State-of-the-Art Reviews
Dec 9, 2020

Review of Challenges for Algae-Based Wastewater Treatment: Strain Selection, Wastewater Characteristics, Abiotic, and Biotic Factors

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25, Issue 2

Abstract

This paper will focus on the challenges associated with algae-based wastewater treatment (ABWWT). To elucidate the issue, this review will investigate the following: (1) microalgal strain selection, (2) wastewater characteristics, and (3) the effect of various biotic and abiotic factors. Mostly, monocultures of microalgae are used in wastewater treatment (WWT), but microalgae–bacteria consortia have received significant attention recently. Their interaction mechanisms and the sheer number of possible combinations pose a significant challenge in the strain selection. Various types of wastewaters have varying nutrient loads and different types of biochemical composition, which affect the efficiency of their treatment process significantly. Because microalgae are photosynthetic organisms, environmental factors, such as light, temperature, and pH play a significant role in the phycoremediation of wastewater. Light intensity and its duration, the maintenance of optimum temperature, and pH range pose major challenges in ABWWT. In addition to abiotic factors, biotic factors, such as biopollutants that include pathogenic microorganisms greatly affect the quality of treated wastewater. Their proper detection and elimination is a significant requirement in the wastewater process. Therefore, this paper will carry out a critical review of all the previously mentioned key challenges, which act as an impediment in the large scale implementation of ABWWT.

Get full access to this article

View all available purchase options and get full access to this article.

References

Abinandan, S., and S. Shanthakumar. 2015. “Challenges and opportunities in application of microalgae (Chlorophyta) for wastewater treatment: A review.” Renewable Sustainable Energy Rev. 52: 123–132. https://doi.org/10.1016/j.rser.2015.07.086.
Abou-Shanab, R. A. I., M. K. Ji, H. C. Kim, K. J. Paeng, and B. H. Jeon. 2013. “Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production.” J. Environ. Manage. 115: 257–264. https://doi.org/10.1016/j.jenvman.2012.11.022.
Acién Fernández, F. G., C. Gómez-Serrano, and J. M. Fernández-Sevilla. 2018. “Recovery of nutrients from wastewaters using microalgae.” Front. Sustainable Food Syst. 2: 59. https://doi.org/10.3389/fsufs.2018.00059.
Aleya, L., A. Dauta, and C. S. Reynolds. 2011. “Endogenous regulation of the growth-rate responses of a spring-dwelling strain of the freshwater alga, Chlorella minutissima, to light and temperature.” Eur. J. Protistol. 47 (4): 239–244. https://doi.org/10.1016/j.ejop.2011.05.003.
Al Ketife, A. M., S. Judd, and H. Znad. 2017. “Optimization of cultivation conditions for combined nutrient removal and CO2 fixation in a batch photobioreactor.” J. Chem. Technol. Biotechnol. 92 (5): 1085–1093. https://doi.org/10.1002/jctb.5084.
Amengual-Morro, C., G. M. Niell, and A. Martínez-Taberner. 2012. “Phytoplankton as bioindicator for waste stabilization ponds.” J. Environ. Manage. 95: S71–S76. https://doi.org/10.1016/j.jenvman.2011.07.008.
American Public Health Association (APHA). 2005. Standard methods for the examination of water and wastewater, 21st edition. Washington, DC: American Public Health Association.
Ansa, E. D. O., H. J. Lubberding, J. A. Ampofo, G. B. Amegbe, and H. J. Gijzen. 2012. “Attachment of faecal coliform and macro-invertebrate activity in the removal of faecal coliform in domestic wastewater treatment pond systems.” Ecol. Eng. 42: 35–41. https://doi.org/10.1016/j.ecoleng.2012.01.018.
Arcila, J. S., and G. Buitrón. 2016. “Microalgae–bacteria aggregates: Effect of the hydraulic retention time on the municipal wastewater treatment, biomass settleability and methane potential.” J. Chem. Technol. Biotechnol. 91 (11): 2862–2870. https://doi.org/10.1002/jctb.4901.
Ashok, V., A. Shriwastav, and P. Bose. 2014. “Nutrient removal using algal-bacterial mixed culture.” Appl. Biochem. Biotechnol. 174 (8): 2827–2838. https://doi.org/10.1007/s12010-014-1229-z.
Atta, M., A. Idris, A. Bukhari, and S. Wahidin. 2013. “Intensity of blue LED light: A potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris.” Bioresour. Technol. 148: 373–378. https://doi.org/10.1016/j.biortech.2013.08.162.
Azma, M., M. S. Mohamed, R. Mohamad, R. A. Rahim, and A. B. Ariff. 2011. “Improvement of medium composition for heterotrophic cultivation of green microalgae, Tetraselmis suecica, using response surface methodology.” Biochem. Eng. J. 53 (2): 187–195. https://doi.org/10.1016/j.bej.2010.10.010.
Bai, X., P. Lant, and S. Pratt. 2015. “The contribution of bacteria to algal growth by carbon cycling.” Biotechnol. Bioeng. 112 (4): 688–695. https://doi.org/10.1002/bit.25475.
Barsanti, L., and P. Gualtieri. 2014. Algae: Anatomy, biochemistry, and biotechnology. London: CRC Press.
Bernal, C. B., G. Vázquez, I. B. Quintal, and A. L. Bussy. 2008. “Microalgal dynamics in batch reactors for municipal wastewater treatment containing dairy sewage water.” Water Air Soil Pollut. 190 (1–4): 259–270. https://doi.org/10.1007/s11270-007-9598-3.
Bethmann, B., and G. Schönknecht. 2009. “Ph regulation in an acidophilic green alga–a quantitative analysis.” New Phytol. 183 (2): 327–339. https://doi.org/10.1111/j.1469-8137.2009.02862.x.
Blanken, W., M. Janssen, M. Cuaresma, Z. Libor, T. Bhaiji, and R. H. Wijffels. 2014. “Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor.” Biotechnol. Bioeng. 111 (12): 2436–2445. https://doi.org/10.1002/bit.25301.
Bohutskyi, P., D. C. Kligerman, N. Byers, L. K. Nasr, C. Cua, S. Chow, C. Su, Y. Tang, M. J. Betenbaugh, and E. J. Bouwer. 2016. “Effects of inoculum size, light intensity, and dose of anaerobic digestion centrate on growth and productivity of Chlorella and Scenedesmus microalgae and their poly-culture in primary and secondary wastewater.” Algal Res. 19: 278–290. https://doi.org/10.1016/j.algal.2016.09.010.
Bouteleux, C., S. Saby, D. Tozza, J. Cavard, V. Lahoussine, P. Hartemann, and L. Mathieu. 2005. “Escherichia coli behaviour in the presence of organic matter released by algae exposed to water treatment chemicals.” Appl. Environ. Microbiol. 71 (2): 734–740. https://doi.org/10.1128/AEM.71.2.734-740.2005.
Cabanelas, I. T. D., J. Ruiz, Z. Arbib, F. A. Chinalia, C. Garrido-Pérez, F. Rogalla, I. A. Nascimento, and J. A. Perales. 2013. “Comparing the use of different domestic wastewaters for coupling microalgal production and nutrient removal.” Bioresour. Technol. 131: 429–436. https://doi.org/10.1016/j.biortech.2012.12.152.
Caccio, S. M., M. De Giacomo, F. A. Aulicino, and E. Pozio. 2003. “Giardia cysts in wastewater treatment plants in Italy.” Appl. Environ. Microbiol. 69 (6): 3393–3398. https://doi.org/10.1128/AEM.69.6.3393-3398.2003.
Campbell, P. K., T. Beer, and D. Batten. 2011. “Life cycle assessment of biodiesel production from microalgae in ponds.” Bioresour. Technol. 102 (1): 50–56. https://doi.org/10.1016/j.biortech.2010.06.048.
Cho, D. H., J. W. Choi, Z. Kang, B. H. Kim, H. M. Oh, H. S. Kim, and R. Ramanan. 2017. “Microalgal diversity fosters stable biomass productivity in open ponds treating wastewater.” Sci. Rep. 7 (1): 1979. https://doi.org/10.1038/s41598-017-02139-8.
Christenson, L., and R. Sims. 2011. “Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts.” Biotechnol. Adv. 29 (6): 686–702. https://doi.org/10.1016/j.biotechadv.2011.05.015.
Das, D., A. Pathak, and S. Pal. 2018. “Diversity of phytoplankton in some domestic wastewater-fed urban fish pond ecosystems of the Chota Nagpur Plateau in Bankura, India.” Appl. Water Sci. 8 (3): 84. https://doi.org/10.1007/s13201-018-0726-6.
Delanka-Pedige, H. M., S. P. Munasinghe-Arachchige, J. Cornelius, S. M. Henkanatte-Gedera, D. Tchinda, Y. Zhang, and N. Nirmalakhandan. 2019. “Pathogen reduction in an algal-based wastewater treatment system employing Galdieria sulphuraria.” Algal Res. 39: 101423. https://doi.org/10.1016/j.algal.2019.101423.
de Lourdes, F. M. M., R. R. M. D. Josefina, M. M. C. Ulises, and M. R. A. de Jesús. 2017. “Tolerance and nutrients consumption of Chlorella vulgaris growing in mineral medium and real wastewater under laboratory conditions.” Open Agric. 2 (1): 394–400. https://doi.org/10.1515/opag-2017-0042.
Di Pippo, F., N. T. W. Ellwood, A. Guzzon, L. Siliato, E. Micheletti, R. De Philippis, and P. B. Albertano. 2012. “Effect of light and temperature on biomass, photosynthesis and capsular polysaccharides in cultured phototrophic biofilms.” J. Appl. Phycol. 24 (2): 211–220. https://doi.org/10.1007/s10811-011-9669-0.
Dubinsky, Z., and N. Stambler. 2009. “Photoacclimation processes in phytoplankton: Mechanisms, consequences, and applications.” Aquat. Microb. Ecol. 56: 163–176. https://doi.org/10.3354/ame01345.
EPA. 1997. Waste water treatment manuals: Primary, secondary and tertiary treatment. Washington, DC: EPA. https://www.epa.ie/pubs/advice/water/wastewater/EPA_water_%20treatment_manual_primary_secondary_tertiary1.pdf.
Feenstra, S., R. Hussain, and W. van der Hoek. 2000. Health risks of irrigation with untreated urban wastewater in the southern Punjab, Pakistan. Lahore, Pakistan: International Water Management Institute. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.459.1089&rep=rep1&type=pdf.
Fica, Z. T., and R. C. Sims. 2016. “Algae-based biofilm productivity utilizing dairy wastewater: Effects of temperature and organic carbon concentration.” J. Biol. Eng. 10 (1): 18. https://doi.org/10.1186/s13036-016-0039-y.
Furtado, A. L. F. F., M. do Carmo Calijuri, A. S. Lorenzi, R. Y. Honda, D. B. Genuário, and M. F. Fiore. 2009. “Morphological and molecular characterization of cyanobacteria from a Brazilian facultative wastewater stabilization pond and evaluation of microcystin production.” Hydrobiologia 627 (1): 195–209. https://doi.org/10.1007/s10750-009-9728-6.
Gao, F., Z. H. Yang, C. Li, G. M. Zeng, D. H. Ma, and L. Zhou. 2015. “A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent.” Bioresour. Technol. 179: 8–12. https://doi.org/10.1016/j.biortech.2014.11.108.
Garcia, J., R. Mujeriego, and M. Hernandez-Marine. 2000. “High rate algal pond operating strategies for urban wastewater nitrogen removal.” J. Appl. Phycol. 12 (3–5): 331–339. https://doi.org/10.1023/A:1008146421368.
Ge, S., and P. Champagne. 2017. “Cultivation of the marine macroalgae Chaetomorpha linum in municipal wastewater for nutrient recovery and biomass production.” Environ. Sci. Technol. 51 (6): 3558–3566. https://doi.org/10.1021/acs.est.6b06039.
George, I., P. Crop, and P. Servais. 2002. “Fecal coliform removal in wastewater treatment plants studied by plate counts and enzymatic methods.” Water Res. 36 (10): 2607–2617. https://doi.org/10.1016/S0043-1354(01)00475-4.
Girard, J.-M., M.-L. Roy, M. B. Hafsa, J. Gagnon, N. Faucheux, M. Heitz, R. Tremblay, and J. Deschenes. 2014. “Mixotrophic cultivation of green microalgae Scenedesmus obliquus on cheese whey permeate for biodiesel production.” Algal Res. 5: 241–248. https://doi.org/10.1016/j.algal.2014.03.002.
Gómez, M., A. De la Rua, G. Garralón, F. Plaza, E. Hontoria, and M. A. Gómez. 2006. “Urban wastewater disinfection by filtration technologies.” Desalination 190 (1–3): 16–28. https://doi.org/10.1016/j.desal.2005.07.014.
Goncalves, A. L., J. C. Pires, and M. Simoes. 2017. “A review on the use of microalgal consortia for wastewater treatment.” Algal Res. 24: 403–415. https://doi.org/10.1016/j.algal.2016.11.008.
Gross, M., W. Henry, C. Michael, and Z. Wen. 2013. “Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest.” Bioresour. Technol. 150: 195–201. https://doi.org/10.1016/j.biortech.2013.10.016.
Gupta, S., R. A. Pandey, and S. B. Pawar. 2017. “Bioremediation of synthetic high–chemical oxygen demand wastewater using microalgal species Chlorella pyrenoidosa.” Biorem. J. 21 (1): 38–51. https://doi.org/10.1080/10889868.2017.1282936.
Guzzon, A., A. Bohn, M. Diociaiuti, and P. Albertano. 2008. “Cultured phototrophic biofilms for phosphorus removal in wastewater treatment.” Water Res. 42 (16): 4357–4367. https://doi.org/10.1016/j.watres.2008.07.029.
Han, F., J. Huang, Y. Li, W. Wang, M. Wan, G. Shen, and J. Wang. 2013. “Enhanced lipid productivity of Chlorella pyrenoidosa through the culture strategy of semi-continuous cultivation with nitrogen limitation and pH control by CO2.” Bioresour. Technol. 136: 418–424. https://doi.org/10.1016/j.biortech.2013.03.017.
He, P. J., B. Mao, F. Lü, L. M. Shao, D. J. Lee, and J. S. Chang. 2013. “The combined effect of bacteria and Chlorella vulgaris on the treatment of municipal wastewaters.” Bioresour. Technol. 146: 562–568. https://doi.org/10.1016/j.biortech.2013.07.111.
Hijnen, W. A. M., A. J. Van Der Veer, E. F. Beerendonk, and G. J. Medema. 2004. “Increased resistance of environmental anaerobic spores to inactivation by UV.” Water Supply 4 (2): 55–61. https://doi.org/10.2166/ws.2004.0028.
Holloway, T. G., and A. Soares. 2018. “Influence of internal fluid velocities and media fill ratio on submerged aerated filter hydrodynamics and process performance for municipal wastewater treatment.” Process Saf. Environ. Prot. 114: 179–191. https://doi.org/10.1016/j.psep.2017.12.018.
Hoyer, O. 2004. “Water disinfection with UV radiation—requirements and realization.” In Proc., European Conf. UV Karlsruhe, UV Radiation. Effects Technol. Red Hook, NY: Curran Associates.
Hussein, N. R., and S. M. Gharib. 2012. “Studies on spatio-temporal dynamics of phytoplankton in El-Umum drain in west of Alexandria, Egypt.” J. Environ. Biol. 33 (1): 101–105.
Hwang, J. H., J. Church, S. J. Lee, J. Park, and W. H. Lee. 2016. “Use of microalgae for advanced wastewater treatment and sustainable bioenergy generation.” Environ. Eng. Sci. 33 (11): 882–897. https://doi.org/10.1089/ees.2016.0132.
Jeon, Y. C., C. W. Cho, and Y. S. Yun. 2005. “Measurement of microalgal photosynthetic activity depending on light intensity and quality.” Biochem. Eng. J. 27 (2): 127–131. https://doi.org/10.1016/j.bej.2005.08.017.
Ji, M. K., R. A. I. Abou-Shanab, S. H. Kim, E. S. Salama, S. H. Lee, A. N. Kabra, Y. S. Lee, S. Hong, and B. H. Jeon. 2013a. “Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production.” Ecol. Eng. 58: 142–148. https://doi.org/10.1016/j.ecoleng.2013.06.020.
Ji, M. K., H. C. Kim, V. R. Sapireddy, H. S. Yun, R. A. Abou-Shanab, J. Choi, W. Lee, T. C. Timmes, and B. H. Jeon. 2013b. “Simultaneous nutrient removal and lipid production from pretreated piggery wastewater by Chlorella vulgaris YSW-04.” Appl. Microbiol. Biotechnol. 97 (6): 2701–2710. https://doi.org/10.1007/s00253-012-4097-x.
Ji, X., M. Jiang, J. Zhang, X. Jiang, and Z. Zheng. 2018. “The interactions of algae-bacteria symbiotic system and its effects on nutrients removal from synthetic wastewater.” Bioresour. Technol. 247: 44–50. https://doi.org/10.1016/j.biortech.2017.09.074.
Johnson, M. B., and Z. Wen. 2010. “Development of an attached microalgal growth system for biofuel production.” Appl. Microbiol. Biotechnol. 85 (3): 525–534. https://doi.org/10.1007/s00253-009-2133-2.
Kang, Y.-H., J.-D. Kim, B.-H. Kim, D.-S. Kong, and M.-S. Han. 2005. “Isolation and characterization of a bio-agent antagonistic to diatom, Stephanodiscus hantzschii.” J. Appl. Microbiol. 98 (5): 1030–1038. https://doi.org/10.1111/j.1365-2672.2005.02533.x.
Kebede-Westhead, E., C. Pizarro, W. W. Mulbry, and A. C. Wilkie. 2003. “Production and nutrient removal by periphyton grown under different loading rates of anaerobically digested flushed dairy manure.” J. Phycol. 39 (6): 1275–1282. https://doi.org/10.1111/j.0022-3646.2003.02-159.x.
Kim, G. Y., Y. M. Yun, H. S. Shin, and J. I. Han. 2017. “Cultivation of four microalgae species in the effluent of anaerobic digester for biodiesel production.” Bioresour. Technol. 224: 738–742. https://doi.org/10.1016/j.biortech.2016.11.048.
Kothari, R., R. Prasad, V. Kumar, and D. P. Singh. 2013. “Production of biodiesel from microalgae Chlamydomonas polypyrenoideum grown on dairy industry wastewater.” Bioresour. Technol. 144: 499–503. https://doi.org/10.1016/j.biortech.2013.06.116.
Larsdotter, K. 2006. “Wastewater treatment with microalgae—A literature review.” Vatten 62 (1): 31.
Lavrinovičs, A., and T. Juhna. 2017. “Review on challenges and limitations for algae-based wastewater treatment.” Constr. Sci. 20 (1): 17–25. https://doi.org/10.2478/cons-2017-0003.
LeChevallier, M. W., and K. K. Au. 2004. Water treatment and pathogen control, 1–107. London: IWA Publishing.
Li, C., H. Yang, Y. Li, L. Cheng, M. Zhang, L. Zhang, and W. Wang. 2013. “Novel bioconversions of municipal effluent and CO2 into protein riched Chlorella vulgaris biomass.” Bioresour. Technol. 132: 171–177. https://doi.org/10.1016/j.biortech.2012.12.017.
Li, Y., Y. F. Chen, P. Chen, M. Min, W. Zhou, B. Martinez, J. Zhu, and R. Ruan. 2011. “Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production.” Bioresour. Technol. 102 (8): 5138–5144. https://doi.org/10.1016/j.biortech.2011.01.091.
Li, Z., L. Haifeng, Y. Zhang, M. Shanshan, L. Baoming, L. Zhidan, D. Na, L. Minsheng, S. Buchun, and L. Jianwen. 2017. “Effects of strain, nutrients concentration and inoculum size on microalgae culture for bioenergy from post hydrothermal liquefaction wastewater.” Int. J. Agric. Biol. Eng. 10 (2): 194–204.
Lim, S. L., W. L. Chu, and S. M. Phang. 2010. “Use of Chlorella vulgaris for bioremediation of textile wastewater.” Bioresour. Technol. 101 (19): 7314–7322. https://doi.org/10.1016/j.biortech.2010.04.092.
Lin, J., and A. Ganesh. 2013. “Water quality indicators: Bacteria, coliphages, enteric viruses.” Int. J. Environ. Health Res. 23 (6): 484–506. https://doi.org/10.1080/09603123.2013.769201.
Liu, J., and W. Vyverman. 2015. “Differences in nutrient uptake capacity of the benthic filamentous algae Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. under varying N/P conditions.” Bioresour. Technol. 179: 234–242. https://doi.org/10.1016/j.biortech.2014.12.028.
Liu, X., K. Ying, G. Chen, C. Zhou, W. Zhang, X. Zhang, Z. Cai, T. Holmes, and Y. Tao. 2017. “Growth of Chlorella vulgaris and nutrient removal in the wastewater in response to intermittent carbon dioxide.” Chemosphere 186: 977–985. https://doi.org/10.1016/j.chemosphere.2017.07.160.
Lundquist, T. J., I. C. Woertz, N. W. T. Quinn, and J. R. Benemann. 2010. “A realistic technology and engineering assessment of algae biofuel production.” Energy Biosci. Inst. 188: 1–178.
Lürling, M. F. L. L. W., and W. Beekman. 2006. “Influence of food-type on the population growth rate of the rotifier Brachionus calyciflorus in short-chronic assays.” Acta Zool. Sin. 52 (1): 70–78.
Lv, J. M., L. H. Cheng, X. H. Xu, L. Zhang, and H. L. Chen. 2010. “Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions.” Bioresour. Technol. 101 (17): 6797–6804. https://doi.org/10.1016/j.biortech.2010.03.120.
Ma, X., W. Zhou, Z. Fu, Y. Cheng, M. Min, Y. Liu, Y. Zhang, P. Chen, and R. Ruan. 2014. “Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system.” Bioresour. Technol. 167: 8–13. https://doi.org/10.1016/j.biortech.2014.05.087.
Mao, Y., X. Quan, H. Zhao, Y. Zhang, S. Chen, T. Liu, and W. Quan. 2017. “Accelerated start-up of moving bed biofilm process with novel electrophilic suspended biofilm carriers.” Chem. Eng. J. 315: 364–372. https://doi.org/10.1016/j.cej.2017.01.041.
Markou, G., D. Vandamme, and K. Muylaert. 2014. “Ammonia inhibition on Arthrospira platensis in relation to the initial biomass density and pH.” Bioresour. Technol. 166: 259–265. https://doi.org/10.1016/j.biortech.2014.05.040.
Martins, J., L. Peixe, and V. Vasconcelos. 2010. “Cyanobacteria and bacteria co-occurrence in a wastewater treatment plant: Absence of allelopathic effects.” Water Sci. Technol. 62 (8): 1954–1962. https://doi.org/10.2166/wst.2010.551.
Milledge, J. J., and S. Heaven. 2013. “A review of the harvesting of micro-algae for biofuel production.” Rev. Environ. Sci. Bio/Technol. 12 (2): 165–178. https://doi.org/10.1007/s11157-012-9301-z.
Moondra, N., N. D. Jariwala, and R. A. Christian. 2020. “Sustainable treatment of domestic wastewater through microalgae.” Int. J. Phytorem. 22: 1480–1486. https://doi.org/10.1080/15226514.2020.1782829.
Mujtaba, G., and K. Lee. 2017. “Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge.” Water Res. 120: 174–184. https://doi.org/10.1016/j.watres.2017.04.078.
Narwani, A., A. R. Lashaway, D. C. Hietala, P. E. Savage, and B. J. Cardinale. 2016. “Power of plankton: Effects of algal biodiversity on biocrude production and stability.” Environ. Sci. Technol. 50 (23): 13142–13150. https://doi.org/10.1021/acs.est.6b03256.
Naumann, T., Z. Çebi, B. Podola, and M. Melkonian. 2013. “Growing microalgae as aquaculture feeds on twin-layers: a novel solid-state photobioreactor.” J. Appl. Phycol. 25 (5): 1413–1420. https://doi.org/10.1007/s10811-012-9962-6.
Okoh, A. I., E. E. Odjadjare, E. O. Igbinosa, and A. N. Osode. 2007. “Wastewater treatment plants as a source of microbial pathogens in receiving watersheds.” Afr. J. Biotechnol. 6 (25): 2932–2944. https://doi.org/10.5897/AJB2007.000-2462.
Pires, J. C. M., M. C. M. Alvim-Ferraz, F. G. Martins, and M. Simões. 2013. “Wastewater treatment to enhance the economic viability of microalgae culture.” Environ. Sci. Pollut. Res. 20 (8): 5096–5105. https://doi.org/10.1007/s11356-013-1791-x.
Qu, Z., P. Duan, X. Cao, M. Liu, L. Lin, and M. Li. 2019. “Comparison of monoculture and mixed culture (Scenedesmus obliquus and wild algae) for C, N, and P removal and lipid production.” Environ. Sci. Pollut. Res. 26 (20): 20961–20968. https://doi.org/10.1007/s11356-019-05339-z.
Rajendran, A., and B. Hu. 2016. “Mycoalgae biofilm: Development of a novel platform technology using algae and fungal cultures.” Biotechnol. Biofuels 9 (1): 112. https://doi.org/10.1186/s13068-016-0533-y.
Rani, S., R. Chowdhury, W. Tao, and A. Srinivasan. 2019. “Tertiary treatment of municipal wastewater using isolated algal strains: Treatment efficiency and value-added products recovery.” Chem. Ecol. 36 (1): 48–65. https://doi.org/10.1080/02757540.2019.1688307.
Rao, V. C. 2013. Vol. 13 of Environmental Virology, 18–39. Berlin: Springer Science & Business Media.
Reckitt-Benckiser, R. S. C. 2015. Rate of photosynthesis: Limiting factors. Cambridge, UK: Royal Society of Chemistry. https://edu.rsc.org/download?ac=12620.
Ren, H. Y., B. F. Liu, F. Kong, L. Zhao, G. J. Xie, and N. Q. Ren. 2014. “Energy conversion analysis of microalgal lipid production under different culture modes.” Bioresour. Technol. 166: 625–629. https://doi.org/10.1016/j.biortech.2014.05.106.
Rezaei, R., A. Akbulut, and S. L. Sanin. 2019. “Effect of algae acclimation to the wastewater medium on the growth kinetics and nutrient removal capacity.” Environ. Monit. Assess. 191 (11): 679. https://doi.org/10.1007/s10661-019-7856-7.
Richmond, A. 2004. “Biological principles of mass cultivation. Handbook of Microalgal Culture.” Biotechnol. Appl. Phycol. 577: 125–177.
Rosetta, C. H., and G. B. McManus. 2003. “Feeding by ciliates on two harmful algal bloom species, Prymnesium parvum and Prorocentrum minimum.” Harmful Algae 2 (2): 109–126. https://doi.org/10.1016/S1568-9883(03)00019-2.
Rossi, F., E. J. Olguín, L. Diels, and R. De Philippis. 2015. “Microbial fixation of CO2 in water bodies and in drylands to combat climate change, soil loss and desertification.” New Biotechnol. 32 (1): 109–120. https://doi.org/10.1016/j.nbt.2013.12.002.
Santhanam, N. 2009. Oilgae guide to algae-based wastewater treatment, 13–21. Chennai, India: Home of Algal Energy.
Schnurr, P. J., and D. G. Allen. 2015. “Factors affecting algae biofilm growth and lipid production: A review.” Renewable Sustainable Energy Rev. 52: 418–429. https://doi.org/10.1016/j.rser.2015.07.090.
Schwarz, K. R., J. P. S. Sidhu, S. Toze, Y. Li, E. Lee, Y. Gruchlik, and D. L. Pritchard. 2019. “Decay rates of Escherichia coli, Enterococcus spp., F-specific bacteriophage MS2, somatic coliphage and human adenovirus in facultative pond sludge.” Water Res. 154: 62–71. https://doi.org/10.1016/j.watres.2019.01.027.
Shayan, S. I., F. A. Agblevor, L. Bertin, and R. C. Sims. 2016. “Hydraulic retention time effects on wastewater nutrient removal and bioproduct production via rotating algal biofilm reactor.” Bioresour. Technol. 211: 527–533. https://doi.org/10.1016/j.biortech.2016.03.104.
Shunyu, S., L. Yongding, S. Yinwu, L. Genbao, and L. Dunhai. 2006. “Lysis of Aphanizomenon flos-aquae (cyanobacterium) by a bacterium Bacillus cereus.” Biol. Control 39 (3): 345–351. https://doi.org/10.1016/j.biocontrol.2006.06.011.
Singh, S. P., and P. Singh. 2015. “Effect of temperature and light on the growth of algae species: A review.” Renewable Sustainable Energy Rev. 50: 431–444. https://doi.org/10.1016/j.rser.2015.05.024.
Soeder, C. J., E. Hegewald, E. Fiolitakis, and J. U. Grobbelaar. 1985. “Temperature dependence of population growth in a green microalga: Thermodynamic characteristics of growth intensity and the influence of cell concentration.” Z. Naturforsch., C 40 (3–4): 227–233. https://doi.org/10.1515/znc-1985-3-416.
Su, Y., A. Mennerich, and B. Urban. 2012. “Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment: Influence of algae and sludge inoculation ratios.” Bioresour. Technol. 105: 67–73. https://doi.org/10.1016/j.biortech.2011.11.113.
Sutherland, D. L., M. H. Turnbull, P. A. Broady, and R. J. Craggs. 2014. “Effects of two different nutrient loads on microalgal production, nutrient removal and photosynthetic efficiency in pilot-scale wastewater high rate algal ponds.” Water Res. 66: 53–62. https://doi.org/10.1016/j.watres.2014.08.010.
Tam, N. F. Y., and Y. S. Wong. 1989. “Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp.” Environ. Pollut. 58 (1): 19–34. https://doi.org/10.1016/0269-7491(89)90234-0.
Tanji, Y., K. Mizoguchi, T. Akitsu, M. Morita, K. Hori, and H. Unno. 2002. “Fate of coliphage in waste water treatment process and detection of phages carrying the Shiga toxin type 2 gene.” Water Sci. Technol. 46 (11–12): 285–289. https://doi.org/10.2166/wst.2002.0751.
Teoh, M. L., S. M. Phang, and W. L. Chu. 2013. “Response of Antarctic, temperate, and tropical microalgae to temperature stress.” J. Appl. Phycol. 25 (1): 285–297. https://doi.org/10.1007/s10811-012-9863-8.
Ugwu, C. U., H. Aoyagi, and H. Uchiyama. 2007. “Influence of irradiance, dissolved oxygen concentration, and temperature on the growth of Chlorella sorokiniana.” Photosynthetica 45 (2): 309–311. https://doi.org/10.1007/s11099-007-0052-y.
Vasseur, C., G. Bougaran, M. Garnier, J. Hamelin, C. Leboulanger, M. Le Chevanton, B. Mostajir, B. Sialve, and E. Fouilland. 2012. “Carbon conversion efficiency and population dynamics of a marine algae–bacteria consortium growing on simplified synthetic digestate: First step in a bioprocess coupling algal production and anaerobic digestion.” Bioresour. Technol. 119: 79–87. https://doi.org/10.1016/j.biortech.2012.05.128.
Wang, H., H. Xiong, Z. Hui, and X. Zeng. 2012. “Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids.” Bioresour. Technol. 104: 215–220. https://doi.org/10.1016/j.biortech.2011.11.020.
Wang, H., W. Zhang, L. Chen, J. Wang, and T. Liu. 2013. “The contamination and control of biological pollutants in mass cultivation of microalgae.” Bioresour. Technol. 128: 745–750. https://doi.org/10.1016/j.biortech.2012.10.158.
Wang, J. H., T. Y. Zhang, G. H. Dao, X. Q. Xu, X. X. Wang, and H. Y. Hu. 2017. “Microalgae-based advanced municipal wastewater treatment for reuse in water bodies.” Appl. Microbiol. Biotechnol. 101 (7): 2659–2675. https://doi.org/10.1007/s00253-017-8184-x.
Wang, L., M. Min, Y. Li, P. Chen, Y. Chen, Y. Liu, Y. Wang, and R. Ruan. 2010. “Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant.” Appl. Biochem. Biotechnol. 162 (4): 1174–1186. https://doi.org/10.1007/s12010-009-8866-7.
Weaver, L., J. Webber, N. Karki, K. Thomas, M. Mackenzie, S. Lin, A. Inglis, and W. Williamson. 2016. “Optimising wastewater ponds for effective pathogen removal.” In Proc., 11th IWA Specialist Group Conf. on Wastewater Pond Technologies, 21–23. Leeds, UK: Univ. of Leeds.
Whitton, R., A. Le Mével, M. Pidou, F. Ometto, R. Villa, and B. Jefferson. 2016. “Influence of microalgal N and P composition on wastewater nutrient remediation.” Water Res. 91: 371–378. https://doi.org/10.1016/j.watres.2015.12.054.
Whitton, R., F. Ometto, M. Pidou, P. Jarvis, R. Villa, and B. Jefferson. 2015. “Microalgae for municipal wastewater nutrient remediation: Mechanisms, reactors, and the outlook for tertiary treatment.” Environ. Technol. Rev. 4 (1): 133–148. https://doi.org/10.1080/21622515.2015.1105308.
Wong, Y. K. 2016. “Effects of light intensity, illumination cycles on microalgae Haematococcus pluvialis for production of astaxanthin.” J. Mar. Biol. Aquacul. 2 (2): 1–6.
Wong, Y. K., K. K. L. Yung, Y. F. Tsang, Y. Xia, L. Wang, and K. C. Ho. 2015. “Scenedesmus quadricauda for nutrient removal and lipid production in wastewater.” Water Environ. Res. 87 (12): 2037–2044. https://doi.org/10.2175/106143015X14362865227193.
Yee, W. 2015. “Feasibility of various carbon sources and plant materials in enhancing the growth and biomass productivity of the freshwater microalgae Monoraphidium griffithi NS16.” Bioresour. Technol. 196: 1–8. https://doi.org/10.1016/j.biortech.2015.07.033.
Yuan, X., M. Wang, C. Park, A. K. Sahu, and S. J. Ergas. 2012. “Microalgae growth using high-strength wastewater followed by anaerobic co-digestion.” Water Environ. Res. 84 (5): 396–404. https://doi.org/10.2175/106143011X13233670703242.
Zarpelon, F., D. Galiotto, C. Aguzzoli, L. N. Carli, C. A. Figueroa, I. J. R. Baumvol, G. Machado, J. da Silva Crespo, and M. Giovanela. 2016. “Removal of coliform bacteria from industrial wastewaters using polyelectrolytes/silver nanoparticles self-assembled thin films.” J. Environ. Chem. Eng. 4 (1): 137–146. https://doi.org/10.1016/j.jece.2015.11.013.
Zhou, Y., L. Schideman, G. Yu, and Y. Zhang. 2013. “A synergistic combination of algal wastewater treatment and hydrothermal biofuel production maximized by nutrient and carbon recycling.” Energy Environ. Sci. 6 (12): 3765–3779. https://doi.org/10.1039/c3ee24241b.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25Issue 2April 2021

History

Published online: Dec 9, 2020
Published in print: Apr 1, 2021
Discussion open until: May 9, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India (corresponding author). ORCID: https://orcid.org/0000-0002-4464-0734. Email: [email protected]
Neelam Gunjyal [email protected]
Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India. Email: [email protected]
C. S. P. Ojha, F.ASCE [email protected]
Professor, Dept. of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India. Email: [email protected]
Rajendra Prasad Singh [email protected]
Professor, School of Civil Engineering, Southeast Univ., Nanjing 210096, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share