Technical Papers
Mar 19, 2019

Characterization of the Overtopping Flow through the Downstream Shell of Rockfill Dams

This article has been corrected.
VIEW CORRECTION
Publication: Journal of Hydraulic Engineering
Volume 145, Issue 6

Abstract

In 1997, Toledo developed a numerical model to characterize the flow through the downstream shell of a rockfill dam for the overtopping scenario. He performed a parametric study focused on nondeformable, completely saturated dams and analyzed the effect of different geometric and rockfill parameters on the characteristics of pressure heads and throughflow, such as the infiltration and emergence lengths. This paper provides experimental validation of this theoretical work. Six physical models were tested in a flume, modeling the downstream shell of 1-m high rockfill dams and using three uniform gravels with D50 sizes varying between 0.0126 and 0.045 m. The conceptual frame developed by Toledo was confirmed, and the derived results allow the estimation of the minimum discharge needed for full saturation of the downstream shell, and also the determination of the pressure heads and the position of the first emergence point for that saturated state. Differences between the physical and numerical data varied around 23% for the saturation discharge and around 7.0% for the pressure head, and were reduced to 3.9% for the emergence length. Experimental observations were also used to fit new formulas for the phreatic surface profile. Future research is needed in areas related to the anisotropy of rockfill dams and the definition of nonlinear resistance laws based on the main characteristics of the rockfill.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

To the Spanish Ministry of Science and Innovation for financing the research project EDAMS, “Rotura del elemento impermeable de presas de materiales sueltos en situación de sobrevertido y análisis de protecciones combinando modelación física e inteligencia artificial,” with code BIA2010-21350-C03-03; and to the Ministry of Economy and Competitiveness for financing the research project HIRMA, “Desarrollo y validación de una aplicación para la determinación del hidrograma de rotura de presas de materiales sueltos, a partir de la configuración geomecánica particular,” with code RTC-2016-4967-5.

References

AENOR (Spanish Association for Standardization). 1994a. Determination of a soil density. Method of balance with water bath. UNE 103301. Madrid, Spain: AENOR.
AENOR (Spanish Association for Standardization). 1994b. Determination of the relative density of the particles of a soil. UNE 103302. Madrid, Spain: AENOR.
AENOR (Spanish Association for Standardization). 1995. Particle size analysis of a soil by screening. UNE 103101. Madrid, Spain: AENOR.
Alves, R. M., M. Á. Toledo, and R. Morán. 2017. “Overflow for the complete failure of the downstream shell of a rockfill dam.” In Proc., Protections 2016: 2nd Int. Seminar on Dam Protection Against Overtopping, Colorado State Univ. Fort Collins, CO: Libraries, Colorado State Univ.
ASCE/EWRI Task Committee on Dam/Levee Breaching. 2011. “Earthen embankment breaching.” J. Hydraul. Eng. 137 (12): 1549–1564. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000498.
Bureau of Reclamation. 2012. “Embankment dams. Chap. 2: Embankment design. Phase 4 (Final).” Design Standards No. 13: 2(1)–2(90). Washington, DC: US Dept. of the Interior.
Chiganne, F., C. Marche, and T.-F. Mahdi. 2014. “Evaluation of the overflow failure scenario and hydrograph of an embankment dam with a concrete upstream slope protection.” Nat. Hazards 71 (1): 21–39. https://doi.org/10.1007/s11069-013-0897-2.
Coleman, S. E., D. P. Andrews, and M. G. Webby. 2002. “Overtopping breaching of noncohesive homogeneous embankments.” J. Hydraul. Eng. 128 (9): 829–838. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:9(829).
Costa, J. E., and R. L. Schuster. 1988. “The formation and failure of natural dams.” Geol. Soc. Am. Bull 100 (7): 1054–1068. https://doi.org/10.1130/0016-7606(1988)100%3C1054:TFAFON%3E2.3.CO;2.
Ergun, S. 1952. “Fluid flow through packed columns.” Chem. Eng. Prog 48 (2): 89–94.
Feliciano Cestero, J. A., J. Imran, and M. H. Chaudhry. 2015. “Experimental investigation of the effects of soil properties on levee breach by overtopping.” J. Hydraul. Eng. 141 (4): 04014085. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000964.
Ferdos, F., A. Worman, and I. Ekstrom. 2015. “Hydraulic conductivity of coarse rockfill used in hydraulic structures.” Transp. Porous Media 108 (2): 367–391. https://doi.org/10.1007/s11242-015-0481-1.
Ferdos, F., J. Yang, and A. Wörman. 2013. “Characterization of hydraulic behaviours of coarse rock materials in a large permeameter.” J. Geosci. Environ. Prot 1 (3): 1–6. https://doi.org/10.4236/gep.2013.13001.
Foster, M., R. Fell, and M. Spannagle. 2000. “The statistics of embankment dam failures and accidents.” Can. Geotech. J 37 (5): 1000–1024. https://doi.org/10.1139/t00-030.
Franca, M. J., and A. B. Almeida. 2002. “Experimental tests on rockfill dam breaching process.” In Proc., IAHR—Int. Symp. on Hydraulic and Hydrological Aspects of Reliability and Safety Assessment of Hydraulic Structures. Beijing: IAHR.
Froehlich, D. C. 2008. “Embankment dam breach parameters and their uncertainties.” J. Hydraul. Eng. 134 (12): 1708–1721. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:12(1708).
Garga, V. K., D. Hansen, and D. R. Townsend. 1995. “Mechanisms of massive failure for flowthrough rockfill embankments.” Can. Geotech. J 32 (6): 927–938. https://doi.org/10.1139/t95-092.
George, G. H., and D. Hansen. 1992. “Conversion between quadratic and power law for non-Darcy flow.” J. Hydraul. Eng. 118 (5): 792–797. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:5(792).
Gregoretti, C., A. Maltauro, and S. Lanzoni. 2010. “Laboratory experiments on the failure of coarse homogeneous sediment natural dams on a sloping bed.” J. Hydraul. Eng. 136 (11): 868–879. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000259.
Hahn, W., G. J. Hanson, and K. R. Cook. 2000. “Breach morphology observations of embankment overtopping tests.” In Proc., 2000 Joint Conf. on Water Resources Engineering and Water Resources Planning and Management: Building Partnerships, edited by R. H. Hotchkiss and M. Glade, 1–10. Reston, VA: ASCE.
Hansen, D. 1992. The behaviour of flowthrough rockfill dams. Ottawa: Univ. of Ottawa.
Hansen, D., and A. Roshanfekr. 2012a. “Assessment of potential for seepage-induced unraveling failure of flow-through rockfill dams.” Int. J. Geomech. 12 (5): 560–573. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000145.
Hansen, D., and A. Roshanfekr. 2012b. “Use of index gradients and default tailwater depth as aids to hydraulic modeling of flow-through rockfill dams.” J. Hydraul. Eng. 138 (8): 726–735. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000572.
Hansen, D., W. Z. Zhao, and S. Y. Han. 2005. “Hydraulic performance and stability of coarse rockfill deposits.” Proc. Inst. Civ. Eng. Water Manage. 158 (WM4): 163–175. https://doi.org/10.1680/wama.2005.158.4.163.
Hanson, G. J., K. R. Cook, and S. L. Hunt. 2005. “Physical modeling of overtopping erosion and breach formation of cohesive embankments.” Trans. ASAE 48 (5): 1783–1794. https://doi.org/10.13031/2013.20012.
Hanson, G. J., K. M. Robinson, and K. R. Cook. 2001. “Prediction of headcut migration using a deterministic approach.” Trans. ASAE 44 (3): 525. https://doi.org/10.13031/2013.6112.
Javadi, N., and T. F. Mahdi. 2014. “Experimental investigation into rockfill dam failure initiation by overtopping.” Nat. Hazards 74 (2): 623–637. https://doi.org/10.1007/s11069-014-1201-9.
Larese, A., R. Rossi, E. Oñate, M. Á. Toledo, R. Morán, and H. Campos. 2015. “Numerical and experimental study of overtopping and failure of rockfill dams.” Int. J. Geomech. 15 (4): 04014060. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000345.
Li, B., and V. K. Garga. 1998. “Theoretical solution for seepage flow in overtopped rockfill.” J. Hydraul. Eng. 124 (2): 213–217. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:2(213).
Li, B., V. K. Garga, and M. H. Davies. 1998. “Relationships for non-Darcy flow in rockfill.” J. Hydraul. Eng. 124 (2): 206–212. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:2(206).
Morán, R. 2013. Safety improvements of rockfill dams with respect to accidental leakage using rockfill downstream toes. [In Spanish.] Madrid, Spain: Universidad Politécnica de Madrid.
Morán, R., and M. Á. Toledo. 2011. “Research into protection of rockfill dams from overtopping using rockfill downstream toes.” Can. J. Civ. Eng. 38 (12): 1314–1326. https://doi.org/10.1139/l11-091.
Morteza, S., S. M. Reza, and B. Habibollah. 2014. “Concept of hydraulic porosity and experimental investigation in nonlinear flow analysis through rubble-mound breakwaters.” J. Hydrol. 508 (1): 266–272. https://doi.org/10.1016/j.jhydrol.2013.11.005.
Parkin, A. K. 1963. Rockfill dams with inbuilt spillways. Melbourne, Australia: Univ. of Melbourne.
Parkin, A. K. 1971. “Field solutions for turbulent seepage flow.” J. Soil Mech. Found. Div. 97 (1): 209–218.
Salahi, M.-B., M. Sedghi-Asl, and M. Parvizi. 2015. “Nonlinear flow through a packed-column experiment.” J. Hydrol. Eng. 20 (9): 04015003. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001166.
Sedghi-Asl, M., H. Rahimi, J. Farhoudi, A. Hoorfar, and S. Hartmann. 2014. “One-dimensional fully developed turbulent flow through coarse porous medium.” J. Hydrol. Eng. 19 (7): 1491–1496. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000937.
Siddiqua, S., J. A. Blatz, and N. C. Privat. 2013. “Evaluating the behaviour of instrumented prototype rockfill dams.” Can. Geotech. J. 50 (3): 298–310. https://doi.org/10.1139/cgj-2011-0371.
Soualmia, A., M. Jouini, L. Masbernat, and D. Dartus. 2015. “An analytical model for water profile calculations in free surface flows through rockfills.” J. Theor. Appl. Mech. 53 (1): 209–215. https://doi.org/10.15632/jtam-pl.53.1.209.
Stephenson, D. J. 1979. Rockfill in hydraulic engineering. New York: Elsevier.
Toledo, M. Á. 1997. Rockfill dams under overtopping scenario. Study of the throughflow and stability to sliding. [In Spanish.] Madrid, Spain: Universidad Politécnica de Madrid.
Toledo, M. Á., H. Campos, Á. Lara, and R. Cobo. 2015. “Failure of the downstream shoulder of rockfill dams in overtopping or accidental leakage scenario.” In Dam protections against overtopping and accidental leakage, edited by M. Á. Toledo, R. Morán, and E. Oñate, 89–99. Madrid, Spain: CRC Press.
Toledo, M. Á., R. Morán, and H. Campos. 2012. “Modeling of the throughflow in non-linear porous media using finite differences. Application to overtopping scenarios in rockfill dams.” [In Spanish.] Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 28 (4): 225–236. https://doi.org/10.1016/j.rimni.2012.02.002.
Venkataraman, P., and P. Rama Mohan Rao. 1998. “Darcian, transitional, and turbulent flow through porous media.” J. Hydraul. Eng. 124 (8): 840–846. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:8(840).
Wahl, T. L. 1998. Prediction of embankment dam breach parameters—A Literature review and needs assessment. Denver: Bureau of Reclamation, Dam Safety Office.
Wahl, T. L. 2004. “Uncertainty of predictions of embankment dam breach parameters.” J. Hydraul. Eng. 130 (5): 389–397. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:5(389).
Wahl, T. L. 2014. Hydraulic Laboratory Report HL-2014-02—Evaluation of erodibility-based embankment dam breach equations. Denver: US Dept. of the Interior, Bureau of Reclamation, Technical Service Center, Hydraulic Investigations and Laboratory Services Group.
Wahl, T. L., D. J. Lentz, and B. D. Feinberg. 2011. Hydraulic Laboratory Report HL-2011-09—Physical hydraulic modeling of canal breaches. Denver: US Dept. of the Interior, Bureau of Reclamation, Technical Service Center, Hydraulic Investigations and Laboratory Services Group.
Wishart, J. S. 2007. Overtopping breaching of rock-avalanche dams. Christchurch, New Zealand: Univ. of Canterbury.
Xu, Y., and L. M. Zhang. 2009. “Breaching parameters for earth and rockfill dams.” J. Geotech. Geoenviron. Eng. 135 (12): 1957–1970. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000162.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 145Issue 6June 2019

History

Received: Jan 9, 2018
Accepted: Nov 5, 2018
Published online: Mar 19, 2019
Published in print: Jun 1, 2019
Discussion open until: Aug 19, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Researcher, Dept. of Civil Engineering: Hydraulics, Energy, and Environment, Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Calle de Profesor Aranguren, 28040 Madrid, Spain (corresponding author). ORCID: https://orcid.org/0000-0002-2059-1712. Email: [email protected]
Miguel Á. Toledo [email protected]
Professor, Dept. of Civil Engineering: Hydraulics, Energy and Environment, Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Calle de Profesor Aranguren, 28040 Madrid, Spain. Email: [email protected]
Associate Professor, Dept. of Civil Engineering: Hydraulics, Energy and Environment, Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Calle de Profesor Aranguren, 28040 Madrid, Spain; Visiting Scientist, International Centre for Numerical Methods in Engineering, Universitat Politècnica de Catalunya, Campus Nord, C/ Gran Capita, 08034 Barcelona, Spain. ORCID: https://orcid.org/0000-0002-0031-1605. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share