. Hamelers. 2012. “Bioelectrochemical systems: An outlook for practical applications.” ChemSusChem 5 (6): 1012–1019. https://doi.org/10.1002/cssc.201100732.
Taha, S., S. Ricordel, and I. Cisse. 2011. “Kinetic study and modeling of heavy metals removal by adsorption onto peanut husks incinerated residues.” Energy Procedia 6: 143–152. https://doi.org/10.1016/j.egypro.2011.05.017.
Tandukar, M., S. J. Huber, T. Onodera, and S. G. Pavlostathis. 2009. “Biological chromium (VI) reduction in the cathode of a microbial fuel cell.” Environ. Sci. Technol. 43 (21): 8159–8165. https://doi.org/10.1021/es9014184.
Tao, H. C., L. J. Zhang, Z. Y. Gao, and W. M. Wu. 2011. “Copper reduction in a pilot-scale membrane-free bioelectrochemical reactor.” Bioresour. Technol. 102 (22): 10334–9. https://doi.org/10.1016/j.biortech.2011.08.116.
Thung, W. E., S. A. Ong, L. N. Ho, Y. S. Wong, F. Ridwan, Y. L. Oon, Y. S. Oon, and H. K. Lehl. 2018. “Sustainable green technology on wastewater treatment: The evaluation of enhanced single chambered up-flow membrane-less microbial fuel cell.” J. Environ. Sci. 66: 295–300. https://doi.org/10.1016/j.jes.2017.05.010.
Tong, X., and R. Xu. 2013. “Removal of Cu (II) from acidic electroplating effluent by biochars generated from crop straws.” J. Environ. Sci. 25 (4): 652–658. https://doi.org/10.1016/S1001-0742(12)60118-1.
Vijayaraghavan, K., K. Palanivelu, and M. Velan. 2005. “Crab shell-based biosorption technology for the treatment of nickel-bearing electroplating industrial effluents.” J. Hazard. Mater. 119 (1–3): 251–254. https://doi.org/10.1016/j.jhazmat.2004.12.017.
Wang, G., L. Huang, and Y. Zhang. 2008. “Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells.” Biotechnol. Lett. 30 (11): 1959–1966. https://doi.org/10.1007/s10529-008-9792-4.
Wang, H., and Z. J. Ren. 2013. “A comprehensive review of microbial electrochemical systems as a platform technology.” Biotechnol. Adv. 31 (8): 1796–1807. https://doi.org/10.1016/j.biotechadv.2013.10.001.
Wang, H., and Z. J. Ren. 2014. “Bioelectrochemical metal recovery from wastewater: A review.” Water Res. 66: 219–232. https://doi.org/10.1016/j.watres.2014.08.013.
Wang, Y. H., B. S. Wang, B. Pan, Q. Y. Chen, and W. Yan. 2013. “Electricity production from a bio-electrochemical cell for silver recovery in alkaline media.” Appl. Energy 112: 1337–1341. https://doi.org/10.1016/j.apenergy.2013.01.012.
Wang, Y. P., H. L. Zhang, W. W. Li, X. W. Liu, G. P. Sheng, and H. Q. Yu. 2014. “Improving electricity generation and substrate removal of a MFC–SBR system through optimization of COD loading distribution.” Biochem. Eng. J. 85: 15–20. https://doi.org/10.1016/j.bej.2014.01.008.
Wang, Z., B. Lim, and C. Choi. 2011. “Removal of Hg2+ as an electron acceptor coupled with power generation using a microbial fuel cell.” Bioresour. Technol. 102 (10): 6304–6307. https://doi.org/10.1016/j.biortech.2011.02.027.
Xafenias, N., Y. Zhang, and C. J. Banks. 2013. “Enhanced performance of hexavalent chromium reducing cathodes in the presence of Shewanella oneidensis MR-1 and lactate.” Environ. Sci. Technol. 47 (9): 4512–4520. https://doi.org/10.1021/es304606u.
Zhang, L. J., H. C. Tao, X. Y. Wei, T. Lei, J. B. Li, A. J. Wang, and W. M. Wu. 2012. “Bioelectrochemical recovery of ammonia–copper (II) complexes from wastewater using a dual chamber microbial fuel cell.” Chemosphere 89 (10): 1177–1182. https://doi.org/10.1016/j.chemosphere.2012.08.011.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25Issue 2April 2021

History

Received: May 27, 2020
Accepted: Aug 7, 2020
Published online: Nov 19, 2020
Published in print: Apr 1, 2021
Discussion open until: Apr 19, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Former Ph.D. Scholar, Dept. of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004 Jharkhand, India (corresponding author). ORCID: https://orcid.org/0000-0002-0152-9876. Email: [email protected]
Sunil Kumar Gupta [email protected]
Professor, Dept. of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004 Jharkhand, India. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share